
Virtual BUS: An easy-to-use environment for distributed resources

Atsushi Takahara Sei-Ichiro Tani Shinya Ishihara Toshiaki Miyazaki

Mitsuo Teramoto Tomoo Fukazawa

Kazuyoshi Matsuhiro

NTT Network Innovation Laboratories

Hikari-no-oka 1-1, Yokosuka, Japan, 239-0847

ftaka,tanizo,shinya,miyazaki,tera,fuka,matg@exa.onlab.ntt.co.jp

Abstract

This paper discusses how a distributed environment
providing e�ortless networking can be e�ciently im-
plemented in a network system. To formalize the dis-
tributed environment, we introduce the concept of \Vir-
tual BUS". It is similar to the concept of the computer
system's bus architecture. We de�ne user behavior as
accessing the resources in a network through his/her
own bus. Based on this simple formalization, we dis-
cuss the key issues in implementing distributed envi-
ronments to support di�erent requirements for realizing
the quality of service desired. We implement an exper-
imental e�ortless networking environment based on the
Virtual BUS concept and show that the concept realizes
e�ortless networking while guaranteeing QoS.

1. Introduction

High throughput and high speed networking tech-
nologies have made the distributed environment more
realistic. E�ortless Networking[1] is a trend based on
these technologies. E�ortless networking provides a
network environment wherein users can easily access
resources in a network without tedious setting up op-
erations like installing device drivers. In other words,
a real plug and play network environment can be pro-
vided.

Several activities have been directed towards devel-
oping such distributed environments (TINA[8], Jini[7]).
TINA provides a software framework for supporting
open multi-provider and open multi-vendor environ-
ments. TINA is implemented on the Distributed Pro-
cessing Environment (DPE) which is an extension of
OMG CORBA. DPE functions have been implemented
on di�erent platforms. Communications among objects

in DPE or platforms rely on signaling mechanisms sup-
ported by the Kernel Transport Network (KTN). Jini
has the same structure as TINA. Jini is based on Java
while TINA is based on CORBA. Jini uses Java's Re-
mote Method Invocation (RMI) mechanism for com-
munication between users and providers/vendors. A
special function, the so-called lookup service, is pro-
vided to locate the provider(s) that meet the user's
requirements [9]. Frameworks for application-speci�c
distributed environments have also been proposed[2, 3].

These technologies were designed with the goal
of realizing uniform distributed computation environ-
ments. Moreover, they concentrate on the functionali-
ties that simplify usage or development processes. Un-
fortunately, there has been little discussion on perfor-
mance or application-speci�c requirements in general
distributed environments.

In e�ortless networking, various quality of service
(QoS) levels must be guaranteed to increase working
e�ciency. Requests from applications are orthogonal
in a network layer. Currently, network nodes should
refer the upper layer information to achieve e�ective
tra�c ow control. Once the communicate process be-
tween applications and network layers is settled, the
network resources can be used e�ectively and QoS can
also be guaranteed by referring to the application layer
requirements. Unfortunately, no well de�ned commu-
nication methods exist to link applications and the net-
work layer.

This paper discusses how the distributed environ-
ment can be well supported by the network layer. The
key point to realize this is the method of notifying the
usage or requirements of the applications to the net-
work layer control processes and vice versa. We de-
�ne a simple model for representing the behavior of
applications in a distributed environment;, it is called
Virtual BUS. In Virtual BUS, the organization of dis-
tributed objects is modeled as the bus architecture of

the conventional computer system. The interactions
among distributed objects are modeled as transactions
through the bus. We also introduce a weak relationship
between a user and a resource. In Virtual BUS, a user
accesses a resource through proxy agents. This weak
relationship gives freedom to the network layer con-
trol. If di�erent locations in the network o�er the same
resource, the most suitable location is determined ac-
cording to network tra�c status with the goal of more
e�ective QoS control.

The rest of this paper is organized as follows. Sec-
tion 2 de�nes the Virtual BUS concept model. In Sec-
tion 3, we show several QoS guarantee methods that
achieve e�ective network control meeting the applica-
tion's requirements. Section 4 describes our experi-
mental implementation of e�ortless networking based
on the Virtual BUS concept and several applications.
Section 5 concludes the paper.

