

Wide-Area Multicasting based on Flexcast:
Toward the Ubiquitous Network

Takeru INOUE1, Seiichiro TANI2, Katsuhiro ISHIMARU3, Shinichi MINATO1,
and Toshiaki MIYAZAKI1

1 NTT Network Innovation Laboratories
1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa, 239-0847 Japan

{inoue.takeru, minato.shinichi, miyazaki.toshiaki}@lab.ntt.co.jp

2 NTT Communication Science Laboratories
3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa, 243-0198 Japan

tani@theory.brl.ntt.co.jp

3 Makuhari Gigabit Research Center, TAO
1-9-1 Nakase, Mihama-ku, Chiba-shi, Chiba, 261-0023 Japan

ishm@makuhari.tao.go.jp

Abstract
The Internet is starting to provide a broadcasting

service for broadband streaming media. It is expected
that this service will become more popular and more
available in the near future; users will be able to not only
receive stream data but also send it from anywhere at any
time, that is, the ubiquitous broadcasting service is
coming. However, current Internet technology does not
suit this goal.

Our solution is an autonomous wide-area multicast
protocol called Flexcast. The Flexcast protocol works
even in legacy IP networks where IP multicast cannot.
The protocol is also highly scalable and maintains
optimum delivery trees dynamically.

This paper proposes a translator node, called Flexcast
gateway, which interworks the Flexcast protocol with IP
multicast transparently. It enables IP multicast
applications to work anywhere even across legacy IP
networks, and will bring about ubiquitous broadcasting.
Finally, we provide brief reports on two field experiments.
In the experiments, we multicast prospective broadband
media such as high-definition television with IP multicast
applications passing through wide-area networks that do
not support IP multicast themselves. The results confirm
that our proposed system suits wide-area multicasting and
that the prototype system offers excellent performance.

1. Introduction

Broadband Internet access services such as DSL
(Digital Subscriber Line) and FTTH (Fiber To The Home)
are spreading rapidly. In the near future, wireless LAN
and W-CDMA technologies are also spreading and are
expected to provide broadband access services anywhere
at any time, namely, ubiquitously.

The service of broadband streaming media is starting to
gain some adherents, and multicast technologies are
expected to support the services. These technologies
allow the server to issue a single stream which is then
replicated in the network by routers or special nodes

called splitters, for delivery to each recipient. IP
multicast is one of the most popular multicast
technologies, and requires special IP addresses, called IP
multicast addresses, to specify the groups of recipients.
However, current wide-area networks do not support
routing protocols for IP multicast packets for technical
and economical reasons. One alternative, IP unicast
based multicast technologies, is gathering much attention
as a broadcasting tool. Though they work in such legacy
IP networks, they have several problems in terms of
scalability and flexibility, as described later.
Consequently, existing multicast techniques are being
deployed only in private or closed networks. To realize
ubiquitous broadcasting, we consider that multicast
technologies must satisfy three following requirements:

- to support the use of legacy network resources, so
as to broadcast from anywhere to anywhere,

- to provide high scalability, to handle lots servers
and clients,

- and to maintain the delivery trees dynamically
without prior knowledge of the network
configuration, in order to begin broadcasting at any
time.

Our proposal is an autonomous wide-area multicast
protocol called Flexcast. The Flexcast protocol uses just
unicast packets, so it works even in legacy IP networks.
The protocol is also highly scalable and maintains
tree-like optimum delivery paths automatically without
prior configuration. Thus, the Flexcast protocol is
well-suited to ubiquitous broadcasting. Unfortunately,
we have few application programs1 designed around the
Flexcast protocol, and it may take time for such
applications to appear. In contrast, IP multicast has
supported many applications in its long history.

1 We discuss just broadcast style (single-source) applications,

not conference style (multi-source) applications in this paper.

In this paper, we propose a translator node called
Flexcast gateway, which interworks the Flexcast protocol
with IP multicast transparently. This feeds advantages of
the Flexcast protocol to IP multicast applications, and
realizes ubiquitous broadcasting. This paper is
organized as follows. Section 2 describes existing
multicast technologies and the Flexcast protocol, while
Section 3 proposes the Flexcast gateway. Section 4
shows brief results of two field experiments, and we
provide a short conclusion in Section 5.

