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Abstract. It is well-known that no classical algorithm can solve exactly (i.e., in bounded time without error) the
leader election problem in anonymous networks. Recently, Tani, Kobayashi and Matsumoto proved that the problem
can be exactly solved when the parties are connected by quantum communication links. This paper gives another
two quantum algorithms that exactly solve the problem. The algorithms take a different approach to the problem
from the existing ones. The first algorithm uses the quantum amplitude amplification in a distributed manner under
the anonymous condition, and runs in ����� rounds and �����-qubit communication for any network topology,
where � is the number of parties. The second one is restricted to the case where the number of parties is a power of
two, and requires ���� �����-qubit communication, but takes only linear rounds in �.
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1 Introduction

The leader election problem is a core problem in traditional
distributed computing, which has been studied for decades
(see, e.g., [4]). The goal of the leader election problem is
to elect a unique leader from among distributed parties. Obvi-
ously, it is possible to deterministically elect a unique leader
if each party has a unique identifier. On the other hand, a lot
of papers examined the case wherein the network is anony-
mous, i.e., no party has an identifier [1, 3, 6, 7]. In this set-
ting, no classical exact algorithm (i.e., an algorithm that runs
in bounded time and solves the problem with zero error) ex-
ists for a broad class of network topologies including regular
graphs, even if the network topology (and thus the number
of parties) is known to each party prior to algorithm invo-
cation [6]. In the quantum setting (i.e., every party can per-
form quantum computation and communication and each ad-
jacent pair of parties has a bidirectional quantum communica-
tion link between them, but does not share any prior entangle-
ment), the situation is quite different. It was recently proved
that the problem can be exactly solved even when the network
is anonymous [5].

This paper gives two quantum algorithms that, given the
number � of parties, exactly solve the leader election problem
in an anonymous network using approaches that are quite dif-
ferent from those of the algorithms in [5]. Our first algorithm
elects a unique leader from among � parties by applying ex-
act amplitude amplification [2] in a distributed manner under
the anonymous condition. It attains the same performance as
that of the algorithm in [5], i.e., it takes ����� rounds and
����� communication complexity for synchronous network
of any topology. Our second algorithm is restricted to the case
wherein the number of parties is a power of two. It takes at
most �� rounds for any topology, while the communication
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complexity is ���� �����. Both algorithms are easily modi-
fied to support their use in asynchronous networks.

2 �����-round Quantum Algorithm for Gen-
eral Case

First we introduce the concept of consistent and inconsis-
tent strings. Suppose that each party � has a �-bit string � �.
That is, the � parties share ��-bit string � � ���� � � ���. For
convenience, we may consider that each �� expresses an inte-
ger, and identify string �� with the integer it expresses. Given
a set � � ��� � � � � ��, string � is said to be consistent over �
if �� has the same value for all � in �. Otherwise � is said to
be inconsistent over �. We also say that a ��-qubit pure state
�	� ��� 
���� shared by the � parties is consistent (incon-
sistent) over � if 
� �� 	 only for �’s that are consistent (in-
consistent) over �.

Next, we quote the exact quantum amplitude amplification
theorem, which our algorithm is based on.

Proposition 1 ([2]) Let � be any quantum algorithm that
uses no measurements to search a truth assignment for any
Boolean function �. Given the initial success probability
� 	 	�
� of� , ��� �� �� 	���	� gives a correct assignment
with certainty by setting 	 and � �	 
 	� � � 
�� to some
appropriate values depending on �, where ��� �� �� 	� �
�������������	� such that: ���	� transforms ��� into
��� ��� if ���� � � and ��� if ���� � 	, and����� transforms
��� into ������ if � � 	 � � �	 and ��� otherwise.

Initially all parties are eligible to become the unique leader.
The algorithm repeats one procedure exactly �� � �� times,
each of which is called a phase. In each phase, the number
of parties eligible to be the leader either decreases or remains
the same, but never increases or becomes zero. After �� � ��
phases the number of eligible parties becomes one with cer-
tainty.



