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Abstract

The main objective of this paper is to show that the quantum query complexity Q(f) of an
N -bit Boolean function f is bounded by a function of a simple and natural parameter, i.e.,
M = |{x | f(x) = 1}| or the size of f ’s on-set. We prove that: (i) For poly(N) ≤ M ≤ 2Nd

for
some constant 0 < d < 1, the upper bound of Q(f) is O(

√
N log M/ log N). This bound is tight,

namely there is a Boolean function f such that Q(f) = Ω(
√

N log M/ log N). (ii) For the same
range of M , the (also tight) lower bound of Q(f) is Ω(

√
N). (iii) The average value of Q(f) is

bounded from above and below by Q(f) = O(log M +
√

N) and Q(f) = Ω(log M/ log N +
√

N),
respectively. The first bound gives a simple way of bounding the quantum query complexity of
testing some graph properties. In particular, it is proved that the quantum query complexity of
planarity testing for a graph with n vertices is Θ(N3/4) where N = n(n−1)

2 .

1 Introduction

Query complexities for Boolean functions are one of the most fundamental and popular topics in
quantum computation. It is well known that a quadratic speed-up, i.e., Ω(N) classically to O(

√
N)

quantumly, is possible for several Boolean functions including OR, AND, AND-OR trees [18, 19,
17, 7]. On the other hand, we can obtain only a constant-factor speed-up (i.e., Ω(N) are needed
both classically and quantumly) for other Boolean functions such as PARITY [10], and this is also
the case for almost all Boolean functions with N variables [4, 13]. Thus our knowledge about the
quantum query complexity for Boolean functions is relatively good for these typical cases, but much
less is known for the others, especially for quantitative properties based on nontrivial parameters.
In this paper, we show that the size of the on-set of a Boolean function f plays a key role for this
purpose, i.e., to non-trivially bound the f ’s quantum query complexity.

Obviously this line of research started with the Grover’s quantum search algorithm [18], which
can be directly used to compute the Boolean OR function of N variables in the same O(

√
N)

queries. Since then, a sequence of results have extensively appeared in the literature, showing that
similar speed-ups are possible for many other, more general Boolean functions. For example, if a
Boolean function is given by a constant-depth balanced AND-OR trees (OR is by a single-depth
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tree), it can be computed in O(
√

N) queries [19]. This was recently extended to any AND-OR
tree with O(N

1
2
+o(1)) queries by using the quantum walk technique [7]. Another famous example is

monotone Boolean functions describing monotone graph properties (if a graph has n vertices then
the corresponding Boolean function has N = n(n−1)/2 variables, one for each possible edge). In the
quantum setting, it is known that O(N13/20) queries suffice to decide if the given graph G includes
a triangle [21, 22], O(N3/4) queries if G includes a star [11] (with zero error), and O(N3/4) queries
if G is connected [16]. Classical query complexities for those functions are all Ω(N).

Note that each of these Boolean functions, for which quantum query complexities are signifi-
cantly smaller than classical query complexities, has a certain kind of “structure”. In other words,
researchers have been working on the question of what kind of structures help for efficient quantum
computation. Our question in this paper is quite different; namely we ask if there is a “non-
structural” parameter that greatly affects the quantum complexity of Boolean functions.

Our contribution: Let FM be a family of N -variable Boolean functions f whose on-set is of size
M , namely, f has output 1 (true) for M 0/1 assignments among the total 2N ones. Then we can
show that for any Boolean function f in Fpoly(N), its query complexity is Θ(

√
N) and the complexity

gradually increases as M grows up to 2Nd
for some constant d (0 < d < 1). More in detail, let Q(f)

be the (true) query complexity of f . Then we investigate the upper bound C(FM ), the lower bound
c(FM ), and the average value, C̃(FM ), of Q(f) over all functions f in FM . Our results are as
follows: (i) For poly(N) ≤ M ≤ 2Nd

for some constant 0 < d < 1, C(FM ) = Θ(
√

N log M/ log N).
This means that for any function in FM , its query complexity is O(

√
N log M/ log N) and there

exists a function in FM such that its complexity is Ω(
√

N log M/ log N). (ii) For the same range
of M , c(FM ) = Θ(

√
N), meaning that for any function in FM its complexity is Ω(

√
N) and there

exists a function such that its complexity is O(
√

N). Thus our results are tight for both C(FM )
and c(FM ). Unfortunately, there is a log N factor gap in the evaluation of C̃(FM ), namely (iii)
C̃(FM ) = O(log M +

√
N) and C̃(FM ) = Ω(log M/ log N +

√
N).

