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Abstract

Data communication has increasingly become essential in people’s daily
life since the IP network was invented, and the most major type of recent data
communication is that among multiple sites, called multi-point communica-
tion, such as WWW, live broadcast and TV conferences, rather than simple
one-to-one communication. One reason for this increasing popularity would
be that the IP network makes it possible to easily develop network applica-
tions that are attractive to even non-expert people, especially those based on
multi-point communication. Another reason would be that the IP network
can work and be deployed in an autonomous distributed manner.

Therefore, it is of great importance to develop the technologies that
improve the efficiency of multi-point communication but do not spoil dis-
tributed autonomy of the network.

The thesis studies efficient multi-point communication in autonomous
distributed networks from various points of view: from practice to theory
and from the present to the future.

The present multi-point communication can be roughly classified into
two types, depending on application behaviors: one is called file-transfer
type multi-point communication, which non-simultaneously transfers stored
data to many receivers (e.g., WWW), and the other is called stream-
ing type multi-point communication, which simultaneously transfers non-
stored/stored data to many receivers (e.g., live broadcast).

To increase the efficiency of the file-transfer type multi-point communi-
cation, network caching is the most popular strategy. The thesis discusses
the file caching problem, a core problem concerning network caching, and
gives competitive on-line algorithms for the problem. A standard way of
efficient streaming type multi-point communication is multicast. The the-
sis presents some issues concerning multicast, and proposes new multicast
protocols to overcome the issues.

To assess the future multi-point communication, the thesis discusses
quantum multi-point communication. In particular, the leader election prob-
lem is considered in an anonymous quantum network, and exact algorithms
to solve the problem are given.
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1 Introduction

1.1 Background

Data communication has increasingly become essential in people’s daily life since
the IP network [163, 164, 161, 162, 145] was invented, and the most major type of
recent data communication is that among multiple sites, called multi-point com-
munication, such as WWW, live broadcast and TV conferences, rather than simple
one-to-one communication. One reason for this increasing popularity would be
that the IP network makes it possible to easily develop network applications that
are attractive to even non-expert people, especially those based on multi-point
communication as previously described. Another reason would be that the IP net-
work supports distributed autonomy in terms of both behavior and deployment.
More precisely, every element of a network can behave themselves depending al-
most only on local information, i.e., without complete knowledge of the entire
network; this enables even huge-sized networks to work well. Further, whenever
we connect a new network appliance (such as a router) to an existing network,
we have only to update local configurations of the network; this makes it possi-
ble to expand the network at any site almost independently of the other sites. In
general, however, it is difficult to strictly control communication traffic in such
an autonomous distributed network. Therefore, it is of great importance to de-
velop the technologies that improve the efficiency of multi-point communication
without spoiling distributed autonomy of the network.

In tackling multi-point communication as well as other research areas, theory
plays important roles of providing a solid foundation for practical technologies
and assessing the potential of a new technology. On the other hand, in autonomous
distributed networks, multi-point communication is supposed to be performed
among different kinds of systems that were built based on individual philosophy;
this often requires quite practical viewpoints beyond technical advantages. Thus,
if we consider the efficiency of multi-point communication in autonomous dis-
tributed networks, we must understand it from a variety of viewpoints including
theoretical and practical ones.

The purposes of the thesis include theoretical and practical contributions to
improve the efficiency of major types of multi-point communication on the present
network, and to assess a new type of multi-point communication that would be a
crucial component in the future network.

In the present network, end hosts are often distinguished from the network
they are connected to. When end hosts want to do some task in collaboration
with one another, communication efficiency could be improved by optimize the
application-layer protocol they use, which specifies the content of the data they
exchange and the ordering of the data; such optimization strongly depends on the
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application in question. Even after optimizing application-layer protocols, some
redundant traffic may often go through networks. In what follows, we consider
general approaches to remove such redundancy by clever network management.

With regard to multi-point communication on the present network, we can
classify it into three types in terms of the numbers of senders and receivers: one-
to-many, many-to-one, and many-to-many. For instance, one-to-many communi-
cation includes WWW and live broadcast; many-to-one communication, sensor-
networks, i.e., systems that gather the information obtained by distributed sensors
via networks; many-to-many communication, TV conferences and file exchange.
Among these three types, many-to-many communication often consists of one-to-
many or many-to-one communications; improving the latter two communications
is essential. Many-to-one communication, however, intrinsically involves little re-
dundant traffic; it is hard to greatly improve the efficiency. Thus, we focus on the
efficiency of one-to-many communication.

We further classify one-to-many communication into two types, depending
on application behaviors: one is called file-transfer type communication, which
non-simultaneously transfers stored data to many receivers (e.g., WWW), and
the other is called streaming type communication, which simultaneously transfers
non-stored/stored data to many receivers (e.g., live broadcast).

To increase the efficiency of the file-transfer type communication, network
caching is the most popular strategy. Network caching saves the redundant traf-
fic that goes through particular sites at different time; some copies of previously
transferred files are stored at certain sites on the network and, when a receiver
requests one of the files, a copy of the file is transferred to him from one of the
sites having the copy instead of the owner of the file. Since the site having the
copy is usually closer to the receiver, network caching can reduce network traffic;
it also decreases the latency required to transfer files and the load of the owner.
Although there are some other strategies such as deploying multiple mirror sites,
which is effective especially for particular popular file owners, network caching is
effective even in general situations; it is widely used in practical environments [1].

The nodes having the network caching function, called cache servers, are
placed on the sites where congestion is likely to occur. In a standard way of
use, every cache server performs caching independently of other cache servers’
behavior, and installing a new cache server has no influence on others’ configu-
rations; cache servers work in a fully autonomous and distributed way (even so,
network caching is still considerably effective). In this case, the performance of
each individual cache server has a great impact on the efficiency of entire commu-
nication. One of the most influential factors on cache server performance is how
to decide which file should be stored, since all files cannot be stored due to the
limited resources (memory, storage, CPU, etc.) of cache servers. A good decision
may save transferring a file that is requested again from a remote site. This issue
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is formulated as the file caching problem [63, 200, 112, 19]. The difficulty of
the problem is that we need to decide which files should be stored without know-
ing future requests although files are stored in order to service future requests (in
general, such problems are called on-line problems, and algorithms for on-line
problems are called on-line algorithms). Three cost models were proposed de-
pending on the correlation between file size and file cost, i.e., the cost incurred to
obtain a file from other sites: the fault model [112], the bit model [112] and the
general model [19]. For these models, a major research direction has been to find
algorithms that incur low cost to retrieve mishit files, i.e., achieve high hit rate,
while developing fast algorithms is another important direction.

