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Abstract

View is a labeled directed graph containing all information
about the network that a party can learn by exchanging mes-
sages with its neighbors. View can be used to solve dis-
tributed problems on an anonymous network (i.e., a network
that does not guarantee that every party has a unique identi-
fier). This paper presents an algorithm that constructs views
in a compressed form on an anonymous n-party network of
any topology in at most 2n rounds with O(n® log ) bit com-
plexity, where the time complexity (i.e., the number of local
computation steps per party) is O(n®logn). This is the first
view-construction algorithm that runs in O(n) rounds with
polynomial bits complexity. The paper also gives an algo-
rithm that counts the number of non-isomorphic views in the
network in O(n%logn) time complexity if a view is given
in the compressed form. These algorithms imply that some
well-studied problems, including the leader election problem,
can deterministically be solved in O(n) rounds with polyno-
mial bit and time complexity on an anonymous n-party net-
work of any topology.

Keywords: Analysis of Algorithms and Problem Complex-
ity, Distributed Networks.

1 Introduction

View is a labeled directed graph, which was introduced by
Yamashita and Kameda [15, 16, 17]. The view T'(v) of a node
v in an undirected graph G is a rooted tree obtained by max-
imally sharing the common prefix of every pair of labeled
paths away from node v. Yamashita and Kameda showed
that, for any anonymous network (i.e., a network that does not
guarantee that every party has a unique identifier [3]) whose
underlying graph is G, the view T'(v) represents all informa-
tion about the network that the party corresponding to v can
learn by exchanging messages with its neighbors. They gave
the necessary and sufficient condition in terms of view un-
der which a unique leader can deterministically be elected on
an anonymous network. They further investigated the condi-
tions on the solvability of other problems such as construct-
ing a spanning tree and electing an edge (of the underlying

graph) on an anonymous network. These conditions naturally
give algorithms that output solutions to the problems. Sub-
sequently, Kranakis, Krizanc and van den Berg [11] showed
that Boolean functions with n input bits distributed over n par-
ties (and more general problems) can be computed by using
view.

In solving the above problems with views, the key steps
are to construct a view for every party and to test if two views
are isomorphic to each other. The amount of resources such
as time and communication required for these key steps are
finite for the following reason: Norris [13] proved that, for
any two nodes u and v, view T (u) is isomorphic to T(v) if
and only if 7"~!(v) is isomorphic to 77! (u) (improving the
result of Yamashita and Kameda), where 7"~ (u) [T"~' (v)] is
a subtree of depth n — 1 obtained by truncating 7'(u) [T (v)]
at depth n — 1. This means that it is sufficient for every party
u to construct a view T2"~D(y) of depth 2(n — 1) in order to
know the views of all nodes, since 72"~ (u) contains 7! (v)
for every v as a subtree. However, the local computation time
and the amount of communication taken to construct views
or to test their isomorphism are still exponential in n, since
the size of T?"~D(u) is exponential. Kranakis, Krizanc and
van den Berg [11] introduced a polynomial-communication
algorithm to construct views (in a recursive form), in which
every party constructs view 72"~V (y) with O(Amn? log n)-bit
communication in at most 2rn2 rounds, if the number n of par-
ties is given to every party,” where A is the maximum degree
over all nodes and m is the number of edges in the underly-
ing graph. This implies that the problems of electing a unique
leader, electing a unique edge and computing a Boolean func-
tion can be solved (if they are solvable) on an anonymous
network of any topology with the above communication cost.
We are also interested in the maximum number of local com-
putation steps per party of a distributed algorithm, where the
maximum is over all parties, all possible inputs and all pos-
sible executions of the algorithm. Let us call the maximum
number the time complexity or the time of the algorithm. As

*In another setting where the graph diameter D is given in addition to n,
the algorithm in Ref. [11] runs in at most 2Dn rounds with O(DAmn? log n)
to construct 72"~V (y) for each u. For instance, if D = O(1), it runs in O(n)
rounds with a better bit complexity than ours.



for the time complexity of local computation, It is easy to see
that views can be (implicitly) constructed in polynomial time
with the algorithm in Ref. [11], but it is unclear whether we
can test the isomorphism of two views in polynomial time
even if they are given in the recursive form.

Our results are the following two algorithms that work on
an anonymous network of any unknown topology:

1. There is an algorithm in which every party u con-
structs view T2"~D(x) in a certain compressed form with
O(Amn? log A)-bit communication in at most 2z rounds,
if the number n of parties is given to u. The time com-
plexity of the algorithm is O(A?n3(log n)?). If the diame-
ter of the underlying graph is Q(n), the round complexity
of our algorithm is optimal up to constant factor.

2. There is an algorithm in which every party locally com-
putes the number of non-isomorphic views with time
complexity O(An> log n) for a given view of depth 2(n —
1) in the compressed form (actually, the algorithm can
easily be modified so that it can output the quotient

graph).

Specifically, a sequential run of these two algorithms deter-
ministically solves each of the following problems (if it is
solvable) in 2n rounds with O(n® log n)-bit communication
and O(n° log n) time for an anonymous network of any topol-
ogy if the number n of parties is given to every party: the
leader election problem, the edge election problem, comput-
ing any symmetric Boolean function with n input bits dis-
tributed over all parties (a symmetric Boolean function is a
function whose value does not change for any permutation
over input bits, e.g., AND and OR with n bits). These are
the first linear-round algorithms with polynomial time and bit
complexities that work for any network topology. Our algo-
rithms can handle the case where each party has a label that is
not necessarily unique, and/or the case where the underlying
graph is directed (with some modifications).

The idea for constructing a view in the compressed form is
based on the following simple observation: There are at most
n non-isomorphic views, since there are exactly n parties on
the network. Thus, sharing isomorphic subtrees rooted at the
same level of the view results in a graph with at most n nodes
at each level. We call this compressed form of a view a folded
view. Our algorithm constructs a folded view level by level in
a way similar to the straightforward algorithm for construct-
ing a view. The crux is how to construct a folded view of
depth k from folded views of depth k — 1 without unfolding
them, since otherwise the time complexity would be expo-
nential in n. A useful fact is that views are not folded oo
much in the folded-view, i.e., only nodes at the same level
may be shared. From this fact, we will prove that folded
views can be constructed in polynomial time complexity. Our
second algorithm computes a set of nodes in the given folded
view such that no two nodes in the set were originally the
roots of isomorphic views. For this, we want to test the iso-
morphism of the views associated with any two nodes in the
folded view. An easy way would be to restore the views and

then test their isomorphism. However, it would take exponen-
tial time. Our algorithm performs this test without unfolding
the folded view.

Related Work For anonymous directed networks, Boldi et
al. [4], and Boldi and Vigna [6] used certain kinds of graph
homomorphism, i.e., fibration and covering, to define sev-
eral notions that captures the information that each party can
gather on the anonymous network: universal total graphs
(coverings) and minimal bases (which are similar to view
and quotient graphs [16]). They gave necessary and suffi-
cient conditions for electing a unique leader in terms of these
notions. They also presented an algorithm that partitions the
set of parties into equivalence classes under the isomorphism
of universal total graphs. Since the algorithm is based on the
same idea as is used by Yamashita and Kameda [16] for con-
structing view, the bit complexity is exponential in 7.

Computing on an anonymous network was first considered
by Angluin [3]. Since her seminal work, there have been
a lot of works on computing on anonymous networks. For
the leader election problem on an anonymous network, inter-
ested readers should consult Refs. [2, 18] and the references
in them. Recently, Das, Flocchini, Nayak and Nicola [7], and
Chalopin and Métivier [8] developed leader election algo-
rithms with polynomial bits of communication that do not use
view (the former paper actually discusses the mobile agent
election problem, but their algorithms can easily be trans-
formed into ones for the leader election problem). However,
their algorithms all require Q(n®) rounds in the worst case
(with communication bits that are comparable to or fewer
than ours). If we are allowed to use quantum computation
and communication, the situation is quite different. It is
proved in Refs. [14, 9] that there are quantum algorithms
that exactly elect a unique leader with polynomial time and
bit complexities on an anonymous quantum network of any
topology. Many other problems, including solitude detec-
tion and function evaluation, have also been studied (e.g.,
Refs. [1, 11, 10, 5]).

We will often refer to Appendices A-G. They can be found
in the supplemental file.

2 Preliminaries

2.1 The distributed network model

A distributed system (or network) is composed of multi-
ple parties and bidirectional communication links connecting
parties. When the parties and links are regarded as nodes
and edges, respectively, the topology of the distributed sys-
tem is expressed by an undirected connected graph with no
self-loops and no multiple edges, denoted by G = (V, E). In
what follows, we may identify each party/link with its corre-
sponding node/edge in the underlying graph for the system, if
it is not confusing. Every party has ports corresponding one-
to-one to communication links incident to the party. Every
port of party / has a unique label i, 1 < i < d;, where d is the
number of parties adjacent to . More formally, G has a port



Figure 1: A graph G = (V, E) with a port numbering o and a
node labeling X: V — {a, b}.

