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Abstract
Electrolaryngeal (EL) speech produced by a laryngectomee us-
ing an electrolarynx to mechanically generate artificial excita-
tion sounds severely suffers from unnatural fundamental fre-
quency (F0) patterns caused by monotonic excitation sounds.
To address this issue, we have previously proposed EL speech
enhancement systems using statistical F0 pattern prediction
methods based on a Gaussian Mixture Model (GMM), making
it possible to predict the underlying F0 pattern of EL speech
from its spectral feature sequence. Our previous work revealed
that the naturalness of the predicted F0 pattern can be improved
by incorporating a physically based generative model of F0

patterns into the GMM-based statistical F0 prediction system
within a Product-of-Expert framework. However, one draw-
back of this method is that it requires an iterative procedure
to obtain a predicted F0 pattern, making it difficult to realize
a real-time system. In this paper, we propose yet another ap-
proach to physically based statistical F0 pattern prediction by
using a HMM-GMM framework. This approach is noteworthy
in that it allows to generate an F0 pattern that is both statistically
likely and physically natural without iterative procedures. Ex-
perimental results demonstrated that the proposed method was
capable of generating F0 patterns more similar to those in nor-
mal speech than the conventional GMM-based method.
Index Terms: electrolaryngeal speech, statistical F0 prediction,
generative model, speech enhancement

1. Introduction
Speech is a common tool in human communication. Since
speech is produced by the vocal apparatus, the produced sounds
are physically constrained by the conditions of human body.
Unfortunately, there are many people with disabilities that pre-
vent them from producing speech freely, leading to communi-
cation barriers and degrading Quality of Life (QoL). Laryngec-
tomees are people with disabilities and have undergone an op-
eration to remove the larynx including the vocal folds for sev-
eral reasons such as injury and laryngeal cancer. Their ability to
generate excitation sounds is severely impaired, because they no
longer have their vocal folds although their vocal tracts remain.
One alternative means of producing speech sounds is the use of
electrolaryngeal (EL) speech, which allows them to use the ex-
citation sounds mechanically generated from an electrolarynx.
EL speech is reasonably intelligible, but somewhat unnatural
particularly due to the monotonic excitation sounds.

To address this issue, we have previously proposed meth-
ods that make it possible to convert acoustic features of EL
speech to those of normal-sounding speech by predicting the

fundamental frequency (F0) pattern from the spectrum se-
quence of the EL speech based on Gaussian Mixture Models
(GMMs) [1, 2, 3]. With a similar aim, whisper-to-speech con-
version [4] and whisper-to-audible speech conversion [5] have
been proposed. These methods have successfully shown to im-
prove the naturalness of EL speech [1, 2] while preserving its
intelligibility [3]. However, the predicted F0 patterns are still
unnatural compared with that in normal speech. One possi-
ble reason is that the predicted F0 patterns were not necessarily
guaranteed to satisfy the physical constraints of the actual con-
trol mechanism of the thyroid cartilage, even though they were
optimal in a statistical sense.

As for the generative process of F0 patterns, one of the
authors have proposed a statistical model [7, 8, 9] formulated
as a stochastic counterpart of the Fujisaki model [10], a well-
founded mathematical model representing the control mecha-
nism of vocal fold vibration. The Fujisaki model [10] assumes
that a F0 pattern on a logarithmic scale is the superposition of a
phrase component, an accent component and a constant value.
The phrase and accent components are assumed to be associ-
ated with mutually independent types of movement of the thy-
roid cartilage with different degrees of freedom and muscular
reaction times. The model reported in [7, 8, 9] has made it
possible to estimate the underlying parameters of the Fujisaki
model that best explain the given F0 pattern, by using pow-
erful statistical inference techniques. We previously proposed
unifying this model and the GMM-based F0 pattern prediction
model within a Product-of-Experts (PoE) framework [6]. Al-
though this framework showed improvement in the prediction
accuracy, it turned out that it was not suitable to real-time pro-
cessing because of the iterative procedure required in the pre-
diction process.

In this paper, we propose yet another approach that makes
it possible to use the generative model of F0 patterns for statis-
tical F0 pattern prediction using an HMM-GMM. Specifically,
we model the joint probability distribution of a sequence of the
phrase/accent commands and a spectral feature sequence. As
we shall see in the following, the state sequence of our HMM
is associated with a sequence of the phrase/accent commands
of the Fujisaki model. Here, we assume that this HMM emits
a spectral feature vector at each state. By doing so, our HMM
can be used as a model to predict a phrase/accent command se-
quence from an input spectral feature sequence. With properly
trained parameters, the most likely phrase/accent command se-
quence given an input spectral feature sequence can be found
by state decoding. Experimental results in term of prediction
accuracy revealed that the proposed method was capable of pre-
dicting F0 patterns more similar to those in normal speech than
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the conventional GMM-based method.