The file caching problem is a generalized form of the paging problem associ-
ated with microprocessor caches, which was first studied comprehensively in [38]
and has been extensively studied for more than three decades [39, 93, 176, 91,
142, 200, 49, 114, 125]. The difference between the problems is that the former
deals with objects (i.e., files) of various size while the latter handles objects (i.e.,
pages) of uniform size; the file caching problem is more complicated than the
paging problem. A standard way of analyzing on-line problems is competitive
analysis (see [47]); the measure used in the analysis is called a competitive ratio,
which quantifies how badly an on-line algorithm behaves itself in the worst case,
relative to an optimal off-line algorithm, i.e., an optimal algorithm that knows all
requests in advance. If the competitive ratio of an on-line algorithm is bounded
by a certain constant that is independent of the number of requests to files, the
algorithm is said to be competitive; the goal of competitive analysis approach is
to develop competitive on-line algorithms that run in reasonable time.

The streaming type multi-point communication has its unique characteristics:
real-time streaming data such as voice and moving pictures has to be simulta-
neously delivered to many receivers. Thus, we cannot store the data at some
sites on the network to improve communication efficiency. If, however, an owner
of streaming data directly delivers it to every receiver via one-to-one communi-
cation, it obviously consumes too much bandwidth and burdens the owner with
heavy load. A standard way of efficient streaming type multi-point communi-
cation is multicast: it simultaneously delivers streaming data via a rooted tree
constructed on the network, in which the root and leaves are the owner and re-
ceivers, respectively, such that, when every internal node of the tree receives data
from his parent, he duplicates the data to send it to every child. Thus, the owner
has only to deliver the data to a small number of children; the traffic of the entire
network is considerably reduced.

A huge number of multicast protocols have been proposed for more than two
decades [83, 157]. Early researches targeted to multicast on a local network. Mul-
ticast routing protocols over an internetwork was first introduced in [78]. Since
then, many multicast routing protocols over an internetwork have been proposed
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and standardized [79, 80, 88, 31, 30, 150, 189, 89, 62, 187, 172]. These proto-
cols work at the network layer and are called IP multicast. Although IP multi-
cast protocols have been supported by a lot of application softwares and routers,
there are still some difficulties in using IP multicast over an internetwork [84]. To
use IP-multicast, we need special IP addresses, called IP-multicast addresses, to
distinguish multicast groups. However, it is difficult to preserve the uniqueness
of IP-multicast addresses in a distributed manner, since IP-multicast addresses
are basically independent of the structure of networks, and group members may
change frequently. This makes it difficult to deploy multicast service on large net-
works. Furthermore, all routers need to be able to route IP-multicast packets, i.e.,
packets whose destination addresses are IP multicast addresses; this prevents IP
multicast from being autonomously deployed at each individual site on existing
one-to-one communication (unicast) networks, since two sites cannot communi-
cate via IP multicast if there are some local networks between them that do not
support IP multicast. As a result, IP-multicast is used only in closed or experi-
mental networks such as MBone [87].

To overcome these difficulties, there are several attempts. Source-Specific
Multicast (SSM) [100] restricts IP-multicast communication to one-to-many so
that it can simplify group address allocation and data distribution. Neverthe-
less, SSM does not allow multicast service to be autonomously deployed at each
individual local site, since all routers still need to route IP-multicast packets.
A completely different approach was proposed, called IP-unicast-based multi-
cast [177, 72, 192, 50]: all packets used in that new approach are IP-unicast pack-
ets, i.e., the packets that are used in ordinary one-to-one (unicast) communication.
This new technology is thought as a promising tool for the progressive deployment
of multicast service in an autonomous and distributed manner, since it is possible
for legacy routers, i.e., the routers that can only have the function of ordinary
unicast routing, to be located on the paths between receivers and streaming data
owners. The group address administration issue can also be solved by restricting
multicast communication to one-to-many as SSM. However, no protocol has been
established yet as a standard one of IP-unicast-based multicast.

We have considered so far two major strategies to improve the efficiency of
(one-to-many) multi-point communication on the present network. The same lines
are obviously effective even in the future network, as long as the mechanism of the
future network is essentially the same as that of the present network. To provide
for the future multi-point communication, however, it is also quite important to as-
sess new types of communication, especially those based on completely different
principles, from the viewpoint of efficient multi-point communication. Quantum
communication [153] is one of such new-type communications, and is regarded
as a possible crucial component of the future network: quantum communication
is based on the quantum physics instead of classical physics.
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Recently, it has been revealed that quantum communication has quite unique
characteristics even in the case of one-to-one communication. The most signifi-
cant result would be quantum key distribution protocols [44, 86, 43] for sharing
a random bit string among two parties as a secret key in a cryptographic context.
The protocols were proved by many researchers (e.g. [141, 135, 175, 179, 180,
95]) to be secure against eavesdroppers even with unlimited computational power
under various circumstances, whereas no existing classical protocols can achieve
such security. This implies that quantum communication can significantly im-
prove the security of secret-key cryptosystems. Meanwhile, the polynomial time
quantum factoring algorithm in [174] has been threatening the security of the RSA
cryptosystem, which is widely used in secure multi-point communication such as
electronic commerce, since the computational hardness of integer factoring pro-
vides a theoretical foundation for the security of the RSA cryptosystem. Recently,
it has been shown that quantum communication can make a positive contribution
to secure multi-point communication [35, 73, 24, 25, 148, 42].

For distributed computing in which no cheating parties are assumed, quan-
tum one-to-one communication also has a great advantage in communication ef-
ficiency over the classical one in some cases. It was proved that certain func-
tions can be computed in the quantum setting with much lower communication
complexity (i.e., the number of communicated quantum/classical bits) than in the
classical setting. When input is restricted under a certain condition, there is an
exponential gap between the quantum and classical communication complexi-
ties [58, 166]. With no restriction over input, the known biggest gap is quadratic
when constant error probability is allowed [58, 10, 167].

As for the efficiency of multi-point quantum communication, there are not
many studies [60, 57, 199, 120, 34]. For a three-party case, there is an exponential
gap between the quantum and classical communication complexities, when two
parties are allowed to send only one message depending on their inputs to the third
party who is supposed to compute a predefined function of the inputs [57, 199, 34].
In [60], a logarithmic factor separation (in the number of parties) was shown in the
completely different communication model where parties have entangled qubits
before starting computation instead of quantum communication links.

1.2 Overview of the Thesis

Section 2 discusses network caching: on-line algorithms for the file caching prob-
lem. Among the three cost models, the fault model would be useful when it were
expensive to establish each connection to a file owner. From the viewpoint of
traffic reduction, however, the bit and the general models seem to be reasonable;
we focuses on these two cost models. Subsection 2.1 formulates the file caching
problem, defines the bit and the general models and introduces the competitive
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analysis in both deterministic and randomized settings. Subsection 2.1 also dis-
cusses the computational hardness of the file caching problem when all requests
are known in advance; we give a proof of NP -hardness of the file caching prob-
lem in the bit model (and thus in the general model), although this fact was already
referred to in [19] without proof.