Figure 2: The view Té’mx(v) of depth 2, where v is the left-
upper node of G in Fig. 1.

numbering [16], which is a set o of functions {o[v] | v € V}
such that, for each node v of degree d,, o[v] is a bijection
from the set of edges incident to v to {1, ..., d,}. It is stressed
that each function o[v] is defined independently of parties
other than v. Just for ease of explanation, we assume that,
for every party [, the port i of the party / corresponds to the
link connected to the i adjacent party of the party /. In our
model, each party knows the number of his ports and can ap-
propriately choose one of his ports whenever he transmits or
receives a message.

Initially, every party / has local information /;, the infor-
mation that only party / knows, such as his local state and
the number of his adjacent parties, and global information
I, the information shared by all parties (if it exists), such
as the number of parties in the system (there may be some
information shared by some but not all parties, but such a sit-
uation does not need to be considered to define anonymous
networks). Every party / runs the same algorithm for the lo-
cal and global information, /; and I, given as its arguments.
If all parties have the same local information except for the
number of their ports, the system and the parties in the sys-
tem are said to be anonymous. For instance, if the underlying
graph of an anonymous network is regular, this is essentially
equivalent to the situation in which every party has the same
identifier (since we can regard the local information /; of each
party [ as his identifier).

Distributed systems are either synchronous or asyn-
chronous. In the synchronous case, message passing is per-
formed synchronously. The unit interval of synchronization
is called a round (for the definition, see, e.g., Ref. [12]). In
the asynchronous setting, the above sequential steps of each
party work asynchronously, and the time taken by each mes-
sage passing is finite but unbounded.

2.2 View

We will review the view according to the definition by Ya-
mashita and Kameda [16]. Let G = (V, E) be the under-
lying undirected graph of a network, and let n = |V|. Sup-
pose that each party corresponding to node v € V, or sim-
ply party v, has a value x, € U for a non-empty finite set
U, and define a mapping X: V — U as X(v) = x,. We use
the value given by X to identify the label of node in G. For
each v in G with port numbering o and node labeling map-
ping X, view T¢ »x(v) is a labeled, rooted directed tree with
infinite depth defined recursively as follows: (1) T¢ o x(v)
has a unique root u, which is labeled with label(x) = X(v),
where u is a node corresponding to v; (2) For each vertex
v; adjacent to v in G, view T, x(v) has vertex u; labeled
with X(v;), and a directed edge from root u to u; with label,
label((v,v;)) = (avI(v,v;), o[v;l(v,v;)); (3) u; is the root of
TG.0x(v;). It should be noted that, although any underlying
graph G is undirected, view T o x(v) is directed. It should
also be stressed that v, v; are not identifiers of parties and
are introduced just for definition. For simplicity, we often
use T(v) or Tx(v) instead of T x(v), if it is not confusing.
The view of depth h for v, denoted by T)’;(v), is the subtree of
depth & in Tx(v) with the same root as Tx(v). For any node
u of a view, we use depth(u) to represent the depth of u, i.e.,
the length of the path from the root to u, in the view. For
instance, it holds that depth(x) = A if u is a leaf of T)’}(v).
For any node u in a view and its corresponding party /, if an
outgoing edge e of u corresponds to the communication link
incident to party [ via port i, we call edge e the i™ edge of u,
and denote it by e;(#) and the destination of e;(u) by Adj;(u).
Here and hereafter, we mean the nodes w and w’ of a directed
edge (w,w’) by the source and destination, respectively, of
the edge. For example, the tree shown in Fig. 2 is the view of
depth 2 for the left-upper node of a labeled undirected graph
G given in Fig. 1.

If two views Tx(v) and Tx(v") for v, € V are isomorphic
(with respect to edge labels and node labels, but ignoring lo-
cal names of vertices such as u;), their relation is denoted
by Tx(v) = Tx(v'). With this relation, V is partitioned into
equivalence classes; v and V" are in the same class if and only
if Tx(v) = Tx(v"). In Refs. [16, 18], it was proved that all
classes have the same cardinality for fixed G,o and X. Let
us denote the cardinality by cg.x, or simply cx.” We de-
note the set of non-isomorphic views by I'»x, i.e., Igox =
{Tgox(v): v € V}, and the set of non-isomorphic views of
depth h by Flé,o,x’ ie., l"g’mx = {Tg,a,x("): v € V}. For sim-
plicity, we may use T'y and I'} instead of I'g.x and I }é,(r,x’
respectively. We can see that cx = n/|I'x|, since the number
of views isomorphic to Tx € Iy is constant over all T. For
any subset S of U, letI'x(S) be the maximal subset of I'y such
that any view Tx € I'x(S) has its root labeled with a value in
S. Thus the number, cx(S), of parties having values in § is
expressed as follows: cx(S) = cx - |[I'x(S)| = n - [Tx(S)|/|Tx|.

"The maximum value of ¢ .x over all port numbering o is called sym-
metricity y(G, X) and used to give the necessary and sufficient condition for
exactly solving LE, in anonymous classical networks [16].



To compute cx(S), every party v constructs Tf(("_l)(v), and
then computes || and [[x(S)| from T)z((”_l)(v) as follows: To
construct T7(v), every party v constructs T9(v), i.e., the root
of T)’}(v), in the first round. If every party v; adjacent to v has
T (v}) in the ith round, v can construct 7% (v) in the (i + 1)st
round by exchanging a copy of Ti (v) for a copy of T;‘l(v i)
for each j. By induction, in the (7 + 1)st round, each party
v can construct Tf;(v). It is clear that, for each v/ € V, at
least one node in T;‘l(v) corresponds to v/, since there is
at least one path of length of at most (n — 1) between any
pair of parties. To compute |I'x| and [['x(S)|, every party v
needs to check the equivalence of every pair of views rooted
in T;"(v). This can be done with Tf(("_l)(v) in finite steps,
since Tx(v) = Tx(v') if and only if T3 '(v) = T3 '(v') for
v,v' € V [13]. This implies that |['y| and [['x(S)| can be
computed from Ti(”_l)(v). Obviously, this simple construc-
tion takes O(n) rounds but requires an exponential number of
communication bits.

3 Folded view and its Properties

This section defines a folded view (or an f-view for short-
hand) and presents its basic properties. They are essential for
the algorithms described in the following sections.

3.1 Terminology

We will show that the folded view has all information repre-
sented by the corresponding view. To describe such informa-
tion, we introduce a notion, path set, which is equivalent to a
view in the sense that any view can be reconstructed from the
corresponding path set, and vice versa.

A path set, Pgsx(v), is defined for every view T¢ ,x(v).
Let uy00t be the root of T - x(v). Suppose that every edge of
a view is directed and its source is the end closer to u,o;. The
path set Pgx(v) is the set of directed labeled paths away
from w00 With infinite length in T, x(v). More formally,
let p = (ug, e(up),u,---) be an infinite-length directed la-
beled path away from uo(= uro0r), Where u; is a labeled node
in Tg»x(v) and e(y;) is the directed labeled edge from u; to
uir1. We define Pg, x(v) as the set of all such paths p in
T6.5.x(v). For any view T¢, () of depth /, we naturally de-
fine Py, , ¢(v): Pg; , (v) is the set of all directed labeled paths
of length h away from u;o in T(h;, o’,X(V)' In the following, we
simply call an element in a path set, a path, and identify the
common length of the paths in a path set with the length of
the path set. We define the isomorphism between path sets in
a standard way: For two path sets Pg , x(#) and Pg , x(v), we
say that Pg s x(u) is isomorphic to P x(v), if there exists
a directed-edge-preserving bijection 7 from the set of nodes
in Pg - x(u) to the set of nodes in Pg , x(v) that preserves the
edge and node labels. Similarly, we define the isomorphism
between two path sets of finite length, Pléﬂ', y(u)and P’&m <.

By the above definition, Pgﬁ’x(v) is easily obtained by
traversing view Tg,a,x(")- On the other hand, given P'C';’mx(v),

we can construct the view rooted at u;,oc by sharing the max-
imal common (i.e., isomorphic) prefix of any pair of paths in
Pgm (). In this sense, P}(l;,a,x("_) has all information repre-
Tg o x (™). Let u/ be any node at depth j in
Tg’a,x(v), and suppose that u/ corresponds to node v,; in G.
Since a view is defined recursively, we can define the path
set Pgﬂ’x(vl,/) for the A’-depth subtree rqoted at u/, as the set
of I’-length directed paths away from u/ for »’ < h — j. To
avoid complicated notations, we may use P}(';'J,X(uf ) instead
Of P’(";'vmx(vuj). We call Pg!m X(uj) the path set of length h" at
u’. In particular, when /4’ is the length of the path from u/ to

a leaf, i.e., B’ = h — j, we simply call Pg(r’x(uj) the path set

sented by view

at uw.