A direct application of our upper bound result reduces bounding the query complexity of graph
property testing to counting all graphs with a given property: For the family F of all graphs with
a given property, O(

√
N log |F|/ log N) queries suffice to test if a given graph has the property. An

interesting special case is that O(N3/4) queries can decide if a given graph G is isomorphic to an
arbitrary fixed graph G′. The bound is optimal in the worst case over all G′. Another interesting
case is to test planarity, one of the most fundamental graph properties. We show the tight bound
of Θ(N3/4) for the quantum query complexity of planarity testing. The upper bound is by just
bounding the number of planar graphs with the fact that they are sparse. The interesting part is
its lower bound. Our proof is based on the quantum adversary method [5], which requires us to find
carefully two graphs which are almost the same but have different answers. We also prove that the
lower bound of the classical query complexity is Ω(N), thus adding the new nontrivial property into
the class of graph properties for which there is a significant gap between the quantum and classical
query complexities.

Related works: A large literature exists for the quantum query complexity of Boolean functions.
Other than OR and AND-OR trees, the complexity of the threshold function [10] was tightly char-
acterized in the early stages. Element distinctness was also tightly shown to be Θ(N2/3) while
the upper bound [6] and lower bound [3] of its complexity were obtained after exhaustive work of
many researchers, which gave many technical contributions in (not for only quantum) complexity
theory. For the monotone graph properties, Dürr et al. [16] showed the tight complexity Θ(N3/4)
of connectivity. The quantum query complexities of total functions are polynomially related to the
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classical equivalents [10], and the maximum gap is conjectured to be quadratic.
The two major lower bound methods of quantum query complexity are polynomial methods [10]

and adversary methods [5] (see [20] for its excellent survey.) Our lower bound of planarity testing is
inspired by the application of adversary methods to connectivity in [16], which uses one-cycle vs.
two-cycles as the two graphs with different answers. A similar choice of graphs is also used in [24]
to get the lower bounds of several graph problems such as bipartiteness.

There have been few studies on the complexity of “non-structural” Boolean functions. All
Boolean functions have quantum query complexity at most N/2 + O(

√
N) [13] while almost all

functions have quantum query complexity at least N/4 + Ω(
√

N) [4, 15].

2 Preliminaries

We assume the oracle (or black-box) model in the quantum setting (e.g., [10]). In this model, an
input (i.e., a problem instance) is given as an oracle. For any input x = (x1, . . . , xN ) ∈ {0, 1}N , a
unitary operator O, corresponding to a single query to an oracle, maps |i〉|b〉|w〉 to |i〉|b⊕xi〉|w〉 for
each i ∈ [N ] = {1, 2, . . . , N} and b ∈ {0, 1}, where w denotes workspace. A quantum computation
of the oracle model is a sequence of unitary transformations U0 → O → U1 → O → · · · → O →
Ut, where Uj may be any unitary transformation that does not depend on the input. The above
computation sequence involves t oracle calls, which is our measure of the complexity: The quantum
query complexity Q(P ) of a problem P whose input is given as an N -bit string is defined to be the
number of quantum queries needed to solve P with bounded-error, i.e., with success probability at
least 1/2 + c where c is some constant.

In this paper, our problem P is to evaluate the value (0 or 1) of a Boolean function f(x1, . . . , xN )
over N variables, assuming that the truth table of f is known. The on-set of f is the set of
assignments (x1, . . . , xN ) satisfying f(x1, . . . , xN ) = 1. We denote the family of all functions whose
on-set is of size M by FM .

Our algorithms in this paper use the algorithm in [9] for the oracle identification problem defined
as follows. Notice that there are 2N different oracles with length N .