2. A formalization of the distributed en-
vironment

2.1. Service-in-the-box

We assume that e�ortless networking is a sort of box
in which various services are stored. We call this view
the service-in-the-box(Fig. 1). A user picks his/her fa-

A
A

Network

DB

Service-in-the-box

Figure 1. Service-in-the-box

vorite services from this box and constructs his/her
own computation environment. In the current net-
working environment, picking up a service is not an
easy task because you must 1)locate the service using
the network, 2) install appropriate device drivers and
3)manage network throughput or latency.

In the service-in-the-box concept, a user can access
a service without searching through many directories.
Uniform access methods for services are supported to
make it easier to use the services. The network layer
guarantees the QoS level needed by observing the traf-
�c pattern or service usage. Three factors are needed
to realize the concept of service-in-the-box: virtuality,
uniformity, and cooperation between network systems
and services.

Virtuality To make it easier for the user, virtual ser-
vice access is needed. A user can access a resource
by specifying a virtual name instead of the exact
service name or location. For example, the user
wants to compress some video data. The user does
not want to be forced to specify the exact location
of the compressor nor be forced to look up the
sites o�ering such devices. The user wants these
things to be hidden. The user merely wants to say
\ compress this data".

This is e�ective for supporting QoS. The relation-
ship between the user's request and an exact ser-
vice is weak so that there is freedom in choosing
the location of a service. An application in Virtual
BUS can choose the best location for each service
considering the network's tra�c status.

Uniformity The method of accessing services should
be uniform to make the system easy to use. Oth-
erwise, accessing a di�erent implementation of a
service would require an implementation speci�c
interface.

Cooperation between Network and Services
Di�erent types of services require di�erent types
of QoS. Many QoS control mechanisms have
been proposed for the network layer. If the
requirements of users are known, the appropriate
QoS control mechanism can be selected. More-
over, resource reservation and congestion control
mechanisms have the freedom to choose the
communication path used because the locations
of services are not precisely speci�ed initially.
By considering the status of network tra�c, the
network layer can choose the best service loca-
tion. This signi�cantly improves the possibility of
network layer tra�c control achieving the desired
QoS.

2.2. Virtual BUS

We introduce a simple model that can represent the
distributed environment to allow discussion of the re-
quired functionality and implementation issues. To de-
�ne the model, we consider the user's behavior. When

2

the user requires a service, he/she should prepare their
computation environment. For instance, when a user
wants to use a video on demand (VOD) service, he/she
must prepare a decoder. Some negotiations are con-
ducted between the encoder and decoder before the
video stream can be sent. Forming the distributed com-
putation environment is very similar to constructing a
personal computer. One buys a video encoder/decoder
board, a CPU, a display and so on then attaches them
to the same PCI bus. From this observation, we intro-
duce a bus model for representing the user's behavior
in the distributed environment. We call this model
Virtual BUS (Fig. 2).

A
A

A
A

A
A

AAAAAAAAAVirtual BUS

A
A
AA
A

Figure 2. Virtual BUS

The user constructs his/her own virtual bus in a
network and then attaches the resources available in
the network as needed. Virtual BUS is similar to the
usual computer's bus architecture, such as PCI, be-
cause a distributed computation environment can be
constructed attaching/detaching resources to/from a
bus. The di�erence between Virtual BUS and com-
puter's bus is the lifetime of the environment so con-
structed. A virtual BUS is created/destroyed whenever
a user accesses/releases resources while a computer bus
has a much longer existence.

2.3. Primitives of Virtual BUS

The virtual BUS consists of four primitive modules.

1. Virtual BUS Application Interface (VBA)

2. Virtual BUS Resource Interface (VBRDV)

3. Virtual BUS Resource Database (VBDA)

4. Virtual BUS daemon (VBUSD)

9%$ 9%86'

9%'$ 9%5'9

9%5'99%86'

9%86'

Figure 3. Con�guration of Virtual BUS
primitive modules

The structure of these modules is depicted in Fig. 3.
VBA is the library of functions that allow access to

Virtual BUS; they are used by the applications. VBA
o�ers the following functions.

