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Anonymous Leader Election Problem (LE) 

Given n parties connected by  communication links,　
elect a unique leader from among n parties. 

 

Under the Initial Condition: 
p All parties are in the same state. 
    ⇒Each party  performs the same algorithm. 
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Negative Results in Classical Cases 

n  Case 1: # of parties is given, 
  No classical algorithm can solve LE exactly 
  for many network topologies 

 

n  Case 2: Only the upper bound of # of parties is given, 
  No classical algorithm can solve LE even with 

 zero-error for any network topology having 
 cycles. 

 

(“exact” = “zero-error” and “bounded time”) 



Our Results 

For  parties connected by quantum communication links: 
   

n  Case 1: n (# of parties ) is given, 
 

 LE can be solved exactly 
  in poly (in n ) time/communication complexity 
 for any network topology. 

 
n  Case 2: Only N (the upper bound of # of parties) is given, 
 

 LE can be solved exactly 
 in poly (in N) time/communication complexity  
 for any network topology. 



Two proposed algorithms 
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n  Algorithm I 
p  More efficient in time and total (quantum + classical ) 

communication complexity 

n  Algorithm II 
p  Less quantum communication and fewer rounds 

Case 1: # of parties (n) is given 



Details of Algorithm I   



Algorithm I   Overview 

1. Let all parties be eligible to be the leader. 
2. For m = n down to 2, repeat  PartyReduction(m),   

 which works such that: 
p  If  m equals # of eligible parties, 

 # of eligible parties is decreased by at least 1 
 (but  not decreased to 0) 

p  Otherwise,  # of eligible parties is decreased or unchanged 

3. The party still remaining eligible is the unique leader. 

▼In Step 2, always m ≥　(# of eligible parties) 
 ⇒After Step 2, only one party  remains eligible  

▼ Even if only the upper bound of n is given, the algorithm 
     works well by using the bound  instead of n. 



Consistent/inconsistent over eligible parties 

Each party has c bits 
 ⇒All parties share cn-bit string  s 

 
n  String s is inconsistent over eligible parties,  

 if all eligible parties do not have the same c-bit values. 
 
n  State φ  is inconsistent over eligible parties,  

 If φ  is a superposition of inconsistent strings 



Key Observation used to construct PartyReduction (m) 

Eligible parties can be reduced by at least one 
(but cannot be reduced into 0 party) by 

1.  Measuring qubits. 
2.  Letting only eligible parties having the 

maximum value among eligible parties 
remain eligible. 

All eligible parties share an inconsistent state. 



PartyReduction (m) 

(1) Share an inconsistent state 
      with prob. 1 if m equals # of eligible parties. 
(2) By measurement, parties obtain an inconsistent string. 
(3) Only eligible parties that have the maximum value 

among eligible parties remain eligible. 

PartyReduction (m) meets requirements: 
n  if m equals # of eligible parties,  

 (3) reduces # of eligible parties by at least 1 
 (but not to 0). 

n  Otherwise # of eligible parties does not increase. 



Subgoal A 

(2) Each eligible party initializes them to 

 Each non-eligible party initializes them to 
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(1) Each party prepares two qubits. 
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Subgoal A  

(3) Check inconsistency of a string corresponding to each 
basis state in the classical way 

    (and uncompute to erase all garbage). 
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(4) Measure the flag part. 



Subgoal A: Check inconsistency (in the classical way) 

1. Each eligible party initializes xi = bi, 
 while each non-eligible party initializes xi = * 

2. Each party repeats the following  n-1 times: 
    2.1 Send the current value xi to all neighbors. 
    2.2 Receive the current values xi1,…, xideg(i)　from all 

neighbors 
   and update xi := xi · xi1 · ··· · xideg(i). 

3. Conclude the string is “inconsistent” iff xi ∉{0，1}. 

Suppose each party i has a classical bit bi ∈{0,1} of a string 

deg(i): # of edges incident to party i 



 Subgoal A: Xi updating rule 

n  xi =0    iff xi,xi1,…, xideg(i) ∈{0,*}  but ∉{*}  
p All eligible parties could possibly have 0. 

n  xi =1    iff xi,xi1,…, xideg(i) ∈{1, *}  but ∉{*}  
p All eligible parties could possibly have 1. 

n  xi = *    iff xi,xi1,…, xideg(i) ∈{*} 
p No information on the values of eligible parties. 
 

n  Otherwise, xi = “inconsistent” 
p Eligible parties have to share an inconsistent string. 



Subgoal B 

Subgoal(B): Transform                            shared by eligible parties  
          into an inconsistent state with prob. 1,  
          given the number k  of eligible parties. 
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n  Case 1: k is even,  
 Each eligible party applies to its qubit 
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Subgoal B 

n  Case 2: k is odd 
 (1) Each eligible party transforms the k-cat state into a 
2k-cat state by preparing a fresh ancilla qubit and 
applies CNOT. 
 (2) Each eligible party then applies to its two qubits 
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PartyReduction (m) 

Check inconsistency of each string superposed in 

Each party measures the flag part. 

Measure all qubits and reduce eligible parties. 

Apply Um or Vm 
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Algorithm II 



1.  Quantum Stage 
p  Share log n sets of  n-qubit cat-like-states by  

 one-time exchange of qubits  
     and partial measurement. 

Overview of algorithm II (1) 
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Xi : n-bit binary string,  
      which is determined probabilistically. 



2.  LOCC Stage 
1.  Let all parties be eligible to be the leader, and set the 

number k of eligible parties to n 
2.  Repeat  PartyReduction II (k)　until k=1 

(1) Transform |φ 〉 into an inconsistent state 
 by using k with prob. 1 
 
(2) Measure the qubits 
 
(3) Reduce eligible parties by at least half  
by selecting minorities with resp. to the measurement results 
 
(4) Count the # of eligible parties and set it to k 

Overview of algorithm II (2) 

LOCC= Local quantum Operations and  
  Classical Communication 

log n  
times 



Quantum Stage: Sharing a Cat-like State (1) 

Suppose  party i has d neighbors. 
 

1. Each party i prepares a (d + 1)-cat state in register R 
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2. Exchange a qubit in R with each neighbor party 
 (while keeping one of the qubit in R himself.) 
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Quantum Stage: Sharing a Cat-like State (2) 

3. Compute an XOR of the unexchanged qubit and 
each exchanged  qubit. 

4. Measure the d XORs. 

XOR XOR XOR 

|0〉	


|0〉	


|0〉	


Exchanged 
qubits	


Unexchanged 
qubit	


Ancilla 
qubits 



Lemma. After the procedure, the system state is n-
qubit state: 
 
 

Quantum Stage: Sharing a Cat-like State (3) 

5. Apply CNOT controlled by the unexchanged qubit 
targeting to each exchanged qubit 　	

⇒ All exchanged qubits are disentangled. 

( ) 2 XX +=φ



n  By measuring the results of XORs, we fixes the 
local relations between the party i’s value and 
each neighbor’s value. 

n  Only two basis states X and X satisfy all the local 
relations. 
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Quantum Stage: Key point 

Measurement results 
y = y1 … yd, 



Summary 

n  Two distributed quantum algorithms that can exactly 
solve LE in polynomial time/communication complexity 
 for any network topology. 

 
n   Modified versions of our algorithms can even solve the 

case where only the upper bound of the number of 
parties is given. 

n   Our second algorithm involves only one round of 
quantum communication at the beginning, and after that 
everything is done with only LOCCs. 


