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Graph Property Testing

Definition (Graph Property)
Graph properties are those of graphs that are invariant under
changing the labelings of vertices.
(ex. connectedness, planarity)

If a simple graph G is given as its adjacency matrix AG , then
whether G has a certain graph property or not can be expressed as a
(transitive) Boolean function over

(
n
2

)
elements in AG .

Graph Property Testing
Decide if a graph G = (V ,E) has a graph property P with a minimum
number of queries of the form “Is the pair (i,j) an edge of G?” (=AG[i, j]))
(ignoring the cost of other operations.)

There are a long history of studies on this subject.
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Triangle Finding

Triangle Finding Problem
Given a graph, decide with high probability if it contains a triangle as a
subgraph by making a minimum number of queries.

no triangle

This is an particularly important problem well studied since a fast triangle
finding algorithm in the sense of time complexity would compute/solve fast

Boolean matrix multiplication

Max 2 -SAT

As a first step, query-efficient algorithms are worth studying.
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Triangle Finding as Graph Property Testing

Triangle Finding Problem
Given a graph, decide with at least probability 2/3 if it contains a triangle
as a subgraph by making a minimum number of queries.

Classical Case Ω(n2) queries― we need to query almost all.

Quantum Case O(
√(

n
3

)
) = O(n1.5) can obtained simply by applying

Grover’s quantum search algorithm.

Moreover, a series of improvements have been made
by introducing novel general-purpose quantum techniques.

The triangle finding is one of the central problems that have advanced
quantum algorithm/complexity theory.
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Quantum Algorithms for Triangle Finding

The trivial quantum upper bound is O(n1.5) queries.

Õ(n1.3) queries [Magniez-Santha-Szegedy, SODA2005]

by a new application of quantum walk.

O(n35/27) queries [Belovs, STOC2012] (35/27=1.296...)

by introducing the learning graph technique.

O(n9/7) queries [Lee-Magniez-Santha, SODA2013] (9/7=1.285...)

by improving the learning graph technique.

Õ(n9/7) queries (simpler algorithm) [Jeffery-Kothari-Magniez, SODA2013]

by introducing the concept of nested quantum walk.

O(n5/4) queries [LeGall, FOCS2014] (5/4=1.25)
by combinatorial arguments + quantum walk.

Along this line of research,
we consider a generalization of triangle finding to the hypergraph case.
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Hypergraphs

Definition (3-uniform Hypergraphs)
An undirected 3-uniform hypergraph is a pair (V ,E), where

V is a finite set (the set of vertices),

E ⊆ V × V × V is the set of hyperedges, i.e., unordered triples of
elements in V.

Example
V = {1, 2, 3, 4, 5}
E = {{1, 2, 4}, {1, 3, 5}}

1
2

3 4

5

Note that we can define k-uniform hypergraphs,
but we only deal with 3-uniform case in this talk.
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4-Clique over a 3-Uniform Hypergraph

4-clique is a complete 3-uniform
hypergraph on 4 vertices:
(a generalization of a triangle)

Example
Ex. {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} are
all hyperedges.

1	


2	


3	

4	


{1,2,4}	


{1,2,3}	
 {2,3,4}	


{1,3,4}	


4-Clique Finding Problem
Given a hypergraph G, decide with high probability
if it contains a 4-clique as a subhypergraph by making a minimum number
of queries of the form: “Is the triple {i, j, k } an hyperedge of G?”

This problem is closely related to Max-3SAT or multiplication of tensors.
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Our Results: Finding 4-Clique in a 3-uniform Hypergraph

Theorem (4-clique Finding Quantum Algorithm)
There exists a quantum algorithm that detects with high probability
if the input 3-uniform hypergraph on n vertices has a 4-clique as a
subhypergraph (and finds a 4-clique if it exists),

by making Õ(n241/128) = O(n1.883) queries.

Technical outline

Extend the idea of the triangle finding algorithm by [Lee-Magniez-Santha,
SODA05] to the hypergraph case.

But the analysis gets too complicated to
be done.

Then cast the extended idea to the framework of nested quantum walk
introduced by [Jeffery-Kothari-Magniez, SODA05].

Still, need to somehow
handle undesirable cases that is unique in the hypergraph case.