2. Statistical F0 Pattern Prediction
Based on GMM

We briefly review our statistical F0 prediction method [1, 2, 3],
based on statistical voice conversion techniques [11, 12]. The
aim of this method is to predict F0 patterns from the spectral
features of EL speech. As with voice conversion methods, it
consists of training and prediction processes.

Let λG be the parameters of the joint probability density
p((x[t]⊤,o[t]⊤)⊤|λG) defined as a GMM, where ⊤ is transpo-
sition, and x[t] and o[t] are a source feature and a target feature
at time frame t, respectively. The corresponding joint feature
vectors can be obtained by performing automatic frame align-
ment with Dynamic Time Warping. As a source feature, the
spectral segment feature x[t] of EL speech is obtained by ap-
plying principal component analysis (PCA) to the stacked vec-
tor consisting of the mel-cepstra of multiple frames around the
current frame t [13]. The target feature o[t] = (y[t],∆y[t])⊤

consists of the static and delta (time derivative) components of
the log-scaled F0 value y[t], extracted on a frame-by-frame ba-
sis from the target normal speech. At training time, the param-
eters of the GMM are trained using the parallel data of source
and target features.

At test time, given the spectral segment sequence x =
(x[1]⊤, . . . ,x[T ]⊤)⊤ of EL speech, the most likely F0 se-
quence y = (y[1], . . . , y[T ])⊤ can be obtained as follows:

ŷ = argmax
y

p(o|x,λG) subject to o = Wy, (1)

where o = (o[1]⊤, . . . ,o[T ]⊤)⊤ is the joint static and dynamic
feature vector sequence, and W is a constant matrix that trans-
forms the static feature vector sequence y to o.

3. Generative Model of F0 Patterns
The generative model of F0 patterns [7, 8, 9] is a stochas-
tic counterpart of a discrete-time version of the Fujisaki
model [10]. The Fujisaki model (shown in Fig. 1) assumes that
F0 patterns y[t] on a logarithmic scale is given as the sum of
three components:

y[t] = yp[t] + ya[t] + µb, (2)

where yp[t] and ya[t] are a phrase component and an accent
component at time frame t, and µb is a constant value, respec-
tively. The phrase and accent components are assumed to be the
outputs of different second-order critically damped filters, gp[t]
and ga[t], excited with Dirac deltas up[t] (phrase commands)
and rectangular pulses ua[t] (accent commands), respectively:

yp[t] = gp[t] ∗ up[t], (3)
ya[t] = ga[t] ∗ ua[t], (4)

where ∗ is convolution over time.
The key idea of the generative model proposed in [7, 8, 9] is

that a sequence of phrase/accent command pair is modeled as an
output sequence of the following path-restricted hidden Markov
model (HMM) with Gaussian emission densities (shown in
Fig. 2) so that estimating the state transition of the HMM di-
rectly amounts to estimating the Fujisaki-model parameters.
This HMM λF consists of M+N+2 states, r0, r1, p0,. . ., pM−1,
a0,. . ., aN−1. M and N are the numbers of possible values that

Figure 1: Original Fujisaki model [10].

Figure 2: Command function modeling with HMM.

Figure 3: State splitting.

the magnitude of each phrase/accent command can take. It can
thus be understood as the resolution of magnitude “quantiza-
tion”. At states r0 and r1, the means µp[t] = E[up[t]] and
µa[t] = E[ua[t]] are both restricted to zero. At states p0,. . .,
pM−1, µp[t] can take non-zero values, whereas µa[t] is still re-
stricted to zero. At states a0,. . ., aN−1, µa[t] can take non-zero
values, whereas µp[t] is forced to be zero. The path constraint
shown in Fig. 2 restricts µp[t] to consisting of isolated deltas
and µa[t] to consisting of rectangular pulses. Furthermore, we
split each state (except for pm) into a certain number of sub-
states (as in Fig. 3) so that we can directly assign probabilities
to the durations of self-transition.
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� �
Output sequence: u[t] = (up[t], ua[t])