3.2 Folded view

We now define a key operation, called the merging operation,
which folds a view. Although the formal definition described
later is lengthy, the idea of the merging operation is very sim-
ple: two isomorphic directed subtrees rooted at the same level
in a view can be merged without any loss of information, and
repeating similar procedures will result in a compact graph.
For instance, there are seven nodes at the bottom level in
the view shown in Fig. 2. Among them, however, there are
only two distinct nodes (i.e., two non-isomorphic subgraphs
rooted at the bottom level). Let us repeatedly merge a pair of
nodes with the same label at the bottom level into one node
until no two nodes with the same label exist at the level. Then
the resulting graph has only two nodes as shown in Fig. 3.
The resulting graph has fewer nodes than the original view,
but it is easy to see that we can restore the view from the
graph. Hence, the graph has all the information that the view
has. Next look at each node u in the middle level of the graph
in Fig. 3, and identify the subgraph rooted at u, i.e., the sub-
graph induced by u and all nodes that can be reached from
u via a directed path. Among these subgraphs, there are two
non-isomorphic subgraphs. Then we merge isomorphic sub-
graphs to obtain the graph shown in Fig. 4. Now we give a
formal definition of the merging operation. We first give the
definition of the base case, where the merging operation is
applied to a view, and then extend it so that it can be applied
repeatedly.

Definition 1 (Merging Operation (Base Case)) Letr u and
u' be two nodes at the same depth in a view T (possibly of
finite depth). Suppose that the two nodes u and v’ satisfy the
following condition (1):

(1) uand v’ have the same label, i.e., |label(u) = label(u’).

Moreover, if both u and u’ have at least one outgoing edge
(i.e., neither u nor v’ is a leaf), suppose that they satisfy the
following conditions (2) and (3) in addition to (1).

(2) uand v’ have the same number of outgoing edges.

(3) The following hold for every i = 1,...,d,, where d, is
the number of outgoing edges of u.



Figure 3: The folded view obtained from Tj  ,(v) in Fig. 2
by applying the merging operation at the bottom level.

Figure 4: The smaller folded view obtained from the folded
view in Fig. 3 by applying the merging operation at the mid-
dle level.

(3.1) The " edge of u and the i™ edge of w', ei(u)
and e;(u'), have the same label, i.e., label(e;(u)) =
label(e;(u’)).

(3.2) The path sets at Adj;(u) and Adj;,(u") are isomor-
phic.

Then the merging operation is defined as follows for the
nodes u and u’ satisfying the above conditions.

(A) Eliminate v’ and all outgoing edges of u’ from T, and
then eliminate all nodes that cannot be reached from the
root of T via a directed path.

(B) For every incoming edge ¢’ of v’ (say, ¢ = (v,u’) for
some node v in T), eliminate the edge ¢’ = (v,u’) from
T and add a new edge e = (v, u) labeled with label(e’)
(i.e., the label of the eliminated edge).

After applying the merging operation to a view, the result-
ing graph T is not a view any more. However, we can nat-
urally extend the definition of the merging operation so that
it works against any graph obtained by applying the merging
operation to a view. Before extending the definition, we need
some observations. Obviously, the merging operation never
eliminates the root of a view. Further, the merging operation
does not change the length of the directed path from the root
to each (remaining) node. Thus, we define the depth of each
node u that remains after applying the merging operation as

1t is not trivial to eliminate all nodes that cannot be reached from the
root via a directed path after eliminating ’ and its outgoing edges. However,
such a situation does not occur, i.e., all nodes still have incoming edges after
eliminating #’ and its outgoing edges, if we repeatedly apply the merging
operation from the bottom level to upper levels as in our algorithm described
later. Therefore, we virtually need to eliminate only «’ and the outgoing
edges of u’ from T in our algorithm.

the length of the path from the root to «# and denote it again by
depth(u). In addition, the merging operation does not change
the set of outgoing edges of every remaining node (hence we
use e;(1) and Adj;(x) in the same way as in the case of view).
Finally, let us define the path set at a node u in a directed
graph (in a way similar to the case of view) as the set of all
directed labeled paths away from u. Based on these obser-
vations, we will extend the above definition of the merging
operation by just replacing 7 with T'. It is easy to see that the
above observations still hold after applying the merging oper-
ation twice. In this way, we inductively extend the base-case
definition of the merging operation.

Definition 2 (Merging Operation (General Case)) Let
G© be a view and let GP be any rooted directed graph
obtained by applying the merging operation to G© i times.
Then the merging operation for G is defined in the same
way as Definition 1 except that view T is replaced with G,

We call any directed graph obtained by applying the merg-
ing operation once or more to a view, a folded view (f-view).
Since views of finite depth are sufficient for our use, we
only consider f-views that are obtained from views of finite
depth hereafter. For any view T(h;,mx(v), its minimal f-view
is uniquely determined up to isomorphism as will be proved
later and is denoted by T (h;’g_,x(v). For finite-depth f-views, we
can define the path set similarly: the path set of length % at
node u in an f-view is the set of all directed labeled paths of
length & from u in the f-view. The following lemma states
that an f-view contains all information that the original view
has. The proof is given in Appendix A.

Lemma 3 For any (f-)view, the merging operation does not
change the path set at every node of the (f-)view up to isomor-
phism if the node exists after the operation. Thus, the path set
of any f-view obtained from a view by applying the merging
operation is isomorphic to the path set of the view.

We can characterize f-views in terms of path sets. Informally,
for every non-isomorphic path set P at a node at any depth
j in a view, any f-view obtained from the view has at least
one node u at depth j such that the path set at u is isomorphic
to P. Before giving a formal characterization of f-views, we
need to define some notations. We define PF(j, Tg’mx(v)) as

the family of non-isomorphic path sets ng(ix(uj ) at all nodes

u at depth j in T¢ _(v). Namely, PF(j, T¢; . (v)) is defined
as

{P’gix(u): u is a node in T(h;’mx(v) with depth(u) = j } ,

where no two isomorphic path sets are included. For any
path set P, let P|, be the set obtained by cutting off the
first node and edge from all those paths in P that have x
as the first edge label. Namely, for every path in P of the
form of (ug, e(uo), ui,e(uy),---) with label(e(up)) = x, its
suffix, (u1,e(uy),--+), is an element of P|,; conversely, ev-
ery element of P|, is such a suffix of a path of the form
(ug, e(ug), uy, e(uy), - - -) with label(e(ug)) = x. Finally, we



define a class D" of labeled directed acyclic graphs G/ =
(V1, EN? satisfying the following conditions:

e V/is the union of disjoint sets Vf (j=0,...,h) of nodes
with [V]] = 1,

e E/ is the union of disjoint sets Ef of labeled directed

edges from nodes in V! to nodes in V' for j =
J J+l
0,....,h—1,and

e every node in V{ (j = 1,...,h) can be reached from

u, € V{ via directed edges in E.

In addition, we define a subclass Dh(Tg’m (1) of D" as a set
of graphs G/ = (V/, E/) € D" such that there is a mapping
from V; onto PF(j, Tg, , y(v)) foreach j = 0, ..., h satisfying
the following two conditions:

C1 Each node u € V/ has the label that is identical to the
common label of the first nodes of paths in 6(u)

C2 For each u € V/, u has a unique outgoing edge (u, u’)
with label x if and only if there is a path in 6(«) whose
first edge is labeled with x, and 8(u") = 6(u)|y.

Now we give characterizations of f-views. The proofs are
given in Appendix A.

Lemmad4 A graph Tg,mx(") is an f-view of Tg,a’x(v) if and
only if Tjs | (v) is in DMTL (v)).

Corollary 5 Any minimal f-view Tg ~x (V) is unique up to
isomorphism and has exactly |PF(j, Tg’m (M)l nodes at depth
Jj (0 < j < h). The minimal f-view of depth h for any n-party
distributed network has O(hn) nodes and O(hAn) edges,
where A is the maximum degree over all nodes of the under-
lying graph G.

4 Folded-View Minimization

Lemma 4 and Corollary 5 imply that the minimal f-view
can always be obtained by repeatedly apply the merging
operation in any order to a view Tg,(r,X(V) until it can no
longer be applied (non-minimal f-view must have more than
PF(j, T(}’;’J,X(v)) nodes at depth j for some j, which means
that there exists at least one pair of nodes at depth j such that
the path sets at the nodes are isomorphic). Based on Lemma 4
and Corollary 5, this section presents an algorithm that out-
puts the minimal f-view for a given (f-)view. The algorithm
will be used as a subroutine when constructing a minimal f-
view from scratch.