OPEN/CLOSE Function OPEN creates a Virtual
BUS in the network. Function CLOSE destroys
a Virtual BUS in the network.

GET/RELEASE Function GET searches for a re-
source in the network and attaches it to the cur-
rent Virtual BUS when found. To specify a re-
source in function GET, only the virtual name of
the resource required can be used. Function GET
searches for an actual resource by referring to the
resource database in VBDA and attaches the re-
source selected to the current Virtual BUS. This
mechanism realizes \virtuality" and is completely
hidden from the user. Function RELEASE de-
taches a resource from the current Virtual BUS.

WRITE/READ A uniform interface is required to
access resources. In the Virtual BUS environment,
a resource is accessed using memory-mapped I/O
style access functions. The tuple of address and
data is supplied when accessing resources.

VBRDV is the interface between the Virtual BUS
and each resource. An actual resource is encapsulated
by VBRDV. VBRDV processes requests from VBA and
controls the resource using its encapsulated driver func-
tions. VBRDV works as described below.

� When a resource starts providing a service,
VBRDV registers its own resource information to
the resource database in VBDA. This information
enables an application to access the resources.

� When VBRDV receives GET request, VBRDV
checks whether resources of the right type can be

3

used by the user or not. VBRDV returns an ac-
knowledge message if one is available and VBRDV
registers the fact that the resource is being used
in the resource database in VBDA. If no resources
are available, VBRDV rejects the request GET.

� When VBRDV receives requests of
WRITE/READ, the requests are analyzed
and VBRDV executes the appropriate resource
driver functions.

� When a service is terminated, VBRDV deregis-
ters the resource information from the resource
database in VBDA.

VBDA is the resource database manager in Virtual
BUS and lists the currently available resources. For
each resource, the key data and its status are speci�ed.

VBUSD manages communications among applica-
tions and resources. VBUSD provides proxies for VBA
and VBRDV. Even if VBUSD switches from one re-
source to another, VBA can continue operation. The
proxies provided by VBUSD achieve virtuality and free
the user-resource relationship.

2.4. Protocol

A simple example is used to explain how primitive
modules work together in realizing the Virtual BUS
environment. We assume that the user wants to watch
\ Movie#1" which is stored as an MPEG2 encoded
video stream. A typical access sequence is depicted in
Fig. 4.

1. Both an MPEG2 encoder and a decoder are
needed in this situation. When these resources
start their service, they register their information
in the VBDA resource database.

2. A user starts the application \VOD" . VOD opens
its own Virtual BUS and tries to attach a decoder
and an encoder.

3. VOD attaches a decoder by using request GET
of VBA. This request is sent to VBUSD. VBUSD
looks up in VBDA resource database and locates
an appropriate decoder with speci�ed attributes
such as encoding format. In this example, the de-
coder and VOD are managed by the same VBUSD
so request GET is sent to the decoder resource di-
rectly. If the decoder is available, it sends acknowl-
edge to VOD and registers the fact that the re-
source is being used in the VBDA database. Oth-
erwise, the decoder noti�es that the resource is not
available.

9%$ 9%86' 9%86' 9%5'99%5'9 9%'$

92' '(&2'(5 (1&2'(5

UHJLVWHU

UHJLVWHU

RSHQ

DFNQRZOHGJH

DFNQRZOHGJH

DFNQRZOHGJHJHW

JHW

ZULWH�UHDG

UHOHDVH

UHOHDVH

DFNQRZOHGJH

FORVH

�

�

�

�

�

�

ZULWH�UHDG

VHDUFK

VHDUFK

DFNQRZOHGJH

DFNQRZOHGJH

DFNQRZOHGJH

DFNQRZOHGJH

DFNQRZOHGJH

DFNQRZOHGJH

Figure 4. A typical sequence of accessing
resources

4. VOD then tries to get an encoder. VOD sends
request GET to VBUSD. This request may be re-
layed from one VBUSD to another. Except for
this sequence, the other sequences are as same as
those used to attach the decoder.

