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Quantum query complexity is a model of quantum computation, in which the cost of computing a function is
measured by the number of queries that are made to the input given as a black-box. In this model, it was exhib-
ited in the early stage of quantum computing research that there exist quantum algorithms superior to the classical
counterparts, such as Deutsch and Jozsa’s algorithm, Simon and Shor’s period finding algorithms, and Grover’s
search algorithm. Extensive studies following them have invented a lot of powerful upper bound (i.e., algorith-
mic) techniques such as variations/generalizations of Grover’s search algorithm or quantum walks. Although these
techniques give tight bounds for many problems, there are still quite a few cases for which no tight bounds are
known. Intensively studied problems among them are the k-distinctness problem [1, 3, 4] and the triangle finding
problem [2, 6, 8, 12, 14, 10].

A recent breakthrough is the concept of learning graph introduced by Belovs [2]. This concept enables one to
easily find a special form of feasible solutions to the minimization form (i.e., the dual form) of the general adversary
bound [7, 15], and makes possible to detour the need of solving a semidefinite program of exponential size to find
a non-trivial upper bound. Indeed, Belovs [2] improved the long-standing Õ(n13/10) upper bound [14] (which was
slightly improved to O(n13/10) [13]) of the triangle finding problem to O(n35/27). His idea was generalized by
Lee, Magniez and Santha [11] and Zhu [23] to obtain a quantum algorithm that finds a constant-sized subgraph with
complexity o(n2−2/k), improving the previous best boundO(n2−2/k) [14], where k is the size of the subgraph. Sub-
sequently, Lee, Magniez and Santha [12] constructed a triangle finding algorithm with quantum query complexity
O(n9/7). This bound was later shown by Belovs and Rosmanis [5] to be the best possible bound attained by the
family of quantum algorithms whose complexities depend only on the index set of 1-certificates (very recently, Le
Gall [10] broke this n9/7-barrier via combinatorial arguments to obtain the current best quantum upper bound of
Õ(n5/4)). Ref. [12] also gave a framework of quantum algorithms for finding a constant-sized subgraph, based on
which they showed that associativity testing (testing if a binary operator over a domain of size n is associative) has
quantum query complexity O(n10/7).

Jeffery, Kothari and Magniez [8] cast the idea of the above triangle finding algorithms into the framework of
quantum walks (called nested quantum walks) by recursively performing the quantum walk algorithm given by
Magniez, Nayak, Roland and Santha [13] (which extended two seminal works for quantum walk algorithms by
Szegedy [18] and Ambainis [1]). Indeed, they presented two quantum-walk-based triangle finding algorithms of
complexities Õ(n35/27) and Õ(n9/7), respectively. The nested quantum walk framework was further employed
in [4] (but in a different way from [8]) to obtain Õ(n5/7) complexity for the 3-distinctness problem. This achieves
the best known upper bound (up to poly-logarithmic factors), which was first obtained with the learning-graph-based
approach [3].

The triangle finding problem also plays a central role in several areas beside query complexity, and it has been
recently discovered that faster algorithms for (weighted versions of) triangle finding would lead to faster algorithms
for matrix multiplication [9, 20], the 3SUM problem [19], and for Max-2SAT [21, 22]. In particular, Max-2SAT over
n variables is reducible to finding a triangle with maximum weight over O(2n/3) vertices; in this context, although
the final goal is a time-efficient classical or quantum algorithm that finds a triangle with maximum weight, studying
triangle finding in the query complexity model is a first step toward this goal.
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Along this line of research, this paper studies the problem of finding a 4-clique (i.e., the complete 3-uniform
hypergraph with 4 vertices) in a 3-uniform hypergraph, a natural generalization of finding a triangle in an ordinary
graph (i.e., a 2-uniform hypergraph). Our initial motivation comes from the complexity-theoretic importance of the
problem. Indeed, while it is now well-known that Max-3SAT over n variables is reducible to finding a 4-clique with
maximum weight in a 3-uniform hypergraph ofO(2n/4) vertices, no efficient classical algorithm for 4-clique finding
has been discovered so far. Constructing query-efficient algorithms for this problem can be seen as a first step to
investigate the possibility of faster (in the time complexity setting) classical or quantum algorithms for Max-3SAT.