Definition 1 (Oracle Identification Problem (OIP) [8, 9]) Given an oracle x and a set S of
M oracle candidates out of 2N ones, determine which oracle in S is identical to x with the promise
that x is a member of S.

Improving the previous result in [8], Ambainis et al. [9] showed the following upper bound for the
quantum query complexity of OIP when M is not so large, which is asymptotically optimal.

Theorem 1 (Optimal bound of OIP [9]) OIP can be quantumly solved with a constant success

probability by making O(
√

N log M
log N ) queries to the given oracle if poly(N) ≤ M ≤ 2Nd

for some
constant d (0 < d < 1).

3 Worst-Case Analysis

In this section, we study both upper and lower bounds for the quantum query complexity of Boolean
functions in FM . First, we show the upper bound.

Theorem 2 (Upper Bound) Any function f ∈ FM has quantum query complexity O(
√

N log M
log N )

if poly(N) ≤ M ≤ 2Nd
for some constant d (0 < d < 1).
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Proof Recall that OIP is the problem that we are requested to find a hidden oracle, with the
promise that it is a member of oracle candidate set S. To use this for evaluation of the Boolean
function f , let S be the on-set of f , which can be constructed from the known truth table of f .
Note that |S| = M since f ∈ FM . We then invoke the OIP algorithm of Theorem 1 to find the

hidden oracle with O(
√

N log M
log N ) queries, assuming the promise that the current oracle x is in S

(actually, the promise does not hold if f(x) = 0). Let z ∈ {0, 1}N be the string obtained by the OIP
algorithm.

If f(x) = 1, the promise of the above OIP is indeed satisfied; z is equal to x with high probability.
If f(x) = 0, the promise does not hold; the OIP algorithm outputs some answer z ∈ S such that

z 6= x. To recognize this case, it suffices to check whether z is equal to x by using Grover search
[18] with O(

√
N)(∈ O(

√
N log M

log N )) queries. This completes the proof. ¥

In fact, this upper bound is optimal for the threshold function with threshold Θ(log M/ log N),

which has a query complexity of Ω(
√

N log M
log N ) due to the results in [10]. The following corollary is

immediate.

Corollary 1 For M ∈ poly(N), any function f ∈ FM has quantum query complexity O(
√

N).

This corollary together with the next lower bound theorem implies that if M is in poly(N), then
any function f ∈ FM has essentially the same complexity up to a constant factor as the OR function.

Theorem 3 (Lower Bound) If M ≤ 2
N

2+ε for any positive constant ε, any f ∈ FM has quantum
query complexity Ω(

√
N).

Proof We use the sensitivity argument. Recall that the sensitivity sx(f) of a Boolean function f
on x ∈ {0, 1}N is the number of variables xi such that f(x) 6= f(xi), where xi is the string obtained
from x by flipping the value of xi. The sensitivity s(f) of f is the maximum of sx(f) over all x.
The results of Beals et al. [10] implies Q(f) = Ω(

√
s(f)). By the definition of s(f) and the result by

Beals et al., we can see that Q(f) = Ω(
√

|Z|), where Z is the set of 0-points, elements whose values
of f is 0, “around” an arbitrarily chosen element in the on-set (1-point). Here, “around” means
the Hamming distance is 1. Therefore, if there is a 1-point around which there are Ω(N) 0-points,
Q(f) = Ω(

√
N).

To prove by contradiction, we assume that, around every 1-point, there are o(N) 0-points, i.e.,
there are (N − o(N)) 1-points. Suppose that (0, 0, . . . , 0) is a 1-point (otherwise, we can give a
similar argument using some 1-point). Set S0 = {(0, 0, . . . , 0)}. Define Sk inductively to be the set
of all 1 points around all points in Sk−1, whose Hamming weight is k. By assumption, the number of
1-points around every point in Sk−1 is N−o(N) = N(1−α) for any small α = o(1). For each point x
in Sk−1, there exist at most (k−1) 1-points around x in Sk−2. Thus, for each point x in Sk−1, there
exist at least (N(1 − α) − (k − 1)) 1-points around x in Sk. Similarly, for each point x in Sk, there
exist at most k 1-points around x in Sk−1. Thus, |Sk| ≥ |Sk−1|(N(1 − α) − (k − 1))/k. From this
inductive inequality and |S0| = 1, we have |Sk| ≥ (N(1−α))(N(1−α)−1)(N(1−α)−2) · · · (N(1−
α) − (k − 1))/k!. The number of inputs x such that f(x) = 1 and the Hamming weight of x is at
most k is T (k) = |S0| + · · · + |Sk|. We will show T (k) > M for some k ≤ N/2, a contradiction, as

follows. T (k) > |Sk| ≥ (N(1 − α))(N(1 − α) − 1) · · · (N(1 − α) − (k − 1))/k! >
(