5. After attaching resources, VOD can locate and
communicate with the resources selected. Con-
trol commands or video streams are accessed by
WRITE/READ requests. These requests are also
relayed through the VBUSD chain.

6. When an application �nishes, attached resources
are released from the Virtual BUS. The applica-
tion sends a request RELEASE to each attached
resource through VBUSD. A resource that receives
request RELEASE registers the fact that it has
become available to the VBDA resource database.
Finally, VOD closes its Virtual BUS.

3. QoS guarantee methods

This section discusses the advanced features of Vir-
tual BUS that support di�erent levels of QoS guarantee
capability.

4

3.1. Naming policy and resource search

To support virtuality, the naming policy of resources
is important; the user wants to use only simple terms
to get the appropriate devices. Let's use the previ-
ous example again. How do you specify \Movie#1"?
You need to �nd an encoder and a decoder. What
kind of encoder/decoder do you need? What kind
of formats do you need? Possibilities include \en-
coder for MOVIE#1" and \MPEG2 format encoder for
MOVIE#1". The former has more freedom because no
coding format is speci�ed.

The resource information is categorized into two
forms.

1. Resource type

This gives basic resource information.
Typically, type names are words which
the user can easily guess, such as mem-
ory, CPU, disk, encoder, decoder and so
on.

2. Resource attribute

This gives the resource speci�c informa-
tion. Typical attributes are encoding
format, video title, tra�c rate, location
and so on.

To guarantee QoS, resource performance and sta-
tus should be also registered in the resource database.
This information is useful for tra�c control. When
a user requests a VOD service, the application chooses
the most suitable resource by referring to the database.
Notice that these operations are invisible to the user.
The available resources are registered in the VBDA
database. The application can browse the list of up-
to-date resources without instigating a search for all
resources available in the entire network. Of course,
the status of the network is changing frequently so the
database is not so accurate.

3.2. Composite resources

In Virtual BUS, the combination of resources can
be modeled easily by the joint action of VBRDV and
VBA as depicted in Fig. 5. A composite resource has
the same structure as a resource except that a VBRDV
creates another Virtual BUS to attach other resources.
When an application accesses a composite resource, it
sends requests to the composite resource, which then
relays these requests to the attached resources.

The creation of composite resources can provide vir-
tually unbounded resources such as composite memory.

$
3

9
%
$

$

%

&

9
%
5
'
9

9
%
$

5HVRXUFHV
&RPSRVLWH

5HVRXUFH

9LUWXDO

%86

9LUWXDO

%86

Figure 5. The structure of composite re-
source

Using this type of memory, the user does not need to
worry about the amount of memory available. Com-
posite memory grows according to the user demand by
attaching new memory resources to its Virtual BUS.
This capability guarantees another attribute of QoS.

Composite resources can also realize redundancy. A
composite disk resource can o�er the mirroring of data
for fault tolerance and multi striping of disks to ac-
celerate the rate of data access as in the RAID tech-
nology. The quality of VOD service can also be im-
proved by using a composite resource. A composite
VOD server links video sources in di�erent locations.
It selects the source whose connection to the applica-
tion can fully support the tra�c rate needed. If the
current server fails to maintain adequate quality, for
instance it starts to drop frames, the composite VOD
server then switches to another source. This realizes
dynamic resource roaming and guarantees QoS to the
user.

A composite resource can thus provide QoS guaran-
tees in terms of the function provided.

3.3. Cooperation with network node sys-
tems

The above two features reect the capabilities of
the application and middle-ware. Network rout-
ing/switching systems have, of course, very basic func-
tions for guaranteeing the QoS such as rate control and
signaling.

5

A composite VOD resource can e�ectively work with
the network nodes. Two di�erent VOD servers (A, B)
are joined to form a composite VOD server that com-
municates through switching nodes (Node A, Node B)
in the network as depicted in Fig. 6. If the tra�c load

$3
&RPSRVLWH

UHVRXUFH

$

%

1RGH $

1RGH %

$

%

$3

&RPSRVLWH

UHVRXUFH

/RJLFDO OD\HU

1HWZRUN OD\HU

9LUWXDO

%86

9LUWXDO

%86

Figure 6. The network nodes communicat-
ing with a composite resource

of node A is high and the required video stream traf-
�c rate can not be guaranteed, the composite resource
switches from resource A to resource B to guarantee
the video stream tra�c rate. In the logical layer, the
application communicates with the composite resource
and so is not a�ected if a resource is switched.