Let 7" be a (f-)view of depth / to be minimized. The min-
imization algorithm applies the merging operation to every
node in 7" in a bottom-up manner, i.e., in decreasing order
of node depth. Clearly, this ensures that no application of the

$The superscript “f” is added to emphasize that G/ is not the underlying
graph of the network and to implicitly mean that a subclass of D' will be
shown to be equivalent to f-views.

merging operation at any depth j creates a new node pair at
any depth j° > j to which the merging operation is applica-
ble. Thus, no more merging operations can be applied after
the algorithm traverses all nodes (in the bottom-up manner).
It follows that the algorithm outputs the minimal f-view. In
order to correctly apply the merging operation to nodes u and
u’ at depth j in T", we need to decide if the conditions (1),
(2) and (3) of Definition 1 (and 2) hold. Specifically, condi-
tion (3.1) is equivalent to the fact that Adj;(«) is identical to
Adj;(«"), when the algorithm is processing nodes at depth ;.
This is because the algorithm works in the bottom-up man-
ner and thus the path sets at no two nodes at depth j + 1 are
isomorphic. The following lemma states the time complexity
of the minimization algorithm. The details of the algorithm
and the proof of the lemma can be found in Appendix B.

Lemma 6 Let U be a non-empty finite set. Let T be an f-view
for a distributed network G = (V, E) with n nodes labeled by
X:V > U, and let VI be the set of nodes of T. Then, the
minimization algorithm for input T runs with time complexity
O(IVfI(log IVfI)(log U+ A log(nIVfI))), where A is the max-
imum degree of the nodes in G.

S Constructing Minimal Folded-View

We now describe the entire algorithm that constructs a min-
imal f-view of depth i from scratch by using the f-view
minimization algorithm as a subroutine. The algorithm for
constructing a minimal f-view basically follows the straight-
forward algorithm for constructing an view (described in Sec-
tion 2.2). The difference is that parties exchange f-views (in-
stead of views) and perform the minimization subroutine on
them: To construct an f-view Té’m () of depth j, every party
connects the root of each received minimal f-view Té_; <)
of depth j — 1 with a newly created node (which will be the
root of Té,a,x(")) without unfolding them, and then applies
the f-view minimization algorithm to T(];U «). It is easy

i
to see that T ap
nected with the root is an f-view, which implies that Té’mx(v)

(v) is an f-view (since every subgraph con-

can be obtained from view Té,o',X(V) by applying the merg-
ing operation to every subtree rooted at depth 1). Thus, the
minimization algorithm can be applied to Té,(r,x(")' More
precisely, each party [ with d; adjacent parties and the label
x; performs the f-view construction algorithm described in
Fig. 5 with A, d; and x;, in which we assume that v is the node
corresponding to party / in the underlying graph. The proof
of the following theorem can be found in Appendix C.

Theorem 7 Let U be a non-empty finite set. For a distributed
network G = (V, E) with n parties labeled by X: V — U,
there is an algorithm that constructs the minimal f-view of
depth h € O(n) in h+ 2 rounds and O(Ahzn(log n)(log |Un?))
time for each party with O(mh*n log(|U |AM))-bit communica-
tion over all parties, where m and A are the number of edges
and the maximum degree, respectively, in G.



Folded-View Construction Algorithm

Input: integers &, d and x.

Qutput:
minimal f-view Tg »x» Where X is the underlying map-

ping naturally induced by the x values of all parties.

Preprocess:
For each 1 < i < d, send out a message containing
via port i to inform the corresponding neighbor of the
port number i of the sender.

113 39

1. Generate Tg’
label x.
2. For j := 1 to h, perform the following steps.

-x(), which consists of only one node with

2.1 Send a copy of the minimal f- view 7
ery ad]acent party

2.2 Receive T X(v,) via port i forevery 1 < i < d,
where v; is the node corresponding to the party
connected via port i.

X(V) to ev-

2.3 Construct an f-view Téo_ «(v) from the received
Té;’x(v,-)’s as follows.

2.3.1 Let root iy of Té,mx(") be Tg,mx(")'

2.3.2 Connect Uy With the root of T T/ _; X(v,) via an
edge labeled with (i,7"), where i’ is the port
through which v; sent Té;x(v) ie, i :=
alvil(v,vy).

2.4 Perform the f-view minimization algorithm with
T’ .x(v) to obtain T’ ex):

3. Output TG’O_‘X(V).

Figure 5: Folded-view construction algorithm.

6 Counting the Number of Parties

In many cases, the purpose of constructing a view is to com-
pute |F§§"1)(S)| for any set S € U where X: V — U in order
to compute the number of parties labeled with elements in
S, ie., cx(8) = nllYV($)|/|TY ()| We will describe an
algorithm that computes |F§?_I)(S )| for given minimal f-view
7:?(("71)(\/). It is obvious from the results in [16, 4, 6] that the
quotient graph (or the minimum base) of the underlying graph
directly gives |F§;1_1)(S )|. We should note that the minimal f-
view is not the quotient graph of the underlying graph (see
Appendix D for an example). For a given minimal f-view,
the corresponding quotient graph can be obtained by picking
up the subgraph induced by all nodes at depth up to n — 1
and merging the nodes in the subgraph (and removing redun-
dant edges) if the (n — 1)-depth views rooted at them (when
unfolding the f-view) are isomorphic. Our algorithm outputs

the set of the nodes in a minimal f-view such that the views
at them are not isomorphic (and it can easily be modified so
that it will output the quotient graph). For this, the algorithm
tests whether or not two sub-f-views are obtained from iso-
morphic views. Here “a sub-f-view ” (of depth h) at a node u
means the subgraph of an f-view induced by a node « in the
f-view and all other nodes that can be reached from u via a
directed path (of length at most /). The test would be trivial
if we were allowed to restore the views corresponding to the
sub-f-views. However, this would lead to exponential time
complexity. We should also note that two sub-f-views are not
necessarily isomorphic even if their corresponding views are
isomorphic (see Appendix D for an example).

6.1 View Counting Algorithm

For a given minimal f-view T;(”_l)(v), the algorithm com-
putes a maximal set W of the nodes whose depth are at most
n—1in 7)2((”_1) (v) such that no pair of the path sets of length
n—1 at nodes in W are isomorphic. A more concrete descrip-
tion is given in Appendix E. We then compute IFgg'_l)(S )| by
counting the number of the nodes in W which are labeled with
elements in S. Let Wy C W be the set of nodes labeled with
elements in §. Then, Lemma 3 implies that cx(S) = "’W‘ |Ws].

We will describe how to implement a subroutine, Equiva-
lence_Check, that tests whether or not a pair of sub-f-views
in a minimal f-view (of depth 2(n — 1)) have isomorphic path
sets of length n — 1. There are at least three ways to achieve
our purpose. They all have the same time complexity up to a
constant factor. In particular, they have the time complexity
O(n’Alogn), if the cardinality of U is bounded by a poly-
nomial in n, where A is the maximum degree of the under-
lying graph. Since the three ways of implementations are
interesting in their own right and they would help reader to
deeply understand the properties of f-views, we shall show
all of them. As stated above, even if such sub-f-views have
isomorphic path sets of length n — 1, they are not necessarily
isomorphic to each other. The first implementation uses the
following lemma, which says it is sufficient to test if there ex-
ists a kind of homomorphism between the pair of sub-f-views.

"(n 1) ’\(n—l)
Lemma 8 Suppose that Ty,

J-views of depth (n — 1) of a mlmmalfwew Ty T2~ 1)(v) such

that, for roots u, and w, of A("al) and ’Y’bl), respectively,

depth(u,) < depth(w,) < (n—1). Let V, and V), be the node

sets ofT "D and TX"b , respectively, and let E, and E}, be

the edge sets of A("a Y and A}(("b b

Then, A)(("a Y and A("b Y have isomorphic path sets of length
(n—1) if and only zfthefollowmg conditions C1 and C2 hold.

C1:

and T are any two sub-

respectively.

There is a unique surjective homomorphism¢: V, — V,
that preserves node labels: label(u) = label(¢(u)) for
eachu eV,.

C2: Let E (u) and E,(v) represent the set of outgoing edges
of u € Vy, and v € Vy, respectively. Then, there is a
family ¥ of bijective mappings ¥,,: E,(u) — Ep(¢(u))
for every u € V,, such that \, preserves edge-labels,



i.e., label(e) = label(y,(e)) for every e € E (u), and ¥,
maps any edge from u to u’ to an edge from ¢(u) to ¢(u’)
for all possible u’ € V,.

T\(" Y and

T\(" D have isomorphic path sets of length (n — 1), we only
need to test if we can construct ¢ and ¢ that meet C1 and
C2, or equivalently, test if we can construct ¢ for which 1,// ex-
ists. To construct such ¢, we simultaneously traverse T r-1)

and A)((”b D

a node in and the corresponding node in T\)(("bl), we
check if they have the same node label and isomorphic sets
of labeled outgoing edges. During the traversal 1f a node
T(”al) corresponds to two distinct nodes in T , we give
up constructing ¢ (because this contradicts the fact that ¢ is
homomorphism). This is the basic idea of subroutine Equiv-
alence_Check. A more precise description of the subroutine
and the proofs of the following lemma and theorem are given
in Appendix E.