2. Preliminary
2.1 Conventional Multicast Technologies

IP multicast [1] is the most popular mechanism for
multicasting. Many protocols [2]-[4] for IP multicast
have been proposed and most are being investigated for
standardization at IETF. Before commencing an IP
multicast session, we must obtain a globally unique IP
multicast address. This complicates the use of IP
multicast. Furthermore, all routers along the paths to the
group members must be able to route IP multicast packets,
which currently restricts IP multicast to just closed or
experimental networks such as Mbone [5]. This is why
IP multicast does not support wide-area multicasting.

In the source-specific multicast protocol [6], each
multicast group is represented by a pair of its server
(source) address and a multicast address. Since the
server address is globally unique, the multicast address
does not need to be globally unique. However, all
routers still need to support IP multicast routing protocols.

Automatic tunneling protocols, which create tunnels to
between multicast networks, are proposed in reference [7],
[8]. However, the tunnels waste too much bandwidth
and is not expected to be scalable, since the server-side
end of each tunnel is forced to unicast a packet to the
other end of each tunnel directly, not multicast.

IP unicast based multicast technologies are gathering
much attention as ubiquitous broadcast tools. It is
possible for legacy routers to be located on the paths
between the clients and the server, since they use just
unicast packets. This makes it easy to use the multicast
mechanism in IP networks that include legacy routers.
There are two types of IP-unicast-based multicast
technologies: application layer multicast works in the
application layer while the other works across the network
and application layers.

In application layer multicasting [9], [10], replicator
nodes are usually located at the edge of the network or the
clients themselves. The stream is terminated by a
replicator, which duplicates the stream and forwards them
to the (other) clients. Since these processes are carried
out in the application layer, they are called application
layer multicasting. However, they require clients to
retrieve the nearest replicator's address to receive the
stream, which often needs pre-configuration phase. Also
the delivery trees are sometimes constructed
independently of the network layer, and this can bring
about route redundancy and makes this approach not
scalable.

There are several technologies that work across the

C1

C2

SenderChannel

……

C1, C2(S,1)

SenderChannel

……

C1, C2(S,1)

SenderChannel

……

B, C3(S,1)

SenderChannel

……

B, C3(S,1)

(S,1)
 C

2→
S

(S,1)
 C

2→
S

C2←
S (

S,1)

C2←
S (

S,1)

Client

Join packet

Stream packet

Client

Splitter

SenderChannel

……

A(S,1)

SenderChannel

……

A(S,1)

Figure 1: Basic operation of Flexcast protocol

Delivery table of B

Delivery table of A

Delivery table of S

(channel) src→dst

(S
,1

)
C

1→
S

(S
,1

)
C

1→
S

B

C
1←

S
 (

S,
1)

C
1←

S
 (

S,
1)

B
←

S

(S
,1

)
B
←

S

(S
,1

)

(S
,1

)
 B
→

S
(S

,1
)

 B
→

S

A

C3

(S,1)
 C

3→
S

(S,1)
 C

3→
S

C3←
S (

S,1)

C3←
S (

S,1)

Client

Splitter

Server

A
←

S

(S
,1

)
A
←

S

(S
,1

)

(S
,1

)
 A
→

S
(S

,1
)

 A
→

S

(channel) src→dst

S

network and application layers. The Flexcast protocol is
one of them, and we explain it in the next section. The
protocol proposed in [11] is so simple that it seems to be
scalable. However, it is possible that the protocol
reconstructs the whole delivery tree when the first client
leaves, which makes delivery trees unstable. Recently,
[12] proposed another approach for multicasting called
Xcast. In Xcast, all the clients’ addresses are listed in
the packets instead of the multicast group. Each
Xcast-aware router along the path replicates the packets if
necessary. The protocol has scalability problem when
there are many recipients, and so does not seem to support
broadcasting.

2.2 Flexcast protocol

Reference [13] proposes a multicast technology called
Flexcast. The Flexcast protocol realizes multicasting
with unicast packets, and autonomously regenerates the
optimal delivery tree when recipients emerge or
disappear.

The Flexcast protocol is composed of clients, servers,
and splitters. A splitter is a branch point of the delivery
tree, and it replicates and forwards the stream.