Each phase has a parameter denoted by �, whose value
is ��� � � �� in the �th phase. In each phase �, let
�� � ��� � � � � �� be the set of all �s such that party � is still eli-
gible. Each phase prepares the uniform superposition of 
����

of �’s where � � �� � � ������ and �� is a bit possessed by the
�th party in ��. The phase then amplifies the amplitude of any
inconsistent state over �� so that we can get an inconsistent
string over �� with certainty by measurement. This is possi-
ble if every party knows the number ���� of eligible parties by
using Proposition 1, since he/she can compute the exact initial
success probability of getting an inconsistent string, which is
clearly � � �

�����
. Actually, every party does not know ����,

however, we can detour to avoid this issue as described later.
When amplifying the amplitude, ���	� and ����� need to be
realized in a distributed manner, i.e., in a way that every party
performs the same operation. This can be done as follows. For
���	�, every party multiplies the amplitude of any inconsis-
tent state by the factor of ��

�

�
�, which multiplies it as a whole

by the factor of ���. For �����, every party multiplies the
amplitude of the all-zero state �		 � � �	� by the factor of ��

�

�
�,

which multiplies it as a whole by the factor of � ��. Notice that
every party can distinguish inconsistent states or the all-zero
state by applying a flooding algorithm to the superposition as
described in [5].

Once the parties in�� share an inconsistent string, the num-
ber of eligible parties can be reduced with certainty by exclud-
ing � � �� from �� such that party � does not have the maxi-
mum one-bit value among all one-bit values in the string.

In each phase �, every party uses � instead of ���� to set 	
and � to some appropriate values. Hence, the eligible parties
may share a consistent state since � does not necessarily rep-
resent ����. In this case, the above operations that attempt to
reduce the eligible parties does not change ��. In the case of
� � ���� by chance, ���� is reduced by at least one (but not to
zero), although they cannot recognize the case. It is clear from
this observation that � is always at least ���� in each phase �
since � is � � ���� in the first phase and is decreased by 1
after each phase. It follows that exactly one leader is elected
after the last phase.

Theorem 2 Let � be the number of edges of the underlying
graph for the network topology. Given the number � of par-
ties, the algorithm exactly elects a unique leader in ����
rounds. The total communication complexity over all parties
is �����.

If each party initially knows only the upper bound � of the
number of parties, each party has only to perform the above
algorithm with � instead of �. The complexity in this case is
described simply by replacing every � by � in Theorem 2.

3 Linear-Round Quantum Algorithm for � a
Power of Two

First, every party prepares ��������
�

and �	� in one-qubit reg-
isters �� and �, respectively. They then set the content of �
to the Hamming weight ���� 
� of the contents in all ��s
by computing the view [6] of depth 
�� � �� in a superposi-
tion, regarding the contents of��’s as node labels. It takes at
most 
� rounds to construct the view, and after computing the
Hamming weight ���� 
� from the view, it takes another 
�

rounds to invert every computation and communication that
was performed to construct the view. Next every party mea-
sures the qubit in � in the ��	�� ���� basis and stores the result
into variable �. If � � 	 ���, the resulting state �	� is the uni-
form superposition of the �-bit strings that have the Hamming
weights of even (resp. odd) values. In the case where � � 	,
every party applies two unitary operators � and �� (in this
order) to the qubit in �� to share a superposition of only the
strings that have the Hamming weights of odd values, where

�� �
�



�
� ���

�

�

��� �� �

�
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�



�
� ��
� �

�
�

By measuring the qubit in��, every party gets classical value
�. Finally, every party calls another subroutine, which elects a
leader by constructing the view of depth 
����� whose node
labels are � values in 
� rounds. From the property of view,
we can prove that, when � is a power of two, if the number
of parties having 1 is odd, no two parties have an isomorphic
view. By regarding the view of every party as its identifier, the
parties can elect a unique leader from among them. Therefore
the total number of rounds required is at most �� rounds. If
we use the technique called f-view [5], the communication
complexity is ����� �����, where � is the set of edges of
the underlying network topology.

If each party initially knows only the upper bound� of the
number of parties, each party performs the above algorithm
for � � 
� �� � � � � � instead of � in parallel, and with a bit
elaboration, the parties can elect a unique leader in �� rounds
and ����� ���� �.
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