Finally heavily use the concentration theorem over hypergeometric
distribution to show that the undesirable cases rarely happen.
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Applications

Definition (Ternary Associativity)
Let X be a finite set with |X | = n. A ternary operator F from X × X × X to
X is said to be associative if
F (F (a, b , c), d, e) = F (a,F (b , c, d), e) = F (a, b ,F (c, d, e))
holds for every 5-tuple (a, b , c, d, e) ∈ X5.

Theorem (Ternary Associativity Testing)
There exists a quantum algorithm that determines if F is associative with
high probability using Õ(n169/80) = Õ(n2.1125) queries.

Proof.
First transform ternary associativity testing into the problem of finding a
certain subhypegraph of constant size. The, we apply our algorithm. □
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Quick Quantum Computing: one qubit case

A quantum version of “a bit” is called a qubit.

The quantum state of a qubit is a unit vector in a complex Euclidean
space C2.

Take any orthonormal basis and let e0 =

(
1
0

)
and e1 =

(
0
1

)
.

Any quantum state of a qubit is a linear combination of e0 and e1 over
the complex field C: αe0 + βe1 with α, β ∈ C and |α|2 + |β|2 = 1.
We often regard this as “a superposition of ‘0’ and ‘1”’.

Quantum operations on a qubit are unitary operators (UU∗ = I) or
orthogonal projectors (PP = P and P∗P = 0).

Applying the set of orthogonal projectors summing to I is called
measurement, which outputs a quantum state and a classical
outcome.

To get classical results at the end of computation, we need to apply
orthogonal projectors.
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Quick Quantum Computing: one qubit case (example)

Let e0 =

(
1
0

)
and e1 =

(
0
1

)
.

H = 1√
2

(
1 1
1 −1

)
is unitary (H∗H = I), and

He0 = 1√
2

(
1 1
1 −1

) (
1
0

)
= 1√

2

(
1
1

)
= 1√

2
e0 +

1√
2
e1.

P =

(
1
0

) (
1 0
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Quick Quantum Computing: n-qubt case

A quantum state of n qubits is a unit vector in a complex Euclidean
space C2n

of 2n dimensions

Let {e0, . . . , e2n−1} be an orthonormal basis, where ek is an 2n

dimensional unit vector that has 0 at all cordinates except the
(k + 1)st position.

The quantum state is represented as∑2n−1
k=0 αk ek for αk ∈ C with

∑2n

k=1 |αk |2 = 1.

Quantum operators are unitary operators or orthogonal projectors
over the 2n-dimensional space.

These operators over a large space can be decomposed into some
elemenatry operators acting on one or two qubits
(similar to elementary gates in classical circuits).

Traditional Notation in Quantum Physics
Instead of ek , we will write |k ⟩ (pronounced “ket k”).
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Query Complexity Model (a.k.a. oracle model)

Definition (Classical Case)
An input hypergraph G = (V ,E) is given as an oracle.

Our case

Oracle =
{
hijk ∈ {T ,F} : i < j < k , (i, j, k) ∈ V × V × V

}
.

Algorithms need to make queries to the oracle to get input.

Our case
For the query ({i, j, k }, ?), we receive the answer ({i, j, k }, hijk ).

Algorithm
({i,j,k },?)

−−−−−−−−−−−−−→ Oracle
({i,j,k },T)

−−−−−−−−−−−−−→ Algorithm

Minimize # of queries, ignoring the cost of other operations.

Our case

The number of required queries is trivially at most
(
n
3

)
= O(n3).
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Query Complexity Model (a.k.a. oracle model)

Definition (Quantum Case)
An input hypergraph G = (V ,E) is given as an oracle.

Our case

Oracle =
{
hijk ∈ {T ,F} : i < j < k , (i, j, k) ∈ V × V × V

}
.

Algorithms need to make quantum queries to the oracle to get input.

Our case

Quantum queries are superpositions of many classical queries,
and the answers are those of the corresp. classical answers:
a query

∑
αi,j,k |{i, j, k }, ?⟩, and the answer

∑
αi,j,k

∣∣∣{i, j, k }, hijk

⟩
.

Note: a classical query can be simulated by a quantum query:
Set αijk = 1 and αpqr = 0 for all (p, q, r) , (i, j, k).