Lemma 8 implies that, to check if sub-f-views

in a breadth-first manner.
n—1)
T a

Every time we VlSlt

Lemma 9 Given two sub-f-views 7/:();;1) and T)(('Zl) of depth
(n — 1) of a minimal f-view '7‘"2("71)(\/) there is an algorithm
that outputs “Yes” if and only if Ty, "D and 7’:(;;1) have iso-
morphic path sets of length (n — 1. The time bomplexity is
O(nzAlog(nIU ), where A is the maximum degree over all
nodes of the underlying graph of the distributed network.

Now we give the time complexity of the algorithm.

Theorem 10 Let U be a non-empty finite set. For any dis-
tributed network G = (V, E) of n parties labeled by mapping
X:V — U, there is an algorithm that computes IFg?fl)(S)I
for any subset S of U in O(n’Alog(n|U|)) time, where A is
the maximum degree over all nodes in G, if a minimal f-view
Ti(”_l)(v) is given to every party.

Remark 1 The above statement is somewhat weak, while
this results in a simple description of the algorithm. With
some elaboration, the time complexity in Lemma 9 can be
improved to O(n*> log(n®|U\)). Accordingly, the time complex-
ity in Theorem 10 is improved to O(n’ log(n®|U|)). However,
this improvement is meaningful only if node labels are picked
from a very large set compared with n, i.e., |U| € n®®.

For the second implementation of Equivalence_Check, we
need to perform the following preprocess before starting the
view counting algorithm: For each node v at depth at most n—
1 in the given minimal f-view, pick a copy of the sub-f-views
of depth n—1 at v, and then apply the minimization algorithm
to the copy. Then, Equivalence_Check has only to test if the
minimized copies of the sub-f-views at the given pair of nodes
are isomorphic. The above implementation requires the space
to store the minimal sub-f-views at every node at depth at
most n — 1. To save the space, we can minimize the sub-f-
views on demand, i.e., just before testing their isomorphism.
This increases the complexity by a log factor.

The third implementation is the simplest, but it requires as
input a minimal f-view Ti(”_l) of depth 3(n — 1) (instead of

2(n — 1)), which needs 3(n — 1) + 2 rounds to construct. For
given nodes it and u at depth at most n—1, Equivalence_Check
just tests whether the sub-f-view of depth n — 1 at &z and u are
isomorphic. Here, we claim that the sub-f-views are isomor-
phic if and only if the path sets of length n — 1 for the sub-
f-views are isomorphic. The details of the second and third
implementations are given in Appendix E.

6.2 Applications

To compute a symmetric function, it is sufficient to count the
number of 1’s among the inputs of all parties. Thus, every
party constructs a folded view of depth 2(n — 1) with U =
{0, 1}, and then runs the view counting algorithm to compute
cx(U) and cx(S), where S is the set {1}. The complexity
follows from Theorems 7 and 10.

To solve the leader election problem, we define U as a sin-
gleton set, e.g., {0}. In the same way as the above, every
party computes the set W of roots of non-isomorphic views.
If |W| < n, then there are multiple parties whose correspond-
ing views are isomorphic. This means that the set of all par-
ties can be partitioned into equivalence classes under the iso-
morphism of view such that each equivalence class has the
same cardinality. Thus, every party outputs ’unsolvable”. If
|W| = n, then the view of each party is unique and the party
with the first view under the lexicographical ordering will be
elected as a unique leader. Notice that the time complexity
of picking up the first view is negligible compared to the time
complexity of the view counting algorithm. In a similar man-
ner, the edge election problem can be solved by choosing a
pair of the lexicographically-smallest isomorphic views that
correspond to a pair of neighboring parties.

6.3 Directed Networks

Our algorithms, appeared in Sections 4, 5 and 6, can easily be
modified for directed graphs. To handle directed graphs, we
need to care about only Norris’s result: T, x(V) = Tgox(V')
if and only if T} (v) = T} (v). However, a similar prop-
erty holds if we approprlately define view for directed graphs,
as shown by Boldi and Vigna [6]. More detailed discussions
can be found in Appendix F.
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Appendices

A Folded view and its Properties

This section gives the proofs of the lemmas and corollary ap-
peared in Section 3.

Lemma 3 For any (f-)view, the merging operation does not
change the path set at every node of the (f-)view up to isomor-
phism if the node exists after the operation. Thus, the path set
defined for any f-view obtained from a view by applying the
merging operation is isomorphic to the path set defined for
the view.

Proof Let u’ be the node that will be merged into u (i.e.,
u’ will be eliminated). By the definition of the merging
operation, the path set at u is isomorphic to the path set at u’.
Thus, by eliminating #’ and redirecting all incoming edges of
u’ to u, the path set at every remaining node does not change
up to isomorphism. O

Lemma 4 A graph Tg
only if ’T\g,mx(v) isin Z)h(

(V) is an f-view of GO_X(V) if and

T o x V)

Proof (=) We will prove that, for any f-view obtained by
applying the merging operation to the view Tg,a,x(")» there
exists 6 that satisfies C1 and C2. From Lemma 3, the merg-
ing operation does not change the path set at any node up
to isomorphism (if it exists after the operation). It follows
that the path set at any node at depth j in the f-view be-
longs to PF(j, Tg,o:X(V))' Conversely, for every path set P
in PF(j, T(’;, +x(v)) there is at least one node at depth j in the
f-view such that the path set at the node is isomorphic to P;
this is because the merging operation just merges two nodes
such that the path sets at the nodes are isomorphic. Let 6§ map
every node u of the f-view to the path set at u. From the above
argument, 6 is a mapping from V; onto PF(j, T(h;y +x(v)) and
satisfies C1. To show that 6 satisfies C2, we use simple in-
duction on the sequence of the merging operation. By the
definition, view T?;,a,x(") meets C2. Suppose that one appli-
cation of the merging operation transformed an f-view to a
smaller f-view, and that § meets C2 for the f-view before the
operation. If we define & for the smaller f-view by restricting
the domain of 6 to the node set of the smaller f-view, then &’
satisfies C2 by the definition of the merging operation.

(<) We will prove that any graph G/ € Z)h(Té’;m +(») for
which there is 6 satisfying C1 and C2 can be obtained by ap-
plying the merging operation (possibly, more than once) to
T(’}’(EX(V). Let P be all maximal-length labeled directed paths

away from uy € Vg . We shall show that P is isomorphic to
the path set Py,  (v) defined for T¢: ., (v). We first give an
inversion of the merging operation that does not change P
up to isomorphism when it is applied to G/, and then show
that the view which defines P}é,(r,x(") is obtained by repeat-
edly applying the inversion to G/ until the inversion cannot
be applied any more. This view is isomorphic to Té';’mx(v),

10

since the view is uniquely determined for a fixed path set. It
follows that G/ can be obtained from T _(v) by reversing
the sequence of the inversion, i.e., applying the merging op-
eration repeatedly.

The inverse operation of the merging operation is defined
as follows: if some node w e Vf (1 < j < h) has multiple

incoming edges, say, e',...,¢' € E -1, the inverse operation
makes a copy u’ of u/ together with its outgoing edges (i.e,
creates a new node u’ with the same label as u/, and edge
(u’, w) with label x if and only if edge (u/, w) has label x for
every outgoing edge (#/, w)) and redirects €2, ...,e' to u’ (e
is still directed to the original node u/). Let G/ = (V'/,E')
be the resulting graph. Define the mapping 6’ as &' (') := 6(u)
and ¢’ (u) := 6(u) for u # u’. Then @’ is a mapping from V’.f
(i.e., the set of nodes at depth j in G/ onto PF(j 5T G . x(V))
and meets C1 and C2. The sets of maximal-length paths from
uy € V and u;, € V are obviously isomorphic to each
other. The inverse operatlon can be applied repeatedly until
there are no nodes that have multiple incoming edges, which
does not change the set of maximal-length paths up to iso-
morphism. It follows that G/ is transformed into a view that
defines P?;,a,x(")’ ie., view Tlé,a,x(v)’ by repeatedly applying
the operation until it can no longer be applied. O

From this lemma, we obtain the next corollary.

Corollary 5 Any minimal f-view Té’;,o-,x(v) is unique up to
isomorphism and has exactly |PF(j, Téa (M)l nodes at depth
Jj (0 < j < h). The minimal f-view of depth h for any n-party
distributed network has O(hn) nodes and O(hAn) edges,
where A is the maximum degree over all nodes of the under-
lying graph G.

Proof Lemma 4 implies that when the mapping 6 is a bijec-
tive mapping from V/ to PF(j, T} , () for all j, the f-view
is minimal. Thus, the f-view has |PF(J,
depth j (0 < j < h).