N(1−α)
k

)k
. For

k = N
2+ε , we obtain T (k) > 2

N
2+ε ≥ M . ¥
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The above lower bound is tight, since it is easy to construct a Boolean function for any M ≤ 2
N

2+ε

such that its query complexity is O(
√

N). Thus we have shown that there are Boolean functions,
f1 and f2, which are “easiest” and “hardest” in class FM , such that Q(f1) = Θ(

√
N) and Q(f2) =

Θ
(√

N log M
log N

)
.

4 Average-Case Analysis

This section considers upper and lower bounds for the quantum query complexity for almost all
functions in FM . They are essentially O(log M) and Ω(log M/ log N), thus having a log N factor
gap. Note that the bounds hold for the entire range of M .

Theorem 4 (Upper Bound) Almost all Boolean functions in FM have quantum query complexity
O(log M +

√
N).

Proof It suffices to show the statement for poly(N) < M < 2
N
3 since the case of M ∈ poly(N)

is obtained by Corollary 1, and the case of M ≥ 2
N
3 leads to the trivial bound. We can make the

following claim (proof will be given later):
Claim. If we generate a random Boolean function f whose on-set Sf has size M , then, for almost
all cases, any two of M elements in Sf differ from each other in the first k bits, where k = 3 log M
(which is smaller than N).

Now the following algorithm works by using the claim. Below we will use k as k = 3 log M .
First, we identify the first k bits of the current input x by making k classical queries. Then we
can decide that f(x) = 0 regardless of the remaining bits, if the k-bit string is different from the
first-k-bit string of any element in the on-set. Otherwise, f(x) can have value 1, depending on the
remaining N − k bits. For the latter case, the claim implies that, for almost all functions, there
is only one possible way of assigning 0/1 to the remaining N − k bits that determines f(x) = 1.
Thus, we just check whether the remaining bits are subject to such one possibility or not by using
Grover search. In total, the query complexity is O(k +

√
N) = O(log M +

√
N).

What remains is to show the above claim. The number of all functions whose on-set has size
M is

(
2N

M

)
. Among such functions, we count the number of our desired functions, i.e., the functions

such that any two inputs in the on-set differ from each other in the first k bits. We first consider
the number of possible assignments to the first k bits of M inputs. The number of possibilities is(
2k

M

)
since we need to choose different M k-bit strings among the 2k possibilities. We then choose the

remaining (N − k) bits arbitrarily, i.e., 2N−k possibilities for each of the M assignments to the first
k bits. Thus, the number of possibilities of assigning the remaining (N − k) bits for all M inputs
is (2(N−k))M = 2M(N−k). In conclusion, the number of our desired functions is

(
2k

M

)
2M(N−k). The

ratio of our desired functions is (2k

M)2M(N−k)

(2N

M )
. We can show that, by using k = 3 log M , this ratio is

larger than exp(− M2−M
2(M3−M+1)

). Hence, the ratio approaches 1 as N (and hence M) goes to infinity.
¥

Theorem 5 (Lower Bound) Almost all Boolean functions in FM have quantum query complexity
Ω(log M/ log N +

√
N).

Proof For almost all f ∈ FM , we prove that Q(f) = Ω(log M/ log N) when M > N
√

N since by
Theorem 3 the lower bound Ω(

√
N) holds for M ≤ N

√
N . Moreover, we assume that M ≤ 2N−1
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without loss of generality. We shall show the lower bound for the unbounded-error setting, where
the success probability suffices to be at least 1/2 + ε, for any positive ε (which does not need to be
a constant as in the bounded-error setting). Obviously, any lower bound in this setting also holds
in the bounded-error setting.