Clients who want to receive a stream send join packets
destined to the server periodically that contain the paired

information of IP address of the server and the port. The
port is used to identify the stream within the server, and
the paired information specifies a delivery tree. The
paired information is called a channel. When a join
packet arrives at a Flexcast splitter located on the path
between the client and the server, the splitter terminates
the join packet, and registers the sender address in the
routing table, called the delivery table. If the requested
channel is a new one, the splitter creates a new record for
the channel in the table, and enters the sender address into
its delivery table. In either event, the splitter sends a
join packet to the server periodically, the same as clients.
This joining operation propagates from the client through
intermediate splitters until the final join packet reaches
the server, and constructs a delivery tree.

When the server receives a join packet, it sends the
stream to the child2 on the tree. The splitters on the tree
receive the stream from their parent, and deliver it to their
immediate children. Finally, the stream is delivered to
each client.

The Flexcast protocol uses the keep-alive mechanism
to maintain the delivery tree. The parent of a client
relays the stream provided it receives a join packet from
the client within some interval, such a client is called
active. In other words, a client that stops sending join
packets expires, and no stream is delivered to the client.
The parent node also continues to send join packets to the
server while it has at least one child that remains active.
The same keep-alive mechanism works between the
splitter and its parent.

We show an example of the above operation in Figure 1.
Flexcast splitter A connects path splitter B and client C3
to server S; splitter B connects path clients C1 and C2 to
server S. Clients C1, C2, and C3 periodically send join
packets to server S. These packets are routed as
ordinary unicast packets. Splitter B intercepts the
packets from C1 and C2 and registers the sender
addresses, clients C1 and C2, in its delivery table, and
sends a join packet whose source address is splitter B.
Similarly, splitter A picks up the join packets from splitter
B and client C3, registers them in its table, and sends a
join packet to server S. When server S receives the join
packet, it sends the stream to splitter A. Splitter A copies
the stream and sends them to splitter B and client C3 after
referring to the delivery table. In the same way, splitter
B sends the stream to clients C1 and C2.

From the example, it is clear that the delivery stream
traces the reverse of the unicast transmission path from
the clients to the server. The Flexcast protocol can work
even if the reverse-paths differ from the unicast paths
from the server to clients, say, the forward-paths. While,
in general, forward-paths yield higher stream delivery
quality than reverse-paths, forward-path-based tree
construction often results in complicated or non-adaptable
protocols [11]. It is reasonable to assume that there will
be little difference in quality between forward-paths and

2 Following the usual terminology of a tree, for each node

(including the server and clients) of a multicast tree, we refer to
the server-side and client-side neighbor(s) as, respectively, the
parent and the children of the node.

reverse-paths, since IP networks are being optimized to
support bidirectional communication. Thus, the Flexcast
protocol adopts reverse-path-based tree construction
which yields scalability in terms of the number of nodes
and adaptability to IP routing changes.

The Flexcast protocol works even if legacy routers are
located between clients and servers, since they can simply
forward the packets to the next hop based on the unicast
destination address. Also, the Flexcast protocol is so
simple that it is extremely scalable [14]. As shown in
Figure 1, the Flexcast protocol constructs delivery trees
automatically and starts broadcasting without any
pre-configuration phase. However, there are few
application programs designed around the Flexcast
protocol.

3. Wide-Area Multicasting using Flexcast

This section proposes the Flexcast gateway; it
interworks the Flexcast protocol with IP multicast
transparently and enables IP multicast applications to
work anywhere even across legacy IP networks. We also
discuss the address resolution process between Flexcast
and IP multicast, which enables our proposed system to
maintain delivery trees automatically.

3.1 Flexcast Gateway

First, we focus on IGMP [15]-[17], the client
management protocol of IP multicast. IGMP must be
implemented by all IP multicast routers and all IP
multicast clients. IGMP informs IP multicast routers of
whether IP multicast clients exist in the adjacent subnet.
A multicast router sends IGMP queries periodically, and
one or some of the clients in the subnet respond with
IGMP membership reports. The multicast router then
runs a multicast routing protocol [2]-[4] and forwards
multicast stream packets while it has active clients.

IP multicast routers do not need to control IP multicast
servers. They can forward multicast streams just when
they receive them from the IP multicast server.