For the bit model, the most famous algorithm of the paging problem, Least-
Recently-Used (LRU) [38], is also the most popular strategy of the file caching
problem in a practical sense, and has the optimal competitive ratio; however, LRU
does not fully utilize the information on the size of each file, while its practical
performance is not so bad and it runs very fast, i.e., inO(1) steps, per file insertion
to and file eviction from storage, when implemented on software by using doubly-
linked lists. In fact, in the bit model, a lot of heuristics considering file size have
been proposed and shown to be more effective than LRU in typical cases by using
trace-driven simulations [160], while a randomized competitive algorithm in [112]
is expected to work better than LRU in terms of competitiveness (but it seems to
be too theoretical). Unfortunately, these heuristics have no performance guaran-
tee. We thus relate heuristics to the theoretical framework of competitiveness in
Subsection 2.2: we give a simple but sufficient condition for deterministic on-
line algorithms to be competitive, and develop a general framework based on the
condition to easily construct a competitive algorithm from a heuristics. More pre-
cisely, the constructed algorithm adaptively switches from the heuristics to LRU
and vice versa according to the characteristics of input requests. By applying the
framework to a known heuristics that always evicts the largest file, called SIZE,
we construct a competitive algorithm “Competitive SIZE.” The results of event-
driven simulations show that Competitive SIZE is much better than LRU when
small files are requested with high probability; in other cases, Competitive SIZE
is comparable to or only slightly worse than LRU. Furthermore, we show that
Competitive SIZE is better than either LRU and SIZE for a real web proxy log.

For the general model, an optimal deterministic competitive algorithm, called
Greedy-Dual-Size (GDS), was proposed in [63, 200]. This algorithm also
achieves high hit rate in experiments as shown in [63] and is adopted as an optional
file caching strategy in Squid [1], the most major WWW proxy server software.
However, GDS has the worst time complexity of O(k) per file eviction, for stor-
age size k. We thus give a fast randomized algorithm that is expected to be as
competitive as GDS in Subsection 2.3; the randomized algorithm runs inO(log k)
time in the worst case and is expected to run in O(2log∗ k) time per file eviction
or insertion. Notice that 2log∗ k is a much more slowly increasing function than
k. To confirm its practicality, we conducted trace driven simulations by using real
web proxy logs. Experimental results show that our algorithm works only slightly
worse than GDS when file cost is proportional to file size, and performs as well as
GDS when the cost is the latency for file retrieval, i.e., almost independent of file
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size.
Subsection 2.4 summarizes Section 2, and Subsection 2.5 gives a brief survey

of the studies on the paging problem (including the file caching problem as a
generalization of the paging problem).

Section 3 discusses multicast and proposes a new IP-unicast-based multicast
protocol, called Flexcast. Subsection 3.1 describes the network model we assume.
Subsection 3.2 presents the basic protocol of Flexcast, and illustrates its behav-
ior by using some examples; it is shown that Flexcast dynamically constructs a
multicast tree by sharing maximal common links among paths from receivers to
a sender (i.e., an owner of streaming data), and maintains it against the change of
unicast routes, the moving of receivers and senders, and the frequent joining and
leaving of receivers, with minimum rearrangement of the tree. These dynamic
construction and maintenance are realized by a hierarchical keep-alive mechanism
in a highly autonomous and distributed fashion.

Subsection 3.3 describes a security issue of IP-unicast-based multicast proto-
cols including the basic protocol of Flexcast, and gives some modifications to the
basic protocol to make Flexcast more tolerant against the issue. More precisely,
most IP-unicast-based multicast protocols allow the protocol packets from end
hosts (receivers or senders) to change the states of network nodes, i.e., to con-
sume computational resources of the nodes. This fact may cause a serious issue if
malicious users try to collapse the multicast system by using the packets.

Furthermore, we provide an optional function for Flexcast from a practical
point of view. As is often the case with new protocols, it is not easy to have people
install application softwares that process the new protocols. In the case of multi-
cast, there are many commercial/free application softwares that handle IP multi-
cast; they have already been installed on user’s computers in many cases. Hence
it would be useful to provide a system that enables the users of IP multicast ap-
plication softwares to use Flexcast. Subsection 3.4 presents Flexcast-IP-multicast
bidirectional translators, called Flexcast gateways.

Subsection 3.6 describes experiments on stream delivery using Flexcast
among three widely dispersed locations in Japan and U.S.. The experimental re-
sults include the latency required to receive the first streaming data packet, and the
influence of both communication delay jitter and packet-loss rate on the Flexcast
operation, and show the robustness and stability of the Flexcast protocol in the
absence of unusual congestion on any communication links.

Subsection 3.7 summarizes Section 3 and gives some remarks on the design
of IP-unicast-based multicast protocols. Subsection 3.8 briefly describes a survey
of multicast protocols.

Section 4 theoretically considers multi-point communication on the future net-
work: quantum multi-point communication. The multi-point communication de-
scribed in the previous two sections is concerned with a network supporting dis-
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tributed autonomy. To observe the ability of such multi-point communication in
the quantum setting, we consider the leader election problem in an anonymous
network. More precisely, the goal of this problem is to elect a unique leader from
among distributed parties under the assumption that every party is completely
identical to one another. Due to this assumption, every party has to make the most
of quantum mechanics in a highly autonomous and distributed fashion to solve
the problem.

It is well-known that no classical algorithm can solve the leader election prob-
lem in an anonymous network in bounded time without error (i.e., exactly) even
if the number of parties is given to every party. We give two quantum distributed
algorithms that, when the parties are connected by quantum communication links
and the number of parties is given to every party, can exactly solve the problem for
any network topology in polynomial rounds and polynomial communication/time
complexity with respect to the number of parties. Furthermore, they can be eas-
ily modified so that they work well even when each party knows only the upper
bound of the number of parties in advance. This implies that the exact number
of parties can be computed without error in bounded time when its upper bound
is given, whereas no classical zero-error algorithm exists in such cases for any
topology that has a cycle as its subgraph [118].

Subsection 4.1 defines the network model and the leader election problem in
an anonymous network.

Subsection 4.2 gives the first algorithm; it runs with lower time and communi-
cation complexity than the second algorithm. However, the quantum communica-
tion is the dominant factor in the total communication complexity. Since sending
a qubit would cost more than sending a classical bit, it would be reasonable to
reduce the quantum communication complexity.