The lower bound of unbounded-error query complexity of a Boolean function f is characterized by
the minimum degree of its sign-representing polynomial p, a real-valued polynomial with properties
that p(x) is positive whenever f(x) = 0 and p(x) is negative whenever f(x) = 1, for all N -bit strings
x. There are two nice properties of sign-representing polynomials, which are useful for our proof.
First, as shown in [23] (also, implicitly in [12]), the unbounded-error quantum query complexity of
f is exactly half of the minimum degree of its sign-representing polynomial. Secondly, the number
of Boolean functions of N variables whose minimum degrees of sign-representing polynomials are
at most d, denoted as T (N, d), is also known to be at most 2

∑D−1
k=0

(
2N−1

k

)
, for D =

∑d
i=0

(
N
i

)
as

proved in [1].
Hence to show that almost all Boolean functions in FM have unbounded-error quantum query

complexity Ω(log M/ log N) , it suffices to show that T (N, log M
2 log N ) is small compared to

(
2N

M

)
, i.e.,

the size of FM . Notice that in this case D =
∑log M/(2 log N)

i=0

(
N
i

)
≤ N

log M
2 log N =

√
M , and therefore,

T (N, log M/(2 log N))(
2N

M

) ≤
2

∑D−1
k=0

(
2N−1

k

)(
2N

M

) ≤
2

∑√
M−1

k=0

(
2N

k

)(
2N

M

) ≤
2
√

M
( 2N√

M

)(
2N

M

) . (1)

Moreover, the right-hand side of (1) is bounded by

2
√

M
( 2N√

M

)(
2N

M

) = 2
√

M
M · · · (

√
M + 1)

(2N −
√

M) · · · (2N − M + 1)
≤ 2

√
M

2N − M + 1
. (2)

By the assumption that M ≤ 2N−1, the right-hand side of (2) goes to 0 as N goes to infinity, which
completes the proof. ¥

5 Applications

As application of Theorem 2, we consider the problem of graph property testing, i.e., the problem
of testing, for a given graph G as an oracle, if G has a certain property. More precisely, an n-vertex
graph is given as n(n − 1)/2 Boolean variables, xi for i ∈ {1, . . . , n(n − 1)/2}, representing the
existence of the ith possible edge ei, i.e., xi = 1 if and only if ei exists. In this setting, graph
property testing is just to evaluate a Boolean function f depending on the n(n−1)/2 variables such
that f(x1, . . . , xn(n−1)/2) = 1 if and only if the graph has a certain property. An interpretation of
graph property testing according to Theorem 2 is to decide if G is a member of F for the family F of
all graphs with certain properties. Thus, Theorem 2 directly gives the next theorem with M = |F|
and N = n(n − 1)/2.

Theorem 6 For graph family F defined as in the above, graph property testing can be solved with
O(

√
n2 log |F|/ log n) quantum queries, if poly(n) ≤ |F| ≤ 2n2d

for some constant d (0 < d < 1).

An interesting special case of the problem is graph isomorphism testing: the problem of deciding if
a given graph G is isomorphic to an arbitrary fixed graph G′.

Corollary 2 Graph isomorphism testing can be solved with O(n1.5) quantum queries.
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Proof The number of graphs isomorphic to G′ is at most the number of permutations over the
vertex set, which is n! = 2O(n log n). ¥

This upper bound is optimal in the worst case, since the lower bound Ω(n1.5) of connectivity testing
problem in [16] is essentially that of deciding whether a given graph is isomorphic to one cycle or
two cycles. Another interesting special case is planarity testing, the problem of testing if a given
graph is planar.

Corollary 3 Planarity testing can be solved with O(n1.5) quantum queries.

Proof Since the number of edges of any planar graph is at most 3n − 6 < 3n [14], the number of
planar graphs is at most

(
n(n−1)/2

3n

)
< n2·3n = 26n log n. ¥

For verifying optimality, we prove a lower bound of Ω(n1.5) for this problem. We also prove a tight
classical lower bound of Ω(n2).

To prove the lower bounds, we use the next two theorems.

