Building and Combining Document and Music Spaces for Music Query-By-Webpage System

Ryoei Takahashi, Yasunori Ohishi
Norihide Kitaoka, Kazuya Takeda

Graduate School of Information Science, Nagoya University, Japan
New music retrieval system

- Music Query-By-Webpage System
 - Songs that appropriately match Webpage automatically selected
New music retrieval system

- Music Query-By-Webpage System

Songs that appropriately match Webpage automatically selected

- Text analysis
- Ranking

Play list

- Meja
- The Corrs
- Nick Lowe
- Faye Wong
- Tom Jones

- 「Rainbow」
- 「Breathless」
- 「Cruel to be kind」
- 「Dreams」
- 「It’s not unusual」
New music retrieval system

- **Music Query-By-Webpage System**

 - Songs that appropriately match Webpage automatically selected
 - Text analysis
 - Ranking

Play list

- Meja 「Rainbow」
- The Corrs 「Breathless」

Songs associated with words in documents (Webpages)
Previous work

Building similarity measures between songs

Query-by-keyword systems
- Word similarities defined by titles, artist names ...

Song classification tasks
- Acoustic similarities between songs

Music annotation systems
- Words expressing impressions and acoustic cues [Kumamoto et al.]
- Musically informative words and acoustic cues [Whitman et al., Turnbull et al.]

But

Individual correspondences between songs and words
Proposed method

- Two different vector spaces

Document space $\{d\}$ and music space $\{a\}$ associated by linear transformation $a = Wd$
Basic algorithm (1)

- **Building document space \(\{d\} \)**
 - Term frequency-inverse document frequency (TF-IDF)
 - TF-IDF weight matrix \(X (I \times J) \) \((X \equiv [x_1, \ldots, x_j, \ldots, x_J])\)
 \[
 X_{i,j} = \frac{t f_{i,j}}{\sum_j t f_{i,j}} \times \log \frac{J}{d f_i}
 \]
 - \(t f \): Term (word) frequency
 - \(d f \): Document frequency
 - \(I \): Number of words, \(J \): Numbers of songs

Document for Song \(j \)

- Up-tempo rock tune filled with riffs and pop sensibility

- **Document vector** \(x'_j \)
 - “tempo” “rock” “techno” ... “guitar” “riff”
 - \([0.08 \ 0.3 \ 0 \ \ldots \ 0.7 \ 0.2]\)

- **Singular value decomposition**
 \[
 X = U S V^T
 \]

- Reduced dimensions of document vector \(X \)
 \[
 d = U_N^T x \quad U_N : 1^{\text{st}} \text{ to } N^{\text{th}} \text{ columns of } U
 \]
Basic algorithm (2)

- Building music space \(\{a\} \)
 - Acoustic characteristics
 - Spectral centroid, rolloff, flux
 - Zero-crossing rate
 - Energy, rhythm
 - Vector quantization (VQ) codebook (Size \(M \))
 - Feature vectors of training data
 - LBG Algorithm
 - Normalized code histogram of VQ results
 - \(M \)-dimensional acoustic feature vector \(a \)

- Song \(j \)
 - Sequence of acoustic features
- Codebook
- Clustering
- Spectral centroid
- Spectral rolloff
- Spectral flux
- 0.85
Basic algorithm (3)

- Associating document and acoustic vectors through linear transformation
 \[\hat{a} = Wd \]

 - Transformation matrix \(W (M \times N) \) trained using pairs of document and acoustic vectors
 \[\{ (d_j, a_j) \}_{j=1,2,...} \]
 - Minimum squared error criterion
 \[\hat{W} = \arg\min_W \sum_j \| a_j - Wd_j \|^2 \]
 \[\hat{W} = \left(\left(\sum_j dd^T \right)^{-1} \sum_j da^T \right)^{-1} \]
Evaluation of baseline system

- Implemented with 2,650 pop songs
 - Japanese music download site: “Mora”
 - 30 s previews and reviews
 - Document space
 - Morphological analysis by Chasen ver. 2.3.3
 - Nouns, Adjectives and Verbs (I : 10,578)
 - Music space
 - Applied 32-ms analysis window every 16 ms
 - Calculated acoustic feature vector at each frame
- Size of transformation matrix W
 - $1,024$ (Dimension M of acoustic vector)
 - $\times 1,024$ (Truncated dimension N of document)
Experimental setup

- **Evaluation under ‘open’ condition**
 - Divided 2,650 song and review pairs into five sets