Assume that Tg}’a(v) and Té}!b(v) are any two minimal f-

T§ x| nodes at

views of Tg,a,x(")» and let 6, and 6, be their corresponding
bijective mappings 6, respectively. If we define { = 6;190 for
the inverse mapping 9;1 of 6y, then { is a bijective mapping
from the node set of Ff)’é’a(v) to that of T)’é’b(v). Suppose that
any node u, at depth j of i’z ,(v) is mapped by 6, to some path
set P in PF(j, Tg,(r,x("))’ which is mapped to some node uy
at depth j by 0;'. Obviously, u, and u;, have the same degree
and have the same label as that of the first node of paths in P.
Let (u,4, 1) be an edge with a label x in T;}‘a(v). Node u), is
then mapped to 6,(u)l,, which is mapped to node u; incident
to the directed edge with label x emanating from u;,. For each
ua and x, thus, there is an edge ({(u,), {(u)) with label x in

b(v) if the edge (u,, u,) with label x exists in Th .. By
a similar argument, there is an edge (¢ ~'(up), ¢~ (ub)) with
(0
for each uy, and x. Thus, £ is an isomorphism from Tﬁ,a(") to
T x5 (V)

label x in Th ,(v) if edge (up, uy) with label x exists in T



As for the number of nodes in the minimal f-view, if there
are n parties, it is obvious that |PF(}, Tgyg’x(v))l < n for any
j (0 < j < h). Since each node has at most A outgoing edges,
the corollary follows. O

B Folded-View Minimization

This section gives a precise description of the folded-view
minimization algorithm in Section 4 and the proof of its re-
lated lemma.

First, we define the following notion: Each node u is asso-
ciated with the pair, called key,

(label(u), ekey(u)),

where ekey(u) is the lexicographically ordered list of all pairs
(label(e;(w)), Adj;(u)) fori = 1,...,d,, where d, is the num-
ber of the outgoing edges of u. We can see that two nodes
can be merged if and only if they are associated with the same
key. The reason is as follows. Suppose no more merging op-
eration can be applied to the nodes at depth at least j + 1
(recall the algorithm proceeds in a bottom-up manner). If it
holds that (label(u), ekey(u)) is equal to (label(v), ekey(v)) as
bit strings for two distinct nodes u and v at depth j, then this
implies that the conditions (1), (2) and (3) of Definition 1 (and
2) are satisfied. On the contrary, if # and v satisfy the condi-
tions (1), (2) and (3) of the definition, the node Adj;(x) must
be identical to the node Adj;(v) (since the path sets at no two
distinct nodes at depth j + 1 are isomorphic). This implies
that (label(u), ekey(u)) must be equal to (label(v), ekey(v)).

We first prepare ekey(u) for every node u by simply
traversing T" in the breadth-first manner. We then perform
the merging operations in the bottom-up manner. Let v/ be
the set of all nodes at depth j (which can again be prepared
by traversing T"). For each depth j from £ to 1, the follow-
ing operations are performed (notice that the algorithm ter-
minates at j = 1, since only the root lies at depth O which
is never removed). First, we sort all nodes u’s in 1% by re-
garding their keys, i.e., (label(u), ekey(u)), as a binary string.
Notice that all nodes having the same key are adjacent to each
other in the sorted order. Then, consider a maximal subse-
quence in the ordered sequence of elements in Vf such that
the subsequence consists of nodes with the same key. For
each of such subsequences, we eliminate all nodes but the
first node in the subsequence and redirect all incoming edges
of the eliminated nodes to the first node, which realizes the
maximal applications of the merging operation to the nodes
at depth j. For estimating the time complexity, we will de-
scribe a more precise description. We introduce variables
primary and primarykey to store the first node u and its key
(label(u), ekey(u)), respectively, of the subsequence currently
being processed. The merging operations on Vf are realized
by performing the following operations on every node u in
V in the sorted order:

If (label(u), ekey(u)) is equal to primarykey,

e remove u from V; ,

o redirect all incoming edges of u to primary, and
"71

e remove u and all its outgoing edges from T

Otherwise, set primary to u and primarykey to
(label(u), ekey(u)).

Lemma 6 Let U be a non-empty finite set. Let T be an f-view
for a distributed network G = (V, E) with n nodes labeled by
X:V - U, and let VI be the set of nodes of T. Then, the
minimization algorithm for input T runs with time complexity
O(V/|(log |V/D(og |U| + Alog(n|V/]))), where A is the max-
imum degree of the nodes in G.

Proof (Sketch). The ordered list ekey(u) of every node u and
the set V{ for every j can be prepared by traversing the input
f-view in a breadth-first manner. Since it takes O(log(nIVf D)
time per outgoing edge of each node, the time complexity is
O(A|V/|log(n|V/))), which is negligible compared to those of
other operations as discussed below.

It takes O(|V/| log |V/]) comparisons in total to sorts
all elements in Vf for all j. Each comparison takes

O(log|U| + A log(A|Vf|)) time, since label(x) € U and
ekey(u) have O(log|U|) and O(A 10g(n|Vf|)) bits, respec-
tively, for any u. Thus the time complexity of the sorting
takes O(|V/|(log |V/|)(log |U| + Alog(n|V/])) time.

Since no edge can be redirected and removed more than
once, the time complexity taken to redirect and remove edges
is at most the order of the number of edges in the input f-view,
i.e., O(A|V/]), with appropriate data structure (the details are
given in Section G).

By summing up these elements, the total time complexity
is given as O(|V/|(log |V/)(log |U| + Alog(n|V/))). o

C Constructing Minimal Folded-View

This section describes the proof of the theorem in Section 5.

Theorem 7 Let U be a non-empty finite set. For a distributed
network G = (V, E) with n parties labeled by X: V — U,
there is an algorithm that constructs the minimal f-view of
depth h € O(n) in h+ 2 rounds and O(Ah*n(log n)(log |U|n™))
time for each party with O(mh*n log(| U|AM))-bit communica-
tion over all parties, where m and A are the number of edges
and the maximum degree, respectively, in G.

Proof We will analyze the complexity of the algorithm in
Fig. 5. Since the time and bit complexities of the preprocess
are not dominant, we will consider the main part of the al-
gorithm. Since there are n parties on the network there are
at most n non-isomorphic path sets among those at all nodes
at every depth ] Hence, Corollary 5 implies that the mini-
mal f-view T’ G.ox(V) has at most j - n nodes. By definition,
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every node has at most A outgoing edges, each of which is
labeled with an O(log A)-bit value. Thus, T’ X(v) can be ex-
pressed by O(jnlog|U| + jAnlogA) = O(Jn log(IUlAA)) bits.
It follows that steps 2.1 and 2.2 take O(jAn 10g(|U|AA)) time,
since any party has at most A neighbors (strictly speaking,
every party needs to encode the data structure representing
an f-view as a bit-sequence before sending the f-view and
decode it after receiving the f-view, but the time complexity
of such encoding/decoding is negligible compared to other
operations as discussed in Section G). Since T X(v) con-
sists of a root and A minimal f-views of depth ] -1, f-view
Té,(r,x(") has at most (j - A - n + 1) nodes. From Lemma 6,
step 2.4 in Fig. 5 takes

O(jAnlog(jAn)(log|U| + Alog(n - jAn)))
= O(jAn(logn)(log |U| + Alogn))

time for each j, since j € O(n). Thus the total time complex-
ity is

h
0] Z jAn(log n)(log|U| + Alog n)
j=1
= O(AR*n(log n)(log |UIn™)).

We now consider the bit-complexity. Since the minimal f-
view of depth j can be expressed by O(jnlog(|U|A%)) bits as
described above, the total number of the bits exchanged by
all parties is O(jmnlog(|U|A%)) for each j. It follows that the
total bit complexity to construct an f-view of depth 4 is

h
0 (Z( Jjmnlog(IUIA%) | = O (mh*nlog(UIA%)).
=1
Since the number of message exchanges is 7 + 1, the
algorithm takes / + 2 rounds. O

D Examples of Minimal F-Views

This section illustrates examples that exhibit the properties
stated in the first paragraph in Section 6.

A minimal f-view is not the quotient graph of the underly-
ing graph. For instance, Fig. 6 illustrates the minimal f-view
of depth 2(n — 1) = 6 for the graph G in Fig. 1, while Fig. 7
shows the quotient graph of G.

Two sub-f-views are not necessarily isomorphic even if
their corresponding views are isomorphic. For instance,
Fig. 9 shows the minimal f-view with respect to the leftmost
node of the graph G’ given in Fig. 8. The two sub-f-views
of depth 2 at the nodes indicated by bold circles are not iso-
morphic, while both nodes represent the leftmost node in the
graph G’.

pge

\\ /@ Ievels

=g

Figure 6: The minimal folded view Tg,(r,x(v) of depth 2(n —
1) = 6 for the graph G given in Fig. 1, where v is the left-
upper node in G. Port numbers are omitted.