Theorem 7 (Quantum adversary method [5], reformulated by [2]) Let A ⊆ F−1 (0) and
B ⊆ F−1 (1) be sets of inputs to function F . Let R (A,B) ≥ 0 be a real-valued function, and for A ∈
A, B ∈ B, and location i, letθ (A, i) =

P

B∗∈B : A(i) 6=B∗(i) R(A,B∗)
P

B∗∈B R(A,B∗) , θ (B, i) =
P

A∗∈A : A∗(i) 6=B(i) R(A∗,B)
P

A∗∈A R(A∗,B) ,

where A(i) and B(i) denotes the value of the ith variable for A and B, respectively, the denominators
are all nonzero. Then the number of quantum queries needed to evaluate F with probability at least
9/10 is Ω(1/υgeom), where

υgeom = max
A∈A, B∈B, i :

R(A,B)>0, A(i)6=B(i)

√
θ (A, i) θ (B, i).

Theorem 8 (Classical adversary method [2]) Let A,B, R, θ be the same as in Theorem 7.
Then the number of randomized queries needed to evaluate F with probability at least 9/10 is
Ω(1/υmin), where

υmin = max
A∈A, B∈B, i :

R(A,B)>0, A(i)6=B(i)

min {θ (A, i) , θ (B, i)} .

Now we are ready to present our lower bound.

Theorem 9 Solving planarity testing needs Ω(n1.5) queries in the quantum setting, and Ω(n2)
queries in the classical setting.

Proof
Before giving our formal proof, we briefly describe our proof idea. To apply the adversary

method, we need to take two sets, A and B, of non-planar graphs and planar graphs, respectively,
such that for “many” pairs (A,B) ∈ A × B, A and B are hard to distinguish. We define A as a
set of subdivisions of the complete graph K5. Focusing on one cycle included in each A ∈ A, we
define B be a set of planar graphs B obtained by dividing the cycle to two cycles. We then give a
relation between graphs A ∈ A and graphs B ∈ B. The relation is seemingly similar to that defined
in [16] for proving the quantum lower bound of connectivity. However, their relation is not enough
to keep “many” pairs in our case. Different from the case of [16], we place a careful restriction on
the way of transforming A to B as well as B to A.

Our formal proof is as follows. To get lower bounds by using Theorems 7 and 8, we will define
sets A and B, and function R : A×B → {0, 1}. Let a, b, c, d be any four vertices of complete graph
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Figure 1: Instance A ∈ A and instance B ∈ B

K5 with five vertices. Let A be the set of graphs obtained by replacing edges (a, c) and (b, d) of the
K5 with path Pac between a and c and path Pbd between b and d, respectively, on which there are
n − 5 vertices except a, b, c, d, and each one of which is at most three times longer than the other.
Every graph in A is not planar and has n vertices, since it is a subdivision of K5, i.e., it becomes
K5 by contracting all but one edges on each of Pac and Pbd. An example of an instance in A is
shown at the left side in Fig. 1. Let B be the set of graphs obtained by replacing (a, c) and (b, d) of
the K5 with path Pad between a and d and path Pbc between b and c, respectively, on which there
are n − 5 vertices except a, b, c, d, and one of which is at most three times longer than the other. It
is easy to see that every graph in B is planar and has n vertices. An example of an instance in B is
shown at the right side in Fig. 1.

Now, we define B ∈ B such that R(A,B) = 1 for every A ∈ A. For every graph A ∈ A, let
(ea, ec) be any edge on Pac, where ea is assumed to be closer to a on the path, and let (eb, ed) be
any edge on Pbd, where eb is assumed to be closer to b on the path (see the left graph in Fig. 1). If
we replace (ea, ec) and (eb, ed) with (ea, ed) and (eb, ec), the resulting graph has paths Pad and Pbc

instead of Pac and Pbd (see the right graph in Fig. 1). We can guarantee that each of Pad and Pbc is
at most three times longer than the other by imposing some restriction on the choice of (eb, ed) for
each (ea, ec), which will be proved later; the resulting graph is a member of B. Similarly, we define
A ∈ A such that R(A, B) = 1 for every B ∈ B. For every graph B ∈ B, let (ea, ed) be any edge on
Pad, where ea is assumed to be closer to a on the path, and let (eb, ec) be any edge on Pbc, where eb

is assumed to be closer to b on the path. If we replace (ea, ed) and (eb, ec) with (ea, ec) and (eb, ed),
the resulting graph has paths Pac and Pbd instead of Pad and Pbc. Since we can guarantee that each
of Pac and Pbd is at most three times longer than the other by imposing a similar restriction (shown
later) on the choice of (eb, ec) for each (ea, ed), the resulting graph is a member of A.