⊤ (t = 1, . . . , T ),
Set of states: S = {r0,p0, . . . , pM−1, r1, a0, . . . , aN−1},
State sequence: s ={s[t] ∈ S|t = 1, . . . , T},
Emission densities: p(u[t]|s[t] = i) = N (u[t]; ci,Σi),

ci =


(0, 0)⊤ (i ∈ r0, r1)

(µ
(m)
p , 0)⊤ (i ∈ pm)

(0, µ
(n)
a )⊤ (i ∈ an)

, Σi =

[
v2p,i 0
0 v2a,i

]
,

State transition probabilities: ϕî,i = p(s[t] = i|s[t− 1] = î).� �
By using the conditional density p(y|u) reflecting the con-

straints Eq. (2,3,4) and the HMM likelihood p(u|s,λF ), we
can describe the probability density of y as:

p(y|s,λF ) =

∫
p(y|u)p(u|s,λF ) du (5)

= N (y;m,Γ), (6)

where m is given as the F0 pattern of the Fujisaki model given
a phrase/accent command sequence s [7, 8, 9].

4. Proposed F0 Pattern Prediction
Based on HMM-GMM

4.1. Joint Modeling with HMM-GMM

Here, we propose designing the joint probability distribution of
a sequence of the phrase/accent commands of target speech and
a spectral feature sequence of source speech. The state sequence
of the HMM introduced in Sec. 3 is associated with a sequence
of the phrase/accent commands of the Fujisaki model. Thus, if
we assume that this HMM λh emits a spectral feature vector at
each state according to a GMM emission density, the joint prob-
ability of output and state sequences of this HMM-GMM can be
used as a model to predict a phrase/accent command sequence
from an input spectral feature sequence. With properly trained
parameters, the most likely phrase/accent command sequence
given an input spectral feature sequence can be found by state
decoding.

We can write the joint p.d.f. of the spectral feature sequence
x of EL speech and the state sequence s of the phrase/accent
commands of normal speech as:

p(x, s|λh) = p(x|s,λh)p(s|λh), (7)

where

p(s|λh) =
∏
t

p(s[t]|s[t− 1],λh), (8)

p(x|s,λh) =
∏
t

p(x[t]|s[t],λh). (9)

We assume the state emission density to be a GMM:

p(x[t]|s[t] = i) =
∑
m

αi,mN (x[t];µi,m,Σi,m). (10)

4.2. Training Process

As with the method in Sec. 2, we use the parallel data of
source and target speech obtained using DTW for training.
First, we train the state transition probabilities of the path-
restricted HMM so that the HMM is ensured to produce only
the phrase/accent command sequences that are likely to occur in
normal speech. By setting the transition probability of a particu-
lar pair of states at exactly 0, we can impose constraints on state

transitions. This is in particular convenient since phrase/accent
command sequences have several requirements to be met [10].

We then use the method in [7, 8, 9] to extract the
phrase/accent commands from target speech and determine the
state sequence s. With fixed s, we can train the state emis-
sion density of each state by using the spectral feature vectors
of source EL speech at all the frames assigned to that state. To
avoid overfitting, we consider reducing the parameters of the
HMM by parameter tying. Specifically, we partition the sub-
states in each state into three segments so that all the substates
belonging to the same segment have exactly the same emission
densities. As for the spectral feature, we use the spectral seg-
ment feature used in the method described in Sec. 2. Namely,
the spectral segment feature x[t] is obtained by applying PCA
to the stacked vector consisting of the mel-cepstra of multiple
frames around the current frame t.

4.3. Prediction Process

Given the spectral feature sequence x of EL speech, we can
predict the most likely state sequence ŝ by maximizing the fol-
lowing conditional probability:

ŝ = argmax
s

p(s|x,λh) (11)

= argmax
s

p(x, s|λh). (12)

Given ŝ, we can obtain the F0 pattern ŷ by maximizing Eq. (5)
with respect to y. Since p(y|s,λF ) is given as a multivariate
normal distribution [9], ŷ is simply given by its mean. In con-
trast with the conventional GMM-based approach, the present
framework always ensures the predicted F0 pattern to follow
the Fujisaki model. This restriction is perhaps too strong, but
may be advantageous in that it can effectively avoid generating
unnatural patterns.