In this section, we introduce a protocol translator node
called Flexcast gateway, which implements IGMP as well
as the Flexcast protocol and translates them transparently.
Flexcast gateway changes its behavior depending on the
connected network. When a gateway is placed in the
subnet to which IP multicast clients are connected, the
gateway is called client-side gateway and controls IP
multicast clients by using IGMP. Upon receiving IGMP
membership reports, the client-side gateway starts
sending Flexcast join packets like Flexcast clients. A
server-side gateway, which is connected to the server’s
subnet, receives Flexcast join packets. The gateway then
encapsulates IP multicast streams from the server and
forwards them just as do Flexcast servers.

We show an example of gateway operation in Figure 2.
Gateways G1 and G2 are connected to the subnet of an IP
multicast server and IP multicast clients respectively.
Client-side gateway G2 watches for IGMP membership
reports sent by IP multicast clients C1 and C2, extracts the
IP multicast address M, and starts to send join packets to
server-side gateway G1. We discuss later a method of

B

A

G1 Server-side gateway

G1
A
G1
A

G1
G2
G1
G2 G1

BG1
B

G2 Client-side gateway

dst
src
dst
src

src
dst
src
dst

Join packet

Stream packet

Encapsulated multicast packet

S

C1 C2

MM

MM

G1
G2
G1
G2

G1 B
G1 B

G1
A
G1
A

Figure 2: Basic operation of Flexcast gateway

IGMP membership
Report

Encapsulates
IP multicast packets

Decapsulates
IP multicast packets

IP multicast server

IP multicast clients

Splitter

Splitter

MM
MM

IP multicast packet

resolving the address of the server-side gateway from the
IP multicast address. The requested channel is identified
by the pair of gateway G1 and multicast address M.
Gateway G2 uses IGMP query to check if IP multicast
clients C1 and C2 want to receive the stream and sends
join packets only while they are active. When
server-side gateway G1 receives the join packets, gateway
G1 picks up the IP multicast packets of multicast address
M that are passing through the local segment,
encapsulates the packets, and forwards them as a Flexcast
stream. Gateway G2 extracts the original IP multicast
packets from the encapsulated stream packets, and
releases the IP multicast packets to the local segment.
Finally, IP multicast clients C1 and C2 get the IP
multicast packets.

From a different perspective, Flexcast gateways create
a tunnel through which IP multicast packets from server
pass to clients. The tunnel is highly scalable, since the
tunnel itself is a delivery tree of the Flexcast protocol and
can be a tree-shaped. Our approach realizes remarkable
efficiencies compared to the automatic tunneling
protocols [7], [8], which link multicast capable networks
directly.

The overhead of encapsulation is less than 4% if the
original multicast IP packet occupies 1,400 bytes. We
confirm the influence of encapsulation in Section 4.2.

3.2 Address Resolution Method for Client-Side
Gateway

In this section, we discuss how the client-side gateway
can resolve the address of the server-side gateway from
the IP multicast address carried by the IGMP membership
report.

In version 3 of IGMP [17], the IGMP membership
report contains the server address field so the client-side
gateway can use it to obtain the address of the server-side
gateway. Versions under 3, however, require a separate
resolution process. We propose the address mapping
server, which maps IP multicast addresses to the
server-side gateway addresses. In the proposed method,
a broadcaster registers a pair of IP multicast address and
the server-side gateway’s address to the address mapping
server prior to broadcasting. When a client-side gateway
receives an IGMP membership report, it extracts the IP
multicast address and asks for the address of
corresponding server-side gateway.

Since the proposed method resolves the address of the
server-side gateway dynamically, the Flexcast tunnels are
automatically created and removed under the control of
the actions of the IP multicast clients.

4. Experiments and Results

In this section, we briefly discuss the results of two
field experiments. One was conducted across the Pacific
Ocean to confirm that our proposed method is feasible in
use, especially in wide-area networks that include legacy
routers. The other involved the transmission of HDTV
(High-Definition Television) class streams, whose
average bandwidth exceeded 20 Mbps, to confirm the
scalability and performance of our proposed system. We
also confirm that Flexcast tunnels are automatically
created under the control of IP multicast clients.