4. Experimental system

We developed an experimental distributed environ-
ment based on the proposed Virtual BUS concept. In
this section, we introduce our implementation method,
the experimental system structure, and the applica-
tions developed so far.

4.1. Implementation

PVM (Parallel Virtual Machine)[5] and Java[6] are
used in our implementation platform. These two soft-
ware tools run on di�erent platforms and have sophisti-

cated communication mechanisms. These features are
useful in implementing the distributed environment.

VBA and VBRDV are implemented as C++ library
calls using PVM communication functions. VBUSD
is implemented as a daemon written in C + + using
PVM communication functions. VBDA, the resource
database manager, is written in Java. VBUSD looks
up the database through VBDAC which is the bridge
between the PVM communication and Remote Method
Invocation (RMI) functions of Java. The resource in-
formation in the current VBDA version consists of four
items.

� resource type

� resource attributes

� expiration time for the resource information

� network wide unique resource identi�er

The current implementation provides one VBDA in
the network and VBUSD runs on each machine hosting
resources and applications.

4.2. Network architecture

The network architecture of our experimental sys-
tem is depicted in Fig. 7. The speci�cations of plat-
forms, operating systems, network nodes, and sup-
ported resources are summarized in Table 1.

Table 1. Speci�cations of network nodes
and machines in the experimental system

Platforms PC (Pentium II 400MHz)
Sparc Station (Ultra Sparc 300MHz)

Operating Windows NT 4.0
systems Solaris 2.6

FreeBSD 2.2.8
Network ATM (Fore 200BX)
nodes 100Base-T 16 port Hubs

ATTRACTOR (Programmable
telecommunication nodes)

Resources MPEG2 Encoder/Decoder
Motion JPEG Encoder/Decoder
Video camera with pedestal control
serial line controllable robot

There are three ATM switches for handling video
stream data and 100Base-T Ethernet connections to
process Virtual BUS control protocols. We also used
two ATTRACTOR[4] nodes, which are programmable

6

 ATTRACTOR

M JPEG Dec.

M PEG2 Dec.

Joystick

ATM switch ATM switch

ATM switch

AAA
M em ory

AAAM em ory

AAM em ory

M PEG2 Enc.

M JPEG Enc.

 ATTRACTOR

M JPEG Dec.

M PEG2 Dec.

Joystick

M PEG2 Enc.

M PEG2 Enc.
M JPEG Enc.

M JPEG Enc.

M JPEG Enc.

O C-3 ATM -LAN

100Base-T Ehternet

User term inal User term inal

Figure 7. The network architecture of the experimental system

telecommunication nodes. ATTRACTOR can se-
lect the best ATM PVC path between an applica-
tion and a resource according to the tra�c situa-
tion in the network. Actual resources such as memo-
ries, encoders/decoders for MPEG2 and Motion JPEG
(MJPEG), camera controllers, and robot controllers
are hosted by 12 PCs and workstations.

4.3. Applications

We have implemented several applications, three of
which are described below.

Composite memory Composite memory allows
memory resources spread over the network to be
combined and accessed by the user.

Figure 8 shows the performance of composite
memory. In this experiment, we constructed 64,
96, 128M byte composite memories by combin-
ing 32M byte memory resources. The Y-axis
shows the elapsed time for writing/reading data
to/from a composite memory, access was by 8K
byte block/16K byte block units, and the X-axis
shows the size of memory. In the current imple-
mentation the access time for a composite memory
is almost twice that of real memories.