Minimize # of quantum queries, ignoring the cost of other operations.
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Search with Random Walk

Search Problem
Given a Boolean function f over the domain X onto {0, 1},
find a solution x ∈ X such that f(x) = 1.

Simple Sampling Idea
Sample a subset Y1 ⊆ X of size r.

Check if Y1 contains a solution; if it indeed does, we are done.

Otherwise, we update Y1 to Y2 by replacing a random element in Y
with a new element that is chosen at random from X \ Y1.
(Y1 and Y2 differ only by one element)

Check if Y2 contains a solution; if it indeed does, we are done.

Otherwise, we update Y2 to Y3 by replacing...

We can regard the sequence Y1 → Y2 → Y3 → · · · as random walks over
the graph whose nodes are subsets of size r of X.
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Johnson Graph

Definition (Johnson graph J(n, r) = (V ,E))

V is the collection of all r-sized subsets of [n], so that |V | =
(
n
r

)
.

(Corresponding to sampling r-sized subsets from X with |X | = n).

For every vertex pairs U,T ∈ V, the pair {U,V} is an edge (an
element in E) if and only if U and T differ only by one element.

ex.) J(5, 2) looks like −→.

Fact.
The spectral gap of J(n, r) is Θ(1/r).

The spectral gap of the graph affects the
hitting time of random walk over J(n, r).

7/23/14, 4:14 PM

Page 1 of 1http://upload.wikimedia.org/wikipedia/commons/d/d6/Johnson_graph_5%2C2.svg
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Search with Random Walk

Let us say that the nodes containing a solution is marked.

Fact.
If the underlying graph has spectral gap δ and the fraction of marked
nodes is ϵ, then the hitting time (the number of steps required to find a
marked node with high probability) is O( 1

δ·ϵ ).

Corollary
The total cost for finding a solution is

S +
1
ϵ

(
1
δ

U + C
)
,

S: cost of initial sampling (initial queries)
U: cost of one step random walk (addition queries)
C: cost of checking if the node is marked. (additional queries).
(Here we perform checking procedure every 1/δ steps.)
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Search with Quantum Walk

Let us say that the nodes containing a solution is marked.

Fact.
If the underlying graph has spectral gap δ and the fraction of marked
nodes is ϵ, then the number of steps required to find a marked node is

����HHHHO( 1
δ·ϵ ) O(

√
1
δ·ϵ ) with high probability. Note 1

δ·ϵ ≥
√

1
δ·ϵ .

This implies that the total cost for finding a solution is

��������XXXXXXXX
S +

1
ϵ

(
1
δ

U + C
)

S +
1
√
ϵ

(
1
√
δ

U + C
)
,

where
S: cost of initial sampling (initial queries)
U: cost of one step random walk (addition queries)
C: cost of checking if the node is marked. (additional queries).
(Here we perform checking procedure every 1/δ steps.)
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Our strategy for finding 4-clique

Let {a1, a2, a3, a4} be a 4-clique. Sampling is actually recursive.

Sample a set V1 ⊆ V with size v1 of candidates for a1.

Check if E123 ∪ E124 ∪ E134 ∪ E234 contains a 4-clique.

This sampling can be cast as recursive quantum-walk-based search.
Optimizing parameters vi , fij , eijk gives Õ(n241/128) = O(n1.883) queries.
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Check if E123 ∪ E124 ∪ E134 ∪ E234 contains a 4-clique.

This sampling can be cast as recursive quantum-walk-based search.
Optimizing parameters vi , fij , eijk gives Õ(n241/128) = O(n1.883) queries.
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Conclusion

We considered a generalization of Triangle Finding problem to the
3-uniform hypergraphs.

For finding a 4-clique, we obtained a quantum algorithm with query
complexity O(n1.883), beating the O(n2)-query trivial quantum
algorithm.

More generally, we developed a framework that give an efficient
quantum algorithms for finding any constant-sized subhypergraph.

For this, we designed a general technique for handling nested
quantum walk over graphs of non-fixed size.

Open Problems
Further improvements of our complexity?

Can generalize our techniques to d-uniform hyper graphs (d ≥ 3)?

Other applications of our techniques?
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