1 2

al __4b)

2 3
Figure 7: The quotient graph for the graph G given in Fig. 1.

E Counting the Number of Parties

This section presents a concrete description of the view
counting algorithm and the proofs of related theorem and
lemmas.

As stated in Section 6.1. the view counting algorithm com-
putes a maximal set W of the nodes u at the depth of at
most n — 1 in 7)2(("_1)(\/) such that nodes u € W define non-
isomorphic path sets of length n — 1.

1. Set W to {uroot}, Where w0 is the root of T ~2(” l)(v)

2. Perform the following operations for each node u of
Ti(”_l)(v) at the depth of at most #n — 1 in a breadth-first
order:

2.1 For each node & in W, run Subroutine Equiva-
lence_Check (described later) to test if the sub-f-
view at u# has a path set of length n — 1 that is
isomorphic to that defined for the sub-f-view at .

2.2 Set W := W U {u} if the test is false (i.e., the sub-
f-views do not have isomorphic path sets of length
n-—1).

"(n 1)

J-views of depth (n — 1) ofa mlmmalfwew Ty 720 1)(v) such
that, for roots u, and w, of T\ A(" Y and A)(("b ), respectively,
depth(u,) < depth(w,) < (n—- 1) Let V, and V), be the node

sets OfT “V and TX"b , respectively, and let E, and E}, be

the edge sets of Ty A(" Y and A}(("b ),

Then, A)(("a Y and A("b ) have isomorphic path sets of length
(n—1) if and only if the following conditions C1 and C2 hold.

’\(n—l)

Lemma 8 Suppose that T and T are any two sub-

respectively.
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1

b ‘b)

(a)

Figure 8: A graph G’ = (V’, E’) with a port numbering o’
{a, b}.

and a node labeling Y: V' —

Figure 9: The minimal folded view of depth 2(n — 1) = 4
for the leftmost node in the graph G’ given in Fig. 8. The
two sub-f-views at the nodes indicated by bold circles are not
isomorphic, while both nodes represent the leftmost node in
the graph G’.

C1: There is a unique surjective homomorphism

¢:Vy—oVp

that preserves node labels: label(u) =

eachu €'V,

label(¢(u)) for

C2: Let E,(u) and E,(v) represent the set of outgoing edges
of u € Vy, and v € V), respectively. Then, there is a

family  of bijective mappings
Yu: Eq(u) = Ep(p(u))

for everyu € V,, such that i, preserves edge-labels, i.e.,
label(e) = label(y,(e)) for every e € E, (u), and i, maps
any edge from u to u’ to an edge from ¢(u) to (") for
all possible u’ € V,.

Proof (=) For each j € {1,...,2(n — 1) — depth(u,)},
let P! and P2 be two distinct directed paths from u, to a
certain node at depth j + depth(u,) (if they exists). Since
i((':l) and ﬂf’;l) have isomorphic path sets, there are two di-
rected paths P} and P; from w,, isomorphic to P} and P2.
We claim that P,‘) and PZ cannot terminate at distinct nodes.
This claim together with a simple induction implies that C1
and C2 hold. The proof of the claim is as follows. Let u
be the node at which both P! and P2 terminate, and let w;
and w, be the nodes at which P, and P} terminate respec-
tively. Consider the path sets Pi("_l)_depth(”)(u) starting at
u, Pf(("_l)_depth(w‘)(wl) starting at wy, and Pf(("_l)_depth(w”(wz)
starting at w,. Notice that these path sets have the maximum
length in Tz(" D). Since A("al) and 7"V have isomor-

Xb
phic path sets (and so do their extensions to infinite length),
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the path sets Pz("_1>_depth(wl)(w ) and Pz(”_l)_depth(WZ)(w ) can
both be obtained by truncating every path in Pz(” D=depth(u) ¢,
at length 2(n—1)—depth(w) (= 2(n—1)— depth(wz)) There-
fore, nodes w; and wy must be merged in T’y 2n- l)( ).

(<) Suppose that ¢ and ¢ satisfy cond1t10ns C1 and C2.

’\(n 1) . .
Every directed edge (u,u’) in T, is mapped by ¢, to a di-
rected edge (¢(u), p(u’)) in A)((”b b
and the same end-node labels.
n-1) -

with the same edge labels
It follows that any directed

path in Ty~ is mapped to an isomorphic directed path in
i((”bl). Thus, any (n — 1)-length directed path from u, in

A("*I) has to be mapped to an isomorphic (n — 1)-length di-

A)((”bl). Therefore, the path set of T A(" Disa

subset of that of 7"\(" b, Conversely, fix an (n — 1)- length di-
rected path p = (e(wl) .,e(wy—1)) away from w,(= wy),
where e(w;) € Ej, is an outgoing edge of w; € V), for each
j=1,...,(n—1). Obviously, u, is the unique preimage of
w, by ¢. If u; is a preimage of w; (with respect to ¢), condi-
tion C2 implies that there is exactly one preimage u;,; of the
destination node of e(w;) such that there is an edge (u;, u 1)
labeled with label(e(w;)). By induction, there is the unique
path in A("a ! which is isomorphic to p. Thus, the path set of

i(("b 'is a subset of that of T A(" b,

rected path in

O

We will describe the first implementation of Subroutine
Equivalence_Check. The subroutine first sets ¢(u,) = w,
if u, and w, have the same label, and then constructs ¢ de-
fined in Lemma 8 by repeating the following operations for
each j from O to (n — 1) — 1: For every node u € V, at depth
(j + depth(u,)) and for every i = 1,...,d,, where d, is the
number of outgoing edges of u, set

$(Adj;(w)) := Adji(¢(u)) € Vp,
if the following conditions hold:

1. The nodes u and ¢(u) have the same label: label(ux) =
label(¢(u)),

The nodes u and ¢(u) have the same number of outgoing
edges,

The i edge of u and the i™ edge of ¢(u) have the same
label: label(e;(u))) = label(e;(¢(u))),

When ¢(Adj;(u)) has already been defined, it holds that
¢(Adj;()) is identical to Adj;(¢(u)).

We should note that conditions 2 and 3 correspond to the exis-
tence of ¢,. Fig. 10 gives a more precise description of Sub-
routine Equivalence_Check. To construct i, one has only
to add “set v, ((u, Adj;(w))) := (¢(u), Adj;(¢(1)))” in the case
where the if-part fails in step 2.2.1. However, this is not es-
sential for the subroutine and we omit it.

Lemma 9 Given two sub-f-views 7:)(;;1) and T\)(Z;U of depth
(n — 1) of a minimal f-view ’7:2("71)(\/) there is an algorithm
that outputs “Yes” if and only lff(" D and T A(" Y have iso-
morphic path sets of length (n — 1). The time complexlty is



Subroutine Equivalence_Check
Input: Two sub-f-views, 7’:(;;1) dT A)((”bl) at w,, of

a minimal f-view T;Z(("_l)(v) such that depth(u,) <
depth(w,) <n - 1.

at u, an

Output: “Yes” or “No”.

1. If label(u,) = label(w,), then set ¢(u,) := w,; otherwise
go to step 4.

2. Perform the following operations for each node u in
T~" at depth j + depth(u,) for j = 0,...,n — 2 in this
order

2.1 If u and ¢(u) have the different number of outgoing
edges, then go to step 4.

2.2 Perform the following steps for i := 1 to d,,, where
d, is the number of outgoing edges of u.

2.2.1 If label(e;(x)) # label(e;(¢(u))), then go to
step 4.

2.2.2 If label(Adj;(n)) # label(Adj,(¢(n))), then go
to step 4.

2.2.3 If ¢(Adj;(u)) has already been defined and
¢(Adj;(u)) # Adj;(¢(w)), then go to step 4.
2.2.4 Set ¢(Adj;(n)) := Adj;(¢p(u)).

3. Output “Yes”.
4. Output “No”.

Figure 10: Subroutine Equivalence_Check.

O(n*Alog(n|U|)), where A is the maximum degree over all
nodes of the underlying graph of the distributed network.

Proof Subroutine Equivalence_Check attempts to construct ¢
defined in Lemma 8. It outputs “Yes” if and only if it visited
all nodes in T\(" D and successfully defined ¢(u) for all nodes
ueV, Itis easy to see that, if the subroutine outputs “Yes”,
then ¢ meets C1 of Lemma 8 (due to steps 1, 2.2.2, and 2.2.3)
and C2 (due to steps 2.1 and 2.2.1). If the subroutine outputs
“No”, then one of the steps 1, 2.1 and 2.2.1-2.2.3 fails, which
implies that C1 or C2 fails. Thus, 7’:(" Y and T\(" Y have iso-
morphic path sets of length (n—1) if and only if the subroutine
outputs “Yes”. This proves the correctness.