VOD services Several VOD services were imple-
mented. The current environment supports
MPEG2 and Motion JPEG encoders/decoders. A
exible VOD watcher service was realized. If the

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

ac
ce

ss
 ti

m
e

(s
ec

.)

memory size (M Byte)

Memory resource type (unit data length for read/write)
Virtual memory resource (8k byte)
Virtual memory resource(16k byte)

Real memory resource (8k byte)
Real memory resource(16k byte)

Figure 8. A composite memory perfor-
mance

7

program desired is available in both MPEG2 and
Motion JPEG encoding formats, the VODwatcher
selects the appropriate encoding format according
to the tra�c situation.

Another service is the composite VOD server with
network node controls. The composite VOD server
controls VOD services in di�erent locations. It
uses ATTRACTOR to link the encoder to the
decoder by PVC selection according to the traf-
�c. The path from the encoder to the decoder
is switched to guarantee the required tra�c rate.
ATTRACTOR can switch form one PVC to an-
other within 1 milliseconds for 50Mbps Motion
JPEG ows.

Robot game This application utilizes several re-
sources. They include remote robot control, the
camera which tracks robot movement and the
MPEG2 encoder/decoder used to transfer the
camera view to the user. The user controls one
robot and one camera at the same time; the objec-
tive is to push the ball into other user's goal(Fig.
9). A user can join the game freely from any place.

In this game, a robot/camera pair is occupied by
one user at a time. Virtual BUS functions can sup-
port this exclusive control of camera/robot while
a dedicated game server would be needed to re-
alize this normally. This game demonstrates how
virtual BUS functions e�ectively support imple-
menting network-wide interactive applications.

In the current system, VBA is the master of the Vir-
tual BUS created. In other words, VBA takes care of all
resources. However, it is desirable for the encoder and
decoder to transfer video streams autonomously. Thus
auto negotiation mechanisms among resources would
be helpful in developing applications. For large scale
networks, we should consider a hierarchical resource
database for e�cient database search and maintenance.
The protocol of the implemented systems should have
more robustness by o�ering tolerance to network mal-
functions. These are future tasks.

5. Conclusions

We proposed the concept of Virtual BUS; a dis-
tributed environment model that aims to realize e�ort-
less networking environment. The essential points of
distributed environment, virtuality, uniformity, and co-
operations between applications and network nodes are
clearly modeled in Virtual BUS concept. The required
QoS for the e�ortless network is also categorized and

the guarantee of these QoS is well supported by sophis-
ticated resource search, composite resources in Virtual
BUS concept. We implemented an experimental sys-
tem based on the Virtual BUS concept and showed that
Virtual BUS concept realizes e�ortless networking with
the capability of guaranteeing the QoS.

References

[1] J. Callahan. Moving Toward E�ortless Networking.
IEEE Computer Magazine, pages 12{14, November
1998.

[2] H. Guyennet, J.-C. Lapayre, and M. Tr�ehel. Distributed
shared memory layer for cooperative work applications.
In The 22nd Annual Conference on Local Computer
Networks(LCN'97), pages 326{334, 1997.

[3] C. S. Hong, Y. K. Dai Kashiwa, and Y. Matsushita. A
multimedia service networking architecture and its ap-
plications in tina-like model. In The 21st Annual Con-
ference on Local Computer Networks(LCN'96), pages
326{334, 1996.

[4] T. Miyazaki, K. Shirakawa, M. Katayama, T. Murooka,
and A. Takahara. A transmutable telecom sys-
tem. Proc. 8th International Workshop on Field-
Programmable Logic and Applications, FPL '98 (LNCS
1482), pages 366{375, 1998.

[5] Oak Ridge National Laboratory.
PVM: Parallel Virtual Machine.
http://www.epm.ornl.gov/pvm/pvm home.html.

[6] SUN Microsystems. Java(tm) Technology Home Page.
http://java.sun.com/.

[7] SUN Microsystems. Jini(tm) Connection Technology,
http://www.sun.com/jini.

[8] TINA Consortium. TINA-C Home Page,
http://www.tinac.org/.

[9] J. Waldo. JiniTM Architecture Overview, 1998.

8

Virtual BUS
m onitor

Rem ote cam era and
robot controller

Video source display

Display window for
the attached cam era

Figure 9. Robot game: an example of Virtual BUS based application

9