The second algorithm in Subsection 4.3 incurs higher time complexity, but
demands the quantum communication of fewer qubits, than the first one. Fur-
thermore, the second algorithm requires fewer rounds, including only one round
of quantum communication, than the first one, where a “round” represents each
turn of simultaneous message exchange. This one-round quantum communica-
tion allows us to easily modify the second algorithm so that it can work even if the
underlying graph is directed (more rigorously, strongly-connected); the modified
algorithm is also shown in the subsection. We summarize the complexities of the
first and second algorithms in Table 1.

To reduce the amount of quantum communication, our second algorithm
makes use of a classical technique, called view, which was introduced in [195,
196]. However, a naı̈ve application of view incurs exponential classical
time/communication complexity. To keep the complexity moderate, a new tech-
nique of folded view is introduced in Subsection 4.4, with which the algorithm
still runs in time/communication polynomial with respect to the number of par-
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Time Quantum C. C. Total C. C. Rounds
Alg. I O(n4) O(n4) O(n4) O(n2)
Alg. II O(n6(log n)2) O(n2) O(n6(log n)2) O(n log n)

Table 1: Complexity of the two algorithms for the number n of parties. “C.C.”
denotes “communication complexity.” “Total C.C.” includes both of the quantum
and classical communication complexity.

ties. Subsection 4.5 summarizes Section 4. Subsection 4.6 gives a brief survey of
quantum distributed computing.

Finally, Section 5 concludes the thesis.





11

2 File-Transfer-Type Multi-Point Communication
– Network File Caching –

This section discusses an efficient way of the file-transfer type multi-point com-
munication: solving the file caching problem.

2.1 Preliminaries

2.1.1 The model

A reasonable cost assumption for the file caching problem is that a cache server
services a request at no cost if it already has a copy of the requested file (called a
hit); otherwise (on a miss) it incurs a fault and needs to pay some cost to retrieve
a copy of the file. Thus, the total cost for a request sequence is defined as the
sum of the retrieval costs of all fault files. The simplest cost model, called the
fault model [112], is that all files have uniform cost even if they are significantly
different in size. This model would be useful when it were expensive to establish
each connection to a file owner. In order to reduce traffic in networks, however,
the next two models seem to be reasonable: the bit model [112] identifies file
size with retrieval cost while the general model [19] assumes that retrieval cost is
arbitrary and independent of file size. The bit model is intuitively understandable,
since, when a file is being transferred, the traffic on a communication link would
be almost linear in the size of the file. Meanwhile, there is often the case where
retrieved files are quite different in the distance they travel. In particular, when file
size does not greatly differ over all files, retrieval cost would largely depend on
the distance to travel, which could be assessed by the latency required to get the
file. In this case, the files downloaded from remote sites would be expensive. The
general model can handle this case. For these models, a major research direction
has been to find algorithms that incurs low retrieval cost, i.e., achieves high hit
rate, while developing fast algorithms is another important direction.

For the general model, a formal definition of the file caching problem is as
follows.

Definition 1 The input is a request sequence to files: σ = {σ1, σ2, . . . , σ|σ|},
where σi is the file identified by the ith request. Each file σi has its size and cost,
denoted by size(σi) and cost(σi), respectively, where, without loss of generality,
the size and cost of every file are assumed to be positive integers. Let Ci be the set
of files stored in the cache immediately before the ith request σi is serviced.

Suppose that the storage size of cache is some fixed positive integer k. The
goal is to minimize

∑
σi∈σ f(i)cost(σi), where f(i) = 1 if a fault occurs for σi,

i.e., σi �∈ Ci, and f(i) = 0 otherwise, under the condition that
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• Ci+1 ⊆ Ci ∪ {σi} and σi ∈ Ci+1,

• ∑j∈Ci
size(j) ≤ k for any i.

In particular, size(i) := cost(i) for any file i in the bit model.
The off-line version of the file caching problem is NP -hard even for the bit

model as referred to in [19, 112] without proof; we will give a proof of this fact.
It follows that there is a significant difference in complexity between the off-line
versions of the file caching problem and the paging problem, since it is well-
known that the paging problem has a linear-time optimal off-line algorithm [38].
For the fault model, it is unknown whether the problem is in P .

Remark 1 In our definition, each requested file must be inserted into the cache
when it is retrieved, following the usual setting of the paging problem. It is also a
possible setting to allow obtained files to be discarded without storing them [111].

Remark 2 The actual cost of retrieving a file may vary with time in many appli-
cations. This issue is not considered here, nor is the cache consistency issue, i.e.,
the file is updated at the server while stored in the cache.

2.1.2 NP-hardness of the file caching problem in the off-line setting

An instance of the file caching problem for request sequence σ can be mapped
into a graph representation. In the following, we give the mapping, and prove the
NP-hardness of the resulting problem.

Let |σ| be the number of the requests in σ. A directed graph Gσ = (Vσ, Eσ)
has a set Vσ = (u1, u2, . . . , u|σ|) of vertices and a set Eσ ⊆ Vσ × Vσ of edges such
that for each i and j (i < j) (ui, uj) ∈ Eσ if j = min{j|σi = σj, i < j}. Each
edge ei,j = (ui, uj) ∈ Eσ has size, size(ei,j), and cost, cost(ei,j), corresponding
to the size and cost of σi (= σj). The edge ei,j is interpreted as storing σi from
time i to time j (> i) and hitting the request at time j. Then, the file caching
problem is translated to selecting a subset E ′ of Eσ that maximizes the total cost
saving

∑
e∈E′ cost(e) under the condition that at each time the sum of the size of

the stored files is at most k and that each σi is stored at time i. This is because
we can assume without loss of generality that optimal solutions evict σi at time
(i+ 1) if σi will be evicted before the next request to the same file as σi. Now we
formalize the problem into which the paging problem is mapped.

Problem 2 (Graph representation of the file caching problem) ForGσ = (Vσ, Eσ)
and a constant k, find E ′ ⊆ Eσ that maximizes

∑
e∈E′ cost(e) under the condition

that for each i (1 ≤ i ≤ |σ|), ∑e=(j1,j2)∈E′,j1<i<j2, size(e) ≤ k − size(ei), where
ei is one of the existing edge(s) connecting to ui.
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We note thatGσ is an extension of the graph representation for the paging problem
introduced in [186].

Theorem 1 Problem 2 is NP -hard even if the cost of each file equals its size.