- **Evaluation measure**
 - Mapped document vector \mathbf{d} of query onto acoustic space $\mathbf{\hat{a}}$ through transformation W
 - Generated rank-ordered song list based on distance between $\mathbf{\hat{a}}$ and $\{\mathbf{a}_j\}_{j=1,2,...}$
 - Mean reciprocal rank (MRR)

$$MRR = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{r_k}$$

- N: number of test samples
- r_k: rank order of k^{th} song for which review was given
Evaluation results

- MRR of 0.21 obtained
- Comparison with previous results
 - Music query-by-text system based on Naive Bayes [Turnbull et al.]
 - 3 times better than previous system, with mean average precision (mAP)

<table>
<thead>
<tr>
<th>Proposed method</th>
<th>(open)</th>
<th>MRR = 0.210</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(open)</td>
<td>mAP = 0.351</td>
</tr>
<tr>
<td></td>
<td>(closed)</td>
<td>mAP = 0.816</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>(open)</td>
<td>mAP = 0.109</td>
</tr>
</tbody>
</table>

Results clarified effectiveness of combining document and music spaces
Improving document space

- Using Web text for training
 - Trained document space using Web texts collected from **top 100 Web pages** of Google search results for song title and artist name as query key words

- Using word bigrams
 - Trained document space using word bigrams while considering **word sequence information**

<table>
<thead>
<tr>
<th>Document vector</th>
<th>Training corpus</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF-IDF</td>
<td>Review texts</td>
<td>0.210</td>
</tr>
<tr>
<td>TF-IDF</td>
<td>Web texts</td>
<td>0.739</td>
</tr>
<tr>
<td>Bigrams</td>
<td>Review texts</td>
<td>0.312</td>
</tr>
<tr>
<td>Bigrams</td>
<td>Web texts</td>
<td>0.794</td>
</tr>
</tbody>
</table>
Improving document space

- Using Web text for training
 - Trained document space using Web texts collected from **top 100 Web pages** of Google search results for song title and artist name as query key words

- Using word bigrams
 - Trained document space using word bigrams while considering **word sequence information**

<table>
<thead>
<tr>
<th>Document vector</th>
<th>Training corpus</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF-IDF</td>
<td>Review texts</td>
<td>0.210</td>
</tr>
<tr>
<td>TF-IDF</td>
<td>Web texts</td>
<td>0.739</td>
</tr>
<tr>
<td>Bigrams</td>
<td>Review texts</td>
<td></td>
</tr>
<tr>
<td>Bigrams</td>
<td>Web texts</td>
<td>0.794</td>
</tr>
</tbody>
</table>

Feasibility of music recommendation system using arbitrary Web texts as input
Subjective test

- Four subjects evaluated three sets of songs to determine how appropriately they corresponded to input query sentences on a scale of 0 to 4
 1. Top 10 ranked songs
 2. Bottom 10 ranked songs
 3. 10 randomly selected songs

![Bar chart showing score comparison between Top, Bottom, and Random sets for Q1 to Q5 and Average.]

- **Top**: Black bars
- **Bottom**: Dark gray bars
- **Random**: Light gray bars

Example scores:
- Q1: Average Top 3.5, Bottom 2.5, Random 2.0
- Q2: Average Top 3.8, Bottom 2.8, Random 2.3
- Q3: Average Top 3.2, Bottom 2.2, Random 1.8
- Q4: Average Top 4.0, Bottom 3.0, Random 2.5
- Q5: Average Top 4.2, Bottom 3.2, Random 2.7

Average scores for all questions:
- Top: 3.7
- Bottom: 2.7
- Random: 2.3
- Overall Average: 3.1
Subjective test

Four subjects evaluated three sets of songs to determine how appropriately they corresponded to input query sentences on a scale of 0 to 4:

1. Top 10 ranked songs
2. Bottom 10 ranked songs
3. 10 randomly selected songs

“Sensitive ballad that conjures sentimental thoughts”
Subjective test

- Four subjects evaluated three sets of songs to determine how appropriately they corresponded to input query sentences on a scale of 0 to 4:
 - (1) Top 10 ranked songs
 - (2) Bottom 10 ranked songs
 - (3) 10 randomly selected songs

"Sensitive ballad that conjures sentimental thoughts"
Let’s listen

- Demo system “text 2 music”

“Up-tempo rock tune filled with guitar riffs and pop sensibility”
Conclusion

- Built document and music spaces on which “closeness” among songs and texts can be defined and combined
- Implemented music query-by-Webpage system based on combined vector space space
 - Proposed system was effective, having a mAP three times higher than previous system
 - Improving document space
 - Use of Web texts as training corpus
 - Use of bigrams as document representation
- Future work
 - Use very large Web documents for training higher order n-grams
Thank you!

Yasunori Ohishi
ohishi@sp.m.is.nagoya-u.ac.jp