We here show the restriction on the choice of (eb, ed) for each (ea, ec) when relating A to B (a
similar restriction works when relating B to A). Without loss of generality, Pac is shorter than
or equal to Pbd (otherwise, we just switch Pac and Pbd). Let the length of paths Pac and Pbd be
cL and (1 − c)L, respectively, for 1/4 ≤ c ≤ 1/2, where L = n − 3. Notice that the sum of the
lengths of Pac and Pbd is always (n − 3). If the subpath between a and ea of Pac is of length
k ∈ {0, . . . , cL− 1}, we choose (eb, ed) such that the subpath of Pbd between eb and d has the length
of at least max{L/4− k, 1} and at most min{3L/4− k, (1− c)L}. Then after replacing (ea, ec) and
(eb, ed) with (ea, ed) and (eb, ec), the lengths of Pad and Pbc are each at least L/4 and at most 3L/4.
This edge replacement is always possible in many ways, since there are many edges (eb, ed) that
satisfies the condition, as proved below. More precisely, there are at least L/4 choices of (eb, ed):
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∆ ≡ min{3L/4 − k, (1 − c)L} − max{L/4 − k, 1} ≥ L/4. If min{3L/4 − k, (1 − c)L} = 3/4L − k,

∆ = 3/4L − k − max{L/4 − k, 1} = min{L/2, 3L/4 − k − 1},

which is at least min{L/2, 3L/4 − cL} ≥ L/4.
If min{3L/4 − k, (1 − c)L} = (1 − c)L,

∆ = (1 − c)L − max{L/4 − k, 1} = min{(3/4 − c)L + k, (1 − c)L − 1},

which is at least min{(3/4 − c)L, (1 − c)L − 1} ≥ L/4.
This means that, for each (ea, ec), there are Ω(L) choices of (eb, ed). Since there are cL choices

of (ea, ec),
∑

B∗∈B R (A,B∗) = Ω(cL · L) = Ω(n2), implying Θ(n2). Similarly,
∑

A∗∈A R (A∗, B) =
Θ(n2).

For any fixed A ∈ A,
∑

B∗∈B : A(i)=1,B∗(i)=0 R (A,B∗) attains the maximum value of Θ(n),
when i is the index of an edge on the shorter path of Pac and Pbd. For any fixed B ∈ B,∑

A∗∈A : A∗(i)=1,B(i)=0 R (A∗, B) is a positive constant Θ(1) for all i such that there exists at least
one A∗ satisfying that A∗ (i) = 1, B (i) = 0 and R(A∗, B) = 1. This is because, to flip xi, we
need to pick up a pair of edges which are adjacent to the ith possible edge, and replace the edge
pair with another pair of edges including the ith possible edge. Thus, for every A and B such
that R(A,B) = 1, maxi:A(i)=1,B(i)=0

√
θ(A, i)θ(B, i) = Θ(

√
(n/n2)(1/n2)) = Θ(1/n1.5). Similarly,

maxi:A(i)=0,B(i)=1

√
θ(A, i)θ(B, i) = Θ(1/n1.5). The quantum lower bound follows from Theorem 7.

The classical lower bound can be obtained by a similar argument. For any A
and B such that R(A,B) = 1, maxi:A(i)=1,B(i)=0 min{θ(A, i), θ(B, i)} = Θ(1/n2), and
maxi:A(i)=0,B(i)=1 min{θ(A, i), θ(B, i)} = Θ(1/n2), since the smallest value of θ(A, i) and θ(B, i)
is Θ(1/n2). The classical lower bound follows from Theorem 8. ¥
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