Proof. Let the number of different files,N , be |Vσ|/2 (= |σ|/2). Consider request
sequence σ such that for all i(≤ N), σi = σ2N+1−i, σi �= σj (j �= 2N + 1 − i)
and size(σi) ≤ size(σi+1) (i = 1, . . . , N − 1). Construct Gσ = (Vσ, Eσ), where
Vσ = {u1, . . . , u2N} and Eσ = {(ui, u2N+1−i) | (i = 1, 2, . . . , N)}. For each
edge ei = (ui, u2N+1−i), we define a variable λi ∈ {0, 1}, which is 1 if ei is
chosen as a member of E ′ and 0 otherwise. The problem can then be expressed
as 0-1 integer programming; maximize

∑N
i=1 λicost(ei), subject to the nextN −1

inequalities: for i = 1, . . . , N − 1,

λ1size(e1) + · · ·+ λisize(ei) ≤ k − size(ei+1).

From these inequalities, we can drive

λ1size(e1) + · · ·+ λi−1size(ei−1) ≤ k − size(ei+1)− λisize(ei) ≤ k − size(ei)

by using size(ei+1) ≥ size(ei). Thus, the above N − 1 inequalities can be simpli-
fied as

λ1size(e1) + · · ·+ λN−1size(eN−1) ≤ k − size(eN).

This is the KNAPSACK problem of N − 1 items since λN is always 1. When
cost(ei) = size(ei) for all i, the problem is SUBSETSUM, which is stillNP-hard
[144]. Thus, SUBSETSUM is polynomial-time reducible to Problem 2. Hence,
the lemma holds. �

2.1.3 Competitive analysis

The competitive analysis [47] gives a performance measure of on-line algorithms:
it evaluates an on-line algorithm by determining the worst-case ratio of the cost
incurred by the algorithm to that incurred by an optimal off-line algorithm (or an
adversary). More formally, let ALG(I, k) be the cost incurred by an on-line algo-
rithm ALG having the amount k of resources for an instance I of a minimization
problem. Similarly, let ADV (I, h) be the cost incurred by the adversary ADV
having the amount h (≤ k) of resources for I . If there are constants c and α such
that, for all I ,

ALG(I, k) ≤ c · ADV (I, h) + α,

ALG with amount k of resources is said to be c-competitive against ADV with
amount h of resources. The infimum of such c is called the competitive ratio of
ALG with amount k of resources against an adversary with amount k of resources.
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If ALG is a randomized algorithm, ALG is c-competitive if there exist con-
stants c and α such that for all I ,

E[ALG(I, k)− c · ADV (I, h)] ≤ α,

where E[ ] is the expectation taken over the random choices made by ALG. In the
case of the file caching problem, I is a request sequence σ to files, and k and h are
the memory spaces that ALG and ADV, respectively, can use for storing files.

Actually, we can define three types of adversaries when we analyze random-
ized on-line algorithms; the competitive ratio of ALG can be defined against each
of the adversaries. The adversaries ADV are first classified into oblivious and
adaptive adversaries, and, for the latter one, a further distinction is made with
respect to adversary cost: adaptive-offline and adaptive-online adversaries. An
oblivious adversary must choose the entire request sequence in advance, without
any knowledge of the actions taken by ALG. In contrast, at each time, an adap-
tive adversary knows all the actions taken by ALG for servicing the requests thus
far; the adaptive adversary may choose the next request based on this knowledge.
An adaptive adversary is called adaptive-offline if its adversary cost is the optimal
off-line cost on the request sequence that is created on-line by the adversary, while
it is called adaptive-online if it must service each request it creates before ALG
services the request. Note that, for deterministic on-line algorithms, these three
types of adversaries are identical. If we denote by OPT (I, h) the cost incurred
by the optimal off-line algorithm with amount h of resources against instance I ,
we can reformulate the competitive ratio c as follows: for an oblivious adversary
ADV,

E[ALG(I, k)]− c ·OPT (I, h) ≤ α,

since ADV (I, h) = OPT (I, h) and I is independent of the random choices of
ALG, and for an adaptive off-line adversary ADV,

E[ALG(I, k)− c ·OPT (I, h)] ≤ α,

since ADV (I, h) = OPT (I, h) and I is a random variable depending on the ran-
dom choices of ALG. However, such a reformulation is unknown for an adaptive-
online adversary.

By the definition, adaptive-offline adversaries are obviously stronger than
adaptive-online adversaries; adaptive-online adversaries are stronger than obliv-
ious adversaries since the former can simulate the latter. In other words, if we
let Cobl(ALG, k, h), Cadon(ALG, k, h) and Cadof(ALG, k, h) be the competitive
ratios of ALG with amount k of resources against oblivious, adaptive-online, and
adaptive-offline adversaries, respectively, with amount h of resource, the follow-
ing holds:

Cobl(ALG, k, h) ≤ Cadon(ALG, k, h) ≤ Cadof(ALG, k, h).
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This implies the following. When we prove upper bounds on randomized com-
petitive ratios, the stronger the adversary type, the stronger the result is; when
we prove lower bounds, the weaker the adversary, the stronger the result. Sur-
prisingly, it is known that there is no advantage to using randomization against
adaptive-offline algorithms.

Proposition 2 ([40]) If there is a c-competitive randomized on-line algorithm
against adaptive-offline adversaries, then there exists a c-competitive determin-
istic on-line algorithm.

Thus, our concern is oblivious and adaptive-online adversaries; we often try to
prove upper bounds against adaptive-online adversaries and lower bounds against
oblivious adversaries.

2.2 Algorithms for the bit model

We give a simple but sufficient condition for deterministic on-line algorithms to
be competitive in the bit model. We first prove that any on-line algorithm with
cache of size k satisfying the condition is k

max{k−h+1,s}-competitive against ad-
versary with cache of size h, where s is the size of the smallest file. We then
give a general framework based on the condition to make a non-competitive al-
gorithm “competitive” by mixing it with LRU. Thus, the framework enables us to
make performance-guaranteed algorithms from non-competitive algorithms that
perform well in situations that could be expected to be observed in real request
sequences. The framework has a parameter c to change freely the extent to which
the non-competitive algorithm dominates LRU. In terms of the competitive anal-
ysis, any algorithm made by the framework can be proved to be ck

max{k−h+1,s}-
competitive for a given positive integer c.

As an example, we make a competitive algorithm, called Competitive SIZE,
by applying the framework to a heuristics SIZE. The results of event-driven sim-
ulations show that Competitive SIZE is much better than LRU in the case where
small files are requested with high probability. In other cases, Competitive SIZE
is comparable to or only slightly worse than LRU. Furthermore, we show that
Competitive SIZE is better than either LRU and SIZE for a real web proxy log.

2.2.1 A sufficient condition for competitiveness

We first divide request sequence σ into phases from the first request in the follow-
ing way. Let phase 0 be empty. For i ≥ 1, phase i is the maximal subsequence in
which the sum of the sizes of the different files requested is at most k (i.e., cache
size), and the next request of the last request of phase (i − 1) is the first request
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of phase i. Such a phase is called a k-phase. Note that the way of dividing σ into
k-phases is uniquely determined and independent of the behavior of algorithms.