5. Experimental Evaluation
5.1. Experimental Conditions

We objectively evaluated the performance of the proposed
method with the following F0 correlation coefficients fcorr be-
tween the predicted F0 patterns ŷ and target F0 patterns y at
voiced frames:

fcorr =
σ2
ŷy

σŷσy
, (13)

where σ2
ŷy is a covariance of the predicted and the target F0

patterns, and σŷ and σy are standard deviations of the predicted
and the aliged reference F0 patterns, respectively. We chose the
GMM-based method [1, 2, 3] as a baseline method for compari-
son. We also tested a simple postfiltering approach that consists
of performing the GMM-based F0 prediction followed by fit-
ting the Fujisaki model to the predicted F0 pattern using the
method of [7, 8, 9].

For the training, we recorded EL speech uttered by one nor-
mal person (male) and normal speech uttered by one different
normal person (male). Each speaker uttered about 503 sen-
tences in the ATR phonetically balanced sentence set [14]. We
used 450 sentences as training data, and remaining 53 sentences
as test data. The sampling frequency was set to 16 kHz. The
frame shift was set to 5 ms. The frame length of feature extrac-
tion was set to 25 ms. The dimension of mel-cepstra including
waveform power information was set to 25. The concatenated
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frames were ±4 frames around current frame when we perform
the PCA. Thus, we compressed a 25 ∗ (4 + 1 + 4) = 225 di-
mensions feature into a 50 dimensions feature. The extraction
of mel-cepstra of EL speech uses FFT analysis. The extrac-
tion of mel-cepstra of normal speech uses STRAIGHT analy-
sis [15]. The extraction of F0 of normal speech is performed
by TEMPO [15]. The level of amplitude of phrase command
and accent command were set to 3, respectively. The num-
ber of mixture components are 16 and 4 for the GMM-based
method and the proposed method, respectively. In this paper, to
address the smaller amount of spectral features on phrase com-
mands compared with that on accent commands, we modified
the Dirac deltas of phrase command to rectangular pulses of 5
frames which amplitude is one-fifth amplitude of corresponding
Dirac delta.

The methods selected for comparison were:

• gmm: the GMM-based maximum likelihood trajectory
estimation of F0 patterns by using the F0 feature of nor-
mal speech as the target feature.

• gmm+post: As the post processing, fit the Fujisaki model
to the above predicted F0 patterns,

• proposed: Predict F0 patterns with the proposed HMM-
GMM based method.

5.2. Experimental Results

Table 1 shows that using the postfiltering slightly improved
the prediction accuracy obtained with the GMM-based method.
This is because the predicted F0 patterns are modified so that
the physical constraint expressed by the Fujisaki model is sat-
isfied (see Fig. 4). We confirmed that the proposed method
yielded even higher accuracy than both of the baseline methods.
This implies the advantage of the proposed method, which al-
lows for the direct prediction of the phrase/accent commands of
the Fujisaki model. These show that modeled natural duration
and amplitude of F0 command help us to generate F0 patterns
from spectral features and the use of fixed transition probability
is effective.

5.3. Discussion

Our proposed method allows us to directly predict the phrase
/accent commands from the spectral features. This allows us to
modify the F0 patterns within the physical constraint underly-
ing the generative process of F0 patterns. It should be noted that
the present model can also be developed into our previously pro-
posed methods, such as [3] and [6], for further improvements.

While the GMM-based method allows us to predict raw F0

values, the phrase commands and accent commands are quan-
tized into 3 levels in the proposed method, described in Sec. 3
and 5. The accuracy of F0 pattern prediction suffers from this
negative impact of quantization.

To further improve the prediction accuracy, we also plan
to incorporate the model employed in [16]. In normal speech,
many phrases or sentences share the same intonation pattern.

Table 1: F0 correlation coefficients

gmm 0.40
gmm+post 0.41
proposed 0.50
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Figure 4: Sample of F0 patterns and phrase and accent com-
mands.

This is because an intonation pattern is usually determined by
the grammatical structure of an uttered sentence or the accent
type associated with each phrase. Thus, it would be natural to
hypothesize that all phrase and accent command sequences are
drawn from a vocabulary consisting of relatively small number
of intonation pattern templates. By using a dictionary consisting
of a finite number of left-to-right HMM templates, we can as-
sume that a sequence of the phrase and accent command pairs is
generated according to a concatenation of those templates. This
can be modeled by an HMM topology employed in [16].

6. Conclusions
In this paper, to improve F0 prediction performance in elec-
trolaryngeal speech enhancement, we proposed a HMM-GMM
based F0 pattern prediction that combined two conventional
methods, a statistical F0 pattern prediction method and a statis-
tical F0 pattern modeling method based on its generative pro-
cess. Experimental results revealed that the proposed method
outperformed our conventional method in terms of prediction
accuracy.
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