4.1 Inter-Pacific Experiments

To confirm that the proposed method works in
wide-area networks including legacy routers, we
conducted streaming experiments over NTT's
experimental fiber-network connecting Japan and U.S.A.,
called GEMnet, and the networks of Internet2 [18], which
is a consortium established to develop advanced network
applications and technologies. The experiments were
carried out as part of the Internet 2 Fall 2002 Member
Meeting.

Figure 3 illustrates the network topology in the
experiment. IP multicast servers and clients were
located in NTT's Yokosuka R&D Center, the University
of Southern California (USC), Los Angeles, and the
University of Illinois (UIC), Chicago. Yokosuka R&D
Center was connected to GEMnet; USC and UIC are
connected to Internet2. Since GEMnet and Internet2
have a bidirectional access point in Sunnyvale, USC and
UIC could communicate with Yokosuka via Internet2 and
GEMnet. GEMnet is bottleneck of the whole network in

the experiments, and it has a constant bitrate speed of 17
Mbps in each direction. Other links are more than
100Mbps. We did not let IP multicast packets be routed
in GEMnet and Internet2, that is, both networks worked
themselves as legacy IP networks in the experiments.

We implemented software-based Flexcast splitters and
gateways using ordinary PCs (Pentium IV 2.0 GHz with
512 MB of main memory). The Flexcast protocol does
not specify the underlying transport protocol. We
implemented Flexcast over UDP and over TCP. The
IGMP version we implemented is 2, and we installed an
address mapping server in Yokosuka. We used two
types of IP multicast applications; one was an MPEG2
server/player [19] and whose average bandwidth was 6
Mbps. The other was Windows Media 7 [20] whose
average bandwidth was 500 kbps.

Each site had one or two gateways and several IP
multicast servers and players. A splitter was placed at
Yokosuka.

In the experiments, we could enjoy a smooth video chat
across the legacy IP networks. Both Flexcast over UDP
and over TCP worked well. Flexcast tunnels were
automatically created and removed under the control of
the actions of the IP multicast clients. The results
showed that our proposed system allowed the IP multicast
applications to work across the legacy IP networks and
delivery trees were maintained dynamically.

4.2 High-Definition Television Experiments

The second series of experiments was conducted over

JGN (Japan Gigabit Network) [21], which was designed
for the research and development of very high-speed
networking and high-performance application
technologies. As Figure 4 depicts, we used three servers
(Chiba, Tokyo, and Kochi), and fifty players3 (Chiba,
Tokyo, Kochi, and Miyagi). Chiba site offers 1 Gbps
networks while other networks limit their bandwidth
around 100 Mbps. An address mapping server was sited
in Chiba. We broadcasted an HDTV class stream to fifty
clients simultaneously to confirm the performance of our
proposed system.

The average bandwidth of HDTV streams is large, 20
Mbps to 25 Mbps, so we installed Flexcast splitters in
powerful server PCs; all had 64-bit bus, Xeon 2.0 GHz
and 1024 MB of main memory. We adopted UDP for
the transport layer, since it has smaller overhead than
TCP.

During the experiments, all clients played error-free
HDTV pictures. Flexcast splitter could create at most
twenty five streams from one input stream. Flexcast
tunnels were well controlled by IP multicast clients. The
experiments confirmed the feasibility of broadcasting
future broadband contents, and demonstrated that the
proposed system has excellent scalability and

3 In order to increase the number of players, we used forty

three dummy players in the experiments, which do not decode
the stream just receive it. In Figure 4, a dummy player is
depicted as three players, but it was actually three to twenty
dummy players running. After all, fifty players were receiving
the stream simultaneously.

GEMnetGEMnet Internet2Internet2

YokosukaYokosuka

Los AngelesLos Angeles

ChicagoChicago

Figure 3: Schematic view of the Inter-Pacific experiments

Gateway

MPEG2 server MPEG2 player

Splitter

WindowsMedia server WindowsMedia player

Tokyo 1

Tokyo 2

Kochi

Miyagi

Chiba

JGN 1JGN 1

JGN 2JGN 2

Figure 4: Schematic view of the high-definition
television experiments

Gateway

HDTV server HDTV player

Splitter

Dummy player
(just receives stream, doesn’t decodes it)

performance.