Now we give a simple condition on algorithms in terms of the k-phase.

Definition 3 (k-phase conservative condition) If an algorithm incurs at most k
bits in each k-phase, the algorithm is said to be k-phase conservative.

We note that, in the bit model, Young’s optimal algorithm [202] holds the above
condition. In what follows, we denote any algorithm satisfying the condition by a
k-phase conservative algorithm.

Before giving an upper bound of the competitive ratio of the k-phase conser-
vative algorithm, we define several symbols. Let ε−k be the difference between k
and the maximum possible value less than or equal to k made by summing the
sizes of different files. ε−h is the same value as ε−k for h. Finally, let ε+k be the min-
imum possible value larger than k made by summing the sizes of different files.
Clearly, 0 < ε+k ≤ S, 0 ≤ ε−k < S and 0 ≤ ε−h < S, where S is the largest file
size.

Theorem 3 Let ALG be any k-phase conservative algorithm with cache of size
k, and ADV be an optimal off-line algorithm with cache of size h (≤ k). ALG is

k−ε−k
max{k−h+ε+k +ε−h ,s}

-competitive, where s is the size of the smallest file.

Proof. Clearly, ALG incurs cost of at most (k − ε−k ) bits in each k-phase.
For arbitrary i, let the qith request be the first request of the ith k-phase, andBi

be the sum of the sizes of the different files requested in the ith k-phase. Consider
the subsequence ρ from the (qi + 1)st request to the qi+1st request.

In the case where there is no request for the same file as σqi in ρ, the sum of
the sizes of the different files requested in ρ is Bi − size(σqi) + size(σqi+1

) bits.
Immediately after serving σqi , the sum of the sizes of the files except σqi in the
ADV’s cache is at most h− size(σqi)− ε−h bits. Thus, ADV incurs faults of at least

(Bi − size(σqi) + size(σqi+1
))− (h− size(σqi)− ε−h ) = k − h+ ε+ ε−h

bits in ρ, where Bi + size(σqi+1
) is denoted by k + ε. By the definition of ε+k , we

have 0 < ε+k ≤ ε.
In the case where there is at least one request in ρ for the same file as σqi ,

the sum of the sizes of the different files requested in ρ is Bi + size(σqi+1
) bits.

Immediately after serving σqi , the sum of the sizes of the files including σqi in the
ADV’s cache is at most h− ε−h bits. Thus, ADV incurs faults of at least

(Bi + size(σqi+1
))− (h− ε−h ) = k − h+ ε+ ε−h

bits in ρ.



2.2 Algorithms for the bit model 17

Therefore, ADV incurs faults of at least k−h+ ε+ ε−h bits in ρ for both cases.
Since k − h+ ε+ ε−h ≥ k − h+ ε+k + ε−h > 0, ADV incurs a fault for at least one
request, i.e., at least max{k − h+ ε+k + ε−h , s} bits in ρ.

If α is a constant determined by the last k-phase that may not be completed,
we have, any σ,

ALG(σ) ≤ k − ε−k
max{k − h+ ε+k + ε−h , s}

ADV (σ) + α.

�

Since the size is a positive integer, k − h + ε+k + ε−h ≥ k − h + 1. Thus, the
following holds.

Corollary 4 Let ALG be any k-phase conservative algorithm with cache of size
k, and ADV be an optimal off-line algorithm with cache of size h (≤ k). For any
σ with the smallest file size s, ALG is k

max{k−h+1,s}-competitive.

Remark 3 Consider the case where all files have size s. In this case, the problem
is the paging problem where ALG has cache of size 
k/s� and ADV has cache
of size 
h/s�. Since the best achievable competitive ratio in the paging problem
is k

k−h+1
[176] for any deterministic on-line algorithm with cache of size k and

an optimal off-line algorithm with cache of size h, it follows that the competitive
ratio of ALG is at least �k/s�

�k/s�−�h/s�+1
.

Competitiveness for other cost models

For the general model, it is not difficult to see that the k-phase conservative algo-
rithm is not competitive. For the fault model, the k-phase conservative algorithm
is competitive. This is because the number of faults the k-phase conservative al-
gorithm incurs in a k-phase is at most 
k/s� by the definition of the algorithm.

Theorem 5 Let ALG be an any k-phase conservative algorithm with cache of size
k, and ADV be an optimal off-line algorithm with cache of size h (≤ k). ALG is{


k/s� -competitive if 
k/S� ≤ 
h/s�
�k/s�

�k/S�−�h/s�+1
-competitive if 
k/S� > 
h/s� ,

where s and S are the sizes of the smallest and largest file, respectively.

Proof. While serving the ith k-phase, ALG incurs at most 
k/s�.
We define the qith request and ρ in the same way as the proof of Theorem 3.

Assume that, during the ith k-phase, x different files are requested. Let y be the
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number of the files including σqi that will be requested in ρ, among the files that
ADV have in its cache immediately before serving ρ.

In the case where there is no request in ρ for the same file as σqi , ρ requests x
different files. Thus, ADV incurs x− (y − 1) faults. In the other case, ρ requests
(x+ 1) different files including σqi . ADV incurs (x+ 1− y) faults. In both cases,
ADV incurs (x− y + 1) faults. Thus the ratio of the number of faults of ALG to
that of ADV is at most �k/s�

x−y+1
.

Since x ≥ 
k/S� and y ≤ 
h/s�, if 
k/S� > 
h/s�, the ratio attains maxi-
mum value �k/s�

�k/S�−�h/s�+1
when x = 
k/S�, y = 
h/s�. If 
k/S� ≤ 
h/s�, the

ratio attains maximum value 
k/s� when x = y since y ≤ x by definition. �

When s = S = 1, the upper bound is k
k−h+1

, which is the competitive ratio of
optimal deterministic algorithms for the paging problem [176].

2.2.2 A framework to generate competitive algorithms from heuristics and
its application

LRU is a k-phase conservative algorithm and widely used in network caches since
it is robust in that it performs well for various input distributions. However, there
are numerous heuristics that are better than LRU under certain distributions of
request sequences that would often appear in real environments, although much
worse under others.

Based on the k-phase conservative condition, we give a framework that yields
competitive algorithms by adaptively switching LRU and heuristics.

Framework of a competitive algorithm

Consider an algorithm, ALG, such that priority is given to each file by a func-
tion, say ψ. For a given parameter c, Figure 1 gives a ck

max{k−h+1,s}-competitive
algorithm, called Competitive ALG, by adaptively switching ALG and LRU.

Competitive ALG behaves like ALG at first but switches to LRU if ALG fre-
quently incurs faults for the same files. Thus Competitive ALG mimics ALG in
the case where ALG is better, while it mirrors LRU otherwise. This adaptability
has a significant advantage over the mixture of LRU and heuristics when the input
distribution continuously changes, which is often the case with real environments.