Step 2.1 in Fig. 10 is performed once with O(A) time
at each node. Hence, it takes O(]V,|A) time in total over
all nodes in V,. Step 2.2 takes O(d,(logn + log|U|)) time
for each u, since node and edge labels are represented by
O(log|U|) bits and O(log n) bits, respectively. Hence, it takes
O(|E,|log(n|U[)) time in total. The time complexity of step 2
is thus O(|V,|A + |E,|log(n|U))), which is O(n2Alog(n|U)))
since |V,| = O(n?) and |E,| = O(n*A). Obviously, step 2 is
dominant over all steps. O

Now we gives the time complexity of the view counting al-
gorithm.

Theorem 10 Let U be a non-empty finite set. For any dis-
tributed network G = (V, E) of n parties labeled by mapping
X:V — U, there is an algorithm that computes |F§'(H)(S )|
for any subset S of U in O(n’Alog(n|U)|)) time, where A is
the maximum degree over all nodes in G, if a minimal f-view
T;("_l)(v) is given to every party.

Proof Consider the view counting algorithm shown in
the first paragraph in this section. The correctness of the
algorithm follows from the first paragraph in Section 6.1.
As for complexity, we can see that (1) [W| is at most n since
there are n parties on the network, and that (2) there are O(n?)
nodes whose depth is at most n — 1 in T;Z(("_')(v) since there
are at most n nodes at each depth. Hence, Equivalence_Check
is performed for each of O(n?) pairs of sub-f-views. Since
each run of Equivalence_Check takes O(n?Alog(n|U|)) time
by Lemma 9, the total time complexity is O(n° Alog(n|U|))
time. O

Remark 1 The above statement is somewhat weak, while
this results in a simple description of the algorithm. The time
complexity in Lemma 9 can be improved to O(n* log(nAlU D)
by performing step 2.2.2 in Fig. 10 only when ¢(Adj,(u)) has
not been defined yet. Accordingly, the time complexity in The-
orem 10 is improved to O’ log(n®|U))). This is the same or-
der of the complexity of the second and third implementation
as described later. However, this improvement is meaningful
only if node labels are picked from a very large set compared
with n, i.e., |U| € n®®,

For the second implementation of Equivalence_Check, we
need to perform the following preprocess before starting the
view counting algorithm: For each node v at depth at most
n — 1 in the given minimal f-view, pick a copy of the sub-f-
views of depth n — 1 at v, and then apply the minimization
algorithm to the copy. Then, Equivalence_Check has only to
test if the minimized copies of the sub-f-views at the given
pair of nodes are isomorphic. Since there are at most on?)
nodes at depth at most n — 1, the time complexity of min-
imizing all the copies is O(n*(log n)log(|U|n*) by applying
Theorem 6 with |[V/| = O(n*). For any pair of minimal f-
views of depth n — 1, it takes O(n*Alogn + n? log |U)) to test
whether they are isomorphic, since each edge label and each
node label are represented by O(logn) bits and O(log|U|)
bits, respectively. Since the test are performed at most 1’
times, the time complexity of testing isomorphism of n? pairs
is O(n> log(n®|U])), which is dominant in the time complexity
of the entire view counting algorithm. The above implemen-
tation requires the space to store the minimal sub-f-views at
all nodes at depth at most n — 1. To save the space, we can
minimize the sub-f-views on demand, i.e., just before testing
their isomorphism. This increases the complexity by a log
factor.

The third implementation is the simplest, but it requires
as input a minimal f-view Tf(("_]) of depth 3(n — 1) (instead
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of 2(n — 1)), which needs 3(n — 1) + 2 rounds to construct.
For given nodes &t and u at depth at most n — 1, Equiva-
lence_Check just tests whether the sub-f-view of depth n — 1
at & and u are isomorphic. We claim that the sub-f-views
are isomorphic if and only if the path sets of length n — 1
for the sub-f-views are isomorphic. The only-if part is triv-
ial. For the if-part, suppose that the path sets of length n — 1
for the sub-f-views are isomorphic. Then, it is sufficient to
show that for any path set P of length n — 1, if there is a
node u with depth(u) < n — 1 such that the sub-f-view T of
depth n — 1 at u define P, then the sub-f-view T is unique
up to isomorphism. The minimality of T;(("_l) implies that
there are two distinct nodes u; and u, at the same depth in
T, if and only if the path sets starting at u#; and u, of maxi-
mal length, [ = 3(n — 1) — depth(u;) = 3(n — 1) — depth(u,),
are not isomorphic. The latter part of the above sentence is
equivalent to saying that the path sets starting at u; and u,
of infinite length (which could be obtained if we constructed
an infinite-depth view) are not isomorphic, since [ > n — 1
and, Tx(v) = Tx(v') if and only if T;é(v) = T)’}(v’) for every
h > n — 1 [13]. Therefore, if the path set of the sub-f-view
T is isomorphic to P, then T is unique up to isomorphism.
The time complexity is O(n’ log(n®|U|)), since we perform
isomorphism test for each of 13 pairs of sub-f-views and each
test takes O(n> log(nA|U|)).

F Directed network topologies

This section briefly discusses the reason why the folded view
can work for directed networks. Suppose that there is an n-
party distributed network whose underlying graph is strongly
connected directed graph with a port-numbering o and a
node-labeling mapping X, where we assume that the ports
for incoming edges and those for outgoing edges are inde-
pendently numbered at each node. Let us define the view for
a node v in the directed graph G as the labeled directed tree
rooted at v obtained by recursively traversing incoming edges
of every node (this view is called the universal total graph at
v by Boldi and Vigna [6]). Let us denote the view again by
T:.+x(v) and its finite-depth version by Tg’m <.

Boldi and Vigna [6] showed that the view for a directed
graph has a property similar to that proved in the undirected
graph case. More concretely, if v and v' are any two nodes of
the directed graph G, then it holds that 7 5 x(v) = TG ox(V')
if and only if Tg:rl’x(v) = T} ) (V). Therefore, it is sufficient
to look at views up to depth n—1 in order to count the number
of non-isomorphic views of infinite depth (more generally,
in order to gather all information that a party can obtain by
exchanging messages). Then, a natural approach is that every
party constructs an f-view of depth 2(n — 1) and then counts
the number of non-isomorphic views of depth n — 1. This can
work for the following reasons.

An f-view is obtained by just sharing isomorphic sub-
graphs of a view. In other words, the f-view construction
algorithm in Fig. 5 does not care whether the view is derived
from a directed network or an undirected network. Thus,
the f-view construction algorithm can work for directed net-
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works. It is obvious that the complexity for constructing a
minimal f-view in the directed network case is the same or-
der as in the undirected network case. The view-counting
algorithm uses the fact that T » x(v) = T+ x(v') if and only
if Tg;ix(v) = T(’;";’X(v’). Since this also holds in the directed

network case as stated in the above, the view counting algo-
rithm can also work.

G Data Structure

Destination node
:array Label of node 1 / Edge label / List of incoming-edges
Ia \ A
1 = H3|(1,5)[,p<—_> - ‘__)mi
— 1 1
2| > X L aannnd
i Y
. > 10010|(1,3) LT i
u [\ )
u p |
. \\ List of outgoing-edges
Source node . ) .
L#—\ List of incoming-edges
10[ = T [ 1](1,3) PMe T z)@i
| J
L] P - ~
L} 1 1
u 1 )
| ] | \\
List of outgoing-edges
N *~—1

Figure 11: Data structure representing a folded view

Fig. 11 shows data structure that represents an f-view,
where N is the number of nodes of the f-view. This is a
slight modification of the standard representation of directed
graphs. Each cell of the array stores the pointer to the record
of a node. The record stores the label of the node and two
pointers to the lists of incoming edges and outgoing edges,
respectively, of the node. Each of the lists is a doubly-linked
list of the records each of which stores the information of an
edge such as the source or destination node (depending on
whether it is an incoming edge or an outgoing edge) and the
label of the edge. Thus, two records are stored for each edge,
one in the list of outgoing edges of the source node, and the
other in the list of incoming edges of the destination node.
These two records are linked to each other, which makes it
possible to perform the operation of minimizing f-view in
low complexity. More concretely, consider the following op-
erations that are performed to realize the merging operation.
To redirect all incoming edges of a node u to primary, we
move the incoming-edge list of u to that of primary in con-
stant time and then, for every edge e in the incoming-edge
list, we update the destination node field of the record in the
outgoing-edges of the source node of e, which takes O(d!)
steps for in-degree d’ of u. To remove a node u and all its
outgoing edges, we remove the record for each of the edges
from the incoming-edge list of its destination node, which
takes O(d,) time in total for the out-degree d,, of u, and then
put “nil” into the array cell for u. The total time complex-
ity of the above two operations in the f-view minimization



algorithm is

0

D du] = oAV,

ueVvr ueVf

since no edge can be redirected or removed more than once.
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