Concretely, and more generally, this paper gives a framework based on quantum walks for finding any constant-
sized sub-hypergraph in a 3-uniform hypergraph. This is an extension of the learning-graph-based algorithm in [12]
to the hypergraph case in terms of a nested quantum walk [8]. We illustrate this methodology by constructing a
quantum algorithm that finds a 4-clique in a 3-uniform hypergraph with query complexity Õ(n241/128) = O(n1.883),
while naı̈ve Grover search over the

(
n
4

)
combinations of vertices only gives O(n2). As another application, we also

construct a quantum algorithm that determines if a ternary operator is associative using Õ(n169/80) = O(n2.113)
queries, while naı̈ve Grover search needs O(n2.5) queries.

In the course of designing the quantum walk framework, we introduce several new technical ideas (outlined
below) for analyzing nested quantum walks to cope with difficulties that do not arise in the 2-uniform case (i.e.,
ordinary graphs), such as the fact that the size of the random subset taken in an inner walk may vary depending on
the random subsets taken in outer walks. We believe that these ideas may be applicable to various problems beyond
sub-hypergraph finding.

Statement of our results. We state the main result (the algorithm which finds a constant-size sub-hypergraph in a
hypergraph) in terms of loading schedules, which generalize the concept of loading schedules for graphs introduced,
in the learning graph framework, by Lee, Magniez and Santha [12], and used in the framework of nested quantum
walks by Jeffery, Kothari and Magniez [8].

Let H be a 3-uniform hypergraph with κ vertices. We identify the set of vertices of H with the set Σ1 =
{1, . . . , κ}. We identify the set of (unordered) pairs of vertices of H with the set Σ2 = {{1, 2}, {1, 3}, . . . , {κ −
1, κ}}. We identify the set of hyperedges of H with the set Σ3 ⊆ {{1, 2, 3}, {1, 2, 4}, . . . , {κ− 2, κ− 1, κ}}.

A loading schedule for H of length m is a list S = (s1, . . . , sm) of m elements such that the following three
properties hold for all t ∈ {1, . . . ,m}: (1) st ∈ Σ1∪Σ2∪Σ3; (2) if st = {i, j}, then there exist t1, t2 ∈ {1, . . . , t−1}
such that st1 = i and st2 = j; (3) if st = {i, j, k}, then there exist t1, t2, t3 ∈ {1, . . . , t− 1} such that st1 = {i, j},
st2 = {i, k} and st3 = {j, k}. The loading schedule S is valid if no element of Σ1 ∪ Σ2 ∪ Σ3 appears more than
once and, for any {i, j, k} ∈ Σ3, there exists an index t ∈ {1, . . . ,m} such that st = {i, j, k}.

A set of parameters for S is a set of m integers defined as follows: for each t ∈ {1, . . . ,m},

• if st = i, then the associated parameter is denoted by ri and satisfies ri ∈ {1, . . . , n};
• if st = {i, j}, then the associated parameter is denoted by fij and satisfies fij ∈ {1, . . . , rirj};
• if st = {i, j, k}, then the associated parameter is denoted by eijk and satisfies eijk ∈ {1, . . . , rirjrk}.

The set of parameters is admissible if there exists some constant γ > 0 such that all terms n
ri

, rirjfij
, fijri , fijrj , fijfikrirjrk

and fijfikfjk/(rirjrk)
eijk

are larger than nγ . Our main result is as follows.

Theorem 1 Let H be any constant-sized 3-uniform hypergraph. Let S = (s1, . . . , sm) be a valid loading
schedule for H with an admissible set of parameters. There exists a quantum algorithm that, given as in-
put a 3-uniform hypergraph G with n vertices, finds a sub-hypergraph of G isomorphic to H (and returns
“no” if there are no such sub-hypergraphs) with probability at least some constant, and has query complexity
Õ
(
S +

∑m
t=1

(∏t
r=1

1√
εr

)
1√
δt
Ut

)
, where S,Ut, δt, and εt are evaluated as follows: S =

∑
{i,j,k}∈Σ3

eijk, and
for each t ∈ {1, . . . ,m},

• if st = {i}, then δt = Ω( 1
ri

), εt = Ω( rin ) and Ut = Õ
(

1 +
∑
{j,k} such that {i,j,k}∈Σ3

eijk
ri

)
,
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• if st = {i, j}, then δt = Ω( 1
fij

), εt = Ω(
fij
rirj

) and Ut = Õ

(
1 +

∑
k such that {i,j,k}∈Σ3

eijk
fij

)
,

• if st = {i, j, k}, then δt = Ω( 1
eijk

), εt = Ω(
eijkrirjrk
fijfikfjk

) and Ut = O(1).