To analyze Competitive ALG, we generalize the k-phase conservative con-
dition. An algorithm is said to be c-relaxed k-phase conservative, if it incurs at
most c · k bits in each k-phase. By Lemma 7 below and a proof similar to that of
Theorem 3, we have the following theorem.

Theorem 6 Competitive ALG is c·k
max{k−h+1,s} -competitive in the bit model.
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Framework

1. Evict files in non-decreasing order of values given by ψ until a marked file
is found or sufficient space is created. In the latter case, go to 3.

2. Evict files in LRU order from the remaining files including the marked file
until sufficient space is created.

3. Store p, and mark it if the current fault is the cth one for p in the current
k-phase.

Figure 1: Framework to generate competitive algorithms from heuristics. Variable
p is the currently requested file for which the algorithm incurs a fault.

Lemma 7 Competitive ALG is c-relaxed k-phase conservative.

Proof. Let p be a file for which Competitive ALG incurred c faults in the ith
k-phase up until the current request. Since p was marked in the third step of the
above framework, p is not evicted in the first step. Assume that p is evicted in the
second step when file r (�= p) is requested in the ith k-phase. Since the second step
evicts files according to LRU, all files in the cache immediately after evicting p and
before inserting r were requested at least once after the previous request to p. Thus
these files were requested at least once in the ith k-phase. Let ΔC be the set of the
files. It follows that at least (

∑
q∈ΔC size(q)+size(p)+size(r)) bits are requested in

the ith k-phase. Since p is evicted to store r,
∑

q∈ΔC size(q)+size(p)+size(r) > k.
This contradicts the definition of the k-phase. Therefore, p cannot be evicted in
the ith k-phase. It follows that Competitive ALG incurs at most c faults for each
file in the ith k-phase. �

An implementation of Competitive ALG

Competitive ALG can be implemented by using two kinds of tables: a fault-count
table and a cache table. The latter is usually used to store attributes of the files
in cache, like size and the last request time, in order to maintain the files. The
fault-count table holds the number of faults (fault-count) for each file requested in
the current k-phase.

Consider a currently requested file p. When Competitive ALG incurs a fault
for p, it stores p, and marks p if the fault-count for p equals some specified value
c. File marking is performed by setting “mark bit” to 1 for the file in the cache
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For given parameter c, total priority order ψ,
cache size k, and currently requested file p,
1 procedure Competitive ALG(file p)
2 begin
3 h=MaintainFT(p);/* get the fault count of p */
4 if(p is not in CT)
5 set lru flag=0;
6 while(k- used space of CT < size(p))
7 if(lru flag==0 AND the lowest priority file r on ψ is not marked)
8 evict r;
9 set used space of CT=used space of CT - size(r);
10 else
11 set lru flag=1;
12 evict least recently used file r′;
13 set used space of CT=used space of CT - size(r′);
14 if(h ≥ c)
15 insert p into CT with a mark;
16 else insert p into CT without a mark;
17 else return p to the request sender;
18end;

Figure 2: Competitive ALG algorithm. CT and used space of CT are the cache
table and the sum of the size of files registered in CT, respectively. Subroutine
MaintainFT is described in Figure 3.

table. Figure 2 describes more precisely the behavior of Competitive ALG, which
calls procedure MaintainFT in Figure 3 as a subroutine. The first, second and final
steps of the framework of Competitive ALG correspond to lines 7 to 9, 10 to 13
and 14 to 16, respectively. Procedure MaintainFT maintains the fault-count table.
The table is initialized to be empty when entering a new k-phase (in lines 3 to 4).
When inserting a file into the fault-count table, the fault-count of the file is set to
0 if the file is in the cache, and it is set to 1 otherwise (in lines 5 to 6).

2.2.3 Empirical results

One of the most popular heuristics is SIZE [13]. SIZE introduces file size as a
parameter which determines the priority value of each file, based on the obser-
vation that there are relatively many requests to small files in real web requests.
However, SIZE is not competitive, which can be easily shown by considering con-
tinuous requests to large files after requesting small files. As a reasonable example
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1 procedure MaintainFT(file r)
2 begin
3 if(used space of FT + size(r) > k)
4 flush FT;
5 if(r is in CT but not in FT)
6 insert r into FT with fault count=0;
7 else if(r is in neither CT nor FT)
8 insert r into FT with fault count=1;
9 else if(r is in FT but not in CT)
10 Set (fault count of r) = (fault count of r) +1;
11 return (fault count of r);
12end;

Figure 3: Subroutine to maintain the fault-count table, which is used in Compet-
itive ALG in Figure 2. CT and FT are the cache table and the fault-count table,
respectively, and used space of FT denotes the sum of the size of files registered
in FT.

of the use of the framework, we choose SIZE as ALG and set ψ(σi) = 1
size(σi)

for
each file σi. The resulting algorithm is called Competitive SIZE.

For several algorithms including Competitive SIZE, we conducted both event-
driven and trace-driven simulations.

Event-driven simulations

Let N be the number of distinct files to be requested, and let s and S be the
maximum and minimum size, respectively, of files. We set N = 500, s = 1 and
S = 500. The length of each request sequence is set to 10,000.

We used three kinds of request sequences generated in the following way. Let
p(i) and size(i) be the request probability and the size, respectively, of the ith
file. We set p(i) according to a Zipf distribution, in which p(i) is proportional to
1/π(i)α (0 < α ≤ 1), where α is called the Zipf parameter and π is a permu-
tation vector. Several studies [74, 53] report that WWW traffic follows the Zipf
distribution, but they differ on the value of α. Here, we set α at 1.0 and 0.8. The
request sequences generated correspond to three kinds of correlation between size
and request probability of files. Table 2 shows the request sequences, where (1)
implies that smaller files are requested with higher probability, (2) implies that
larger files are requested with higher probability, and (3) implies that there is no
correlation between size and request probability of files.

The simulations examined Competitive SIZEs with c = 2 and 3, LRU,
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Table 2: Three kinds of request sequences, where HN =
∑N

j=1 1/j (the N th
Harmonic number ≈ lnN ).

p(i) size(i)

(1) 1
iHN

s+
⌊
(i− 1) S−s

N−1

⌋
(2) 1

iHN
s+

⌊
(N − i) S−s

N−1

⌋
(3) 1

iHN
uniformly randomly

chosen between s and S

SIZE [13], LOG(SIZE) [13], an SLRU [16]. The last three algorithms are de-
fined as follows.

• SIZE evicts files in non-increasing order of file size.