5. Conclusion

This paper proposed the Flexcast gateway, a network
node that interworks the Flexcast protocol with IGMP
transparently. The Flexcast protocol works even in
legacy IP networks where IP multicast cannot. The
protocol is also highly scalable and maintains the
optimum delivery trees dynamically. By introducing
Flexcast gateways, IP multicast applications can now be
broadcast over legacy IP networks. We also briefly
showed the results of two field experiments. They
confirm that our proposed system works well in wide-area
networks and can broadcast broadband media such as
high-definition television. The combination of Flexcast
and IP multicast raises the possibility of realizing
ubiquitous broadcasting in the near future.

Acknowledgements

First, we would like to thank Prof. T. Aoyama, our
advisor at the University of Tokyo, for letting us work on
these exciting experiments. We would also like to
thank H. Takahashi, S. Kotabe, T. Murooka, Dr. T.
Shimizu, and Dr. A. Takahara, our colleagues at NTT, for
their help in the inter-Pacific experiments. We are also
grateful to T. Ogura, our colleague at TAO, K. Hayashi
and K. Toyoshima, our colleagues at NTT, for their help
in the high-definition television experiments.

References
[1] S. Deering, "Host Extensions for IP Multicasting", IETF RFC

1112, August 1989.
[2] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M.

Handley, V. Jacobson, C. Liu, P. Sharma, and L. Wei, “Protocol
Independent Multicast-Sparse Mode (PIM-SM): Protocol
Specification,” IETF RFC2117 June 1997.

[3] D. Waitzman, C. Partridge, and S.E. Deering, “Distance Vector
Multicast Routing Protocol,” IETF RFC1075, November 1998.

[4] J. Moy, “Multicast Extensions of OSPF,” IETF RFC1584, March
1994.

[5] V. Kumar, “Mbone: Interactive multimedia on the Internet ’95,”
New Riders Publishing, 1995.

[6] H. W. Holbrook and D. R. Cheriton, “IP Multicast Channels:
Express Support for Large-scale Single-source Applications,”
Proc. of ACM SIGCOMM1999, pp. 65-78, August 1999.

[7] K. Patel and R. Perlman, "Host Extensions to Protocol
Independent Multicast," IETF Internet Draft, work in progress,
July 2002.

[8] R. Finlayson, R. Perlman, and D. Rajwan, "Accelerating the
Deployment of Multicast Using Automatic Tunneling," IETF
Internet Draft, work in progress, February 2001.

[9] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang, “Enabling
Conferencing Applications on the Internet using an Overlay
Multicast Architecture,” Proc. of ACM SIGCOMM2001, pp.
55-67, August 2001.

[10] M. Kawada, H. Morikawa, and T. Aoyama: "Collaborative
Multicast Architecture for Multi-Stream Applications," Proc. of
APCC2001, pp. 626-629, September 2001.

[11] I. Stoica, T. S. Eugene, and H. Zhang., “REUNITE: A recursive
unicast approach to multicast,” Proc. of INFOCOM2000, pp.
1644-1653, March 2000.

[12] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and O.
Paridaens, "Explicit Multicast (Xcast) Basic Specification", IETF
Internet Draft, work in progress, January 2003

[13] S. Tani and T. Miyazaki, and N. Takahashi, "Adaptive Stream
Multicast Based on IP Unicast and Dynamic Commercial
Attachment Mechanism: An Active Network Implementation",
Proc. of IWAN2001, September 2001.

[14] S. Ohta, S. Tani, T. Miyazaki, and N. Takahashi, "Multicast as a
traffic variance smoother for IP streaming service,” Proc. of
Networks2002, pp. 105-110, June 2002.

[15] B. Fenner, “IANA Considerations for IPv4 Internet Group
Management Protocol (IGMP),” IETF RFC3228, February 2002.

[16] W. Fenner, “Internet Group Management Protocol, Version 2,”
IETF RFC2236, November 1997.

[17] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan,
“Internet Group Management Protocol, Version 3,” IETF
RFC3376, October 2002.

[18] Internet2, http://www.internet2.edu/.
[19] Kubotek Corp., http://www.kubotek.com/enginfo/Ehome.html.
[20] WindowsMedia, http://windowsmedia.microsoft.com/.
[21] JGN, http://www.jgn.tao.go.jp/english/index_E.html