The algorithm is based on the concept of m-level nested quantum walks. The quantum walk at the t-th level, for any
t ∈ {1, . . . ,m}, corresponds to the element st of the loading schedule. The term S represents the setup cost of the
whole nested walk. The term Ut represents the cost of updating the database of the t-th level walk. The terms εt and
δt denote the spectral gap and the fraction of marked states, respectively, of the t-th level walk.

We then apply Theorem 1 to the case whereH is the 4-clique, and optimize the parameters to obtain the following
theorem.

Theorem 2 There exists a quantum algorithm that finds the existence of a 4-clique in a 3-uniform hypergraph with
high probability using Õ(n241/128) = O(n1.883) queries.

As another application, we can obtain a non-trivial upper bound of the query complexity of determining if a
ternary operator is associative, but we omit it in this abstract due to space limitation (see arXiv:1310.4127v2).

Technical contribution. Roughly speaking, the subgraph finding algorithm by Lee, Magniez and Santha [12]
works as follows. First, for each vertex i in the subgraph H that we want to find, a set Vi of randomly chosen
vertices of the input graph is taken. This set Vi represents a set of candidates for the vertex i. Next, for each edge
(i, j) in the subgraph H , a set of randomly chosen pairs from Vi × Vj is taken, representing a set of candidates
for the edge (i, j). The most effective feature of their algorithm is to introduce a parameter for each ordered pair
(Vi, Vj) that controls the average degree of a vertex in Vi toward Vj . This gives us more freedom for optimizing the
algorithm than just taking all edges between randomly chosen subsets of Vi and Vj . To make the algorithm efficient,
it is crucial to keep the degree of every vertex in Vi almost equal to the value specified by the parameter. For this,
they carefully devise a procedure for taking pairs between Vi and Vj .

Our basic idea is similar in that we first, for each vertex i in the sub-hypergraph H that we want to find, take a
set Vi of vertices of the input 3-uniform hypergraph as a set of candidates for i and then, for each hyperedge {i, j, k}
of H , take a random subset of triples in Vi × Vj × Vk. One may think that the remaining task is to fit the pair-taking
procedure into the hypergraph case. It, however, turns out to be technically very complicated to generalize the pair-
taking procedure from [12] to an efficient triple-taking procedure. Instead we cast the idea into the nested quantum
walk of Jeffery, Kothari and Magniez [8] and employ probabilistic arguments. More concretely, we introduce a
parameter that specifies the number eijk of triples to be taken from Vi × Vj × Vk for each hyperedge {i, j, k} of
H . We then argue that, for randomly chosen eijk triples, the degree of each vertex sharply concentrates around its
average, where the degree means the number of triples including the vertex (in this sense, the parameters eijk play
essentially the same role as those of “average degrees” used in [8], but introducing eijk gives a neat formulation of
the algorithm and this is effective particularly in handling such complicated cases as hypergraphs). This makes it
substantially easier to analyze the complexity of all involved quantum walks, and enables us to completely analyze
the complexity of our approach. Unfortunately, it turns out that this approach (taking the sets Vi first, and then eijk
triples from each Vi × Vj × Vk) does not lead to any improvement over the naı̈ve O(n2)-query quantum algorithm.

Our key idea is to introduce, for each unordered pair {i, j} of vertices in H , a parameter fij , and modify the
approach as follows. After randomly choosing Vi, Vj , Vk, we take three random subsets Fij ⊆ Vi×Vj , Fjk ⊆ Vj×Vk,
and Fik ⊆ Vi × Vk of size fij , fjk and fik, respectively. We then randomly choose eijk triples from the set
Γijk = {(u, v, w) | (u, v) ∈ Fij , (u,w) ∈ Fik and (v, w) ∈ Fjk}. The difficulty here is that the size of Γijk varies
depending on the sets Fij , Fjk, Fik. Another difficulty is that, after taking many quantum-walks (i.e., performing
the update operation many times), the distribution of the set of pairs can change. For these, we define the “marked
states” (i.e., “absorbing states”) of each level of the nested quantum walk as those that contain components (i.e.,
vertices, pairs or triples) of a copy of H inside the associated sets (i.e., Vi, Fij , Fjk, Fik, or Γijk) and satisfy
certain regularity conditions. We then show that the associated sets almost always satisfy the regularity conditions,
by using concentration theorems for hypergeometric distributions. This regularity enables us to effectively bound
the complexity of our new approach, giving in particular the claimed Õ(n241/128)-query upper bound when H is a
4-clique.
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