• LOG(SIZE) divides the set of files in the cache by log2(file size)� into
classes. LOG(SIZE) evicts files that belong to the class of the largest files
in LRU order until sufficient space is created or all files in the class are
evicted. In the latter case, LOG(SIZE) repeats the above operation for the
class of the largest files among the remaining ones.

• SLRU evicts files in non-increasing order of the product of their size and
the number of requests since the last request to the files.

Figures 4, 5 and 6 show the simulation results for request sequences, (1), (2), and
(3), respectively, in the case of α = 1.0, while Figures 7, 8 and 9 show the results
for request sequences, (1), (2), and (3), respectively, in the case of α = 0.8. The
horizontal axes represent the cache size as a percentage of the storage capacity
required for storing all files requested. The vertical axes represent weighted hit
rate (WHR), which is the percentage of the sum of the size of hit files to that of
the size of all files requested, and is also called the “byte hit rate.”

From Figures 4 to 9, SIZE and LOG(SIZE) are the best two algorithms for (1),
but extremely poor for the others. On the other hand, LRU is robust in that it has
relatively high WHR in all cases, while it is worse than SIZE for (1).

More precisely, in the case of (1), Figures 4 and 7 show that the WHR of
Competitive SIZE with c = 3 is very near to that of the best algorithm for (1),
SIZE. Competitive SIZE with c = 2 is also much better than LRU, though it is
slightly worse than SLRU when cache size is large. In the case of (2), Figures 5
and 8 show that Competitive SIZEs with c = 2 and 3 are comparable to or only
slightly worse than LRU unless cache size is small. SLRU is worse than LRU for
all cache sizes. In the case of (3), Figures 6 and 9 show that Competitive SIZEs
with c = 2 and 3, LRU and SLRU achieve almost the same performance.
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The summary of the above observation is that Competitive SIZE is much bet-
ter than LRU in the case of (1), while, in the cases of (2) and (3), the former is
only slightly worse than LRU if the cache size is not too small. In the latter cases,
the WHR of Competitive SIZE approaches from below to that of LRU as cache
size grows. This is for the reason below. Competitive SIZE acts as SIZE at the
beginning of each k-phase and may turn into LRU based on the fault-counts of
stored files. Since the request probability of each file does not change through
the simulation and the fault-count is initialized only when the algorithm enters
the next k-phase, the behavior of Competitive SIZE in the case of (3) becomes
closer to that of LRU as k increases. On the other hand, SLRU and LOG(SIZE)
do not have the characteristics like this, since they do not adaptively choose LRU
or SIZE, but mix SIZE with LRU.

The observation in terms of the value of c is that as c grows the WHR of Com-
petitive SIZE in the best case, i.e., (1), increases at the expense of the WHR in the
other cases, while as c decreases the worst-case WHR improves. This explains the
fact that c expresses the extent to which the SIZE dominates LRU. Thus, we can
tune Competitive SIZE freely by choosing the value of c. For example, we should
choose small c for robustness, i.e., improving the worst-case WHR, and large c
for high WHR in the base case.
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Figure 4: Case (1) of α = 1.0: Smaller files are requested with higher probability.
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Figure 5: Case (2) of α = 1.0: Larger files are requested with higher probability.
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Figure 6: Case (3) of α = 1.0: There is no correlation between size and request
probability of files.
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Figure 7: Case (1) of α = 0.8 : Smaller files are requested with higher probability.
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Figure 8: Case (2) of α = 0.8: Larger files are requested with higher probability.
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Figure 9: Case (3) of α = 0.8: There is no correlation between size and request
probability of files.

Trace-driven simulations

We also did trace-driven simulations for 100,000 requests from a proxy cache log
of NLANR [156]. The results are shown in Figure 10. In the simulations, we used
Competitive SIZE with c = 2, LRU, SIZE, LOG(SIZE), and SLRU. In order to
indicate the upper bound of WHR, we also conducted a simulation for a cache
with unlimited storage and denote its result by INF. Horizontal and vertical axes
plot the same parameters as for the above event-driven simulations. Figure 10
shows that Competitive SIZE is best for almost all cache sizes and better than
LRU for all cache sizes.

The interesting point is that Competitive SIZE is better than either SIZE or
LRU at least in the simulations. This implies that small files are requested with
high probability in some request subsequences but not in others. Equivalently,
SIZE is better than LRU for the some sequences, while SIZE is worse for the entire
sequence as shown in Figure 10. Competitive SIZE, roughly speaking, chooses
SIZE when small files are frequently requested, and chooses LRU otherwise by
using the fault-count table. This adaptability of Competitive SIZE works well in
the simulations, although we have to set c to an appropriate value.

These simulation results indicate that we should take into account local dis-
tributions of requests and their transitions. For example, when we fit a request
sequence from logs to a Zipf distribution, the length of the request sequence can
have a great impact on the resulting distribution. Observing a long request se-
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Figure 10: Simulation results using a proxy cache log of NLANR [156] of 100,000
requests.

quence results in suppressing the locality of requests. Excessively short request
sequences are not sufficient to allow analysis. Therefore, it is important to model
local distributions of requests and their transitions.

2.3 Algorithms for the general model

We will give a k
k−h+1

-competitive randomized algorithm against an adaptive-
online adversary with cache of size h that runs in O(log k) time in the worst case
and is expected to take only O(2log∗ k) time in the worst case and O(log∗ k) in the
amortized case1, per file eviction or insertion. Thus, our algorithm is expected to
be as competitive as Greedy-Dual-Size (GDS), which is an optimal deterministic
algorithm, and is expected to take much shorter time than GDS in terms of both
worst and amortized case.

To confirm practicality, trace-driven simulations were conducted for request
sequences extracted from four proxy cache logs: two from NLANR [156] and the
others from DEC [70]. Performance was measured in terms of the number of hits
(hit rate), the sum of the size of hit files (byte hit rate), and the sum of the latency
that would be required to get hit files (reduced latency). The results show that our

1We use the same terminology as in Ref. [140] i.e. log∗ n is the smallest integer k such that k
applications of the binary logarithm function applied to n, i.e., log(log(. . . log(n))), is at most 1.
Function log∗ n increases very slowly. For n ≤ 65536, log∗ n ≤ 4; for n ≤ 265536, log∗ n ≤ 5.
Actually, 2log∗ n = o(log n), proof is given later.
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algorithm attains only slightly worse byte hit rates and sufficiently large reduced
latency in comparison with GDS, while hit rate is worse than GDS. This implies
that our algorithm mishits only files that are little valuable in terms of byte hit-rate
and reduced latency.

In addition, we will show algorithms with cache of size k that are k-
competitive against an adaptive-online adversary with cache of size k but not

k
k−h+1

-competitive against an oblivious (and thus, an adaptive-online) adversary
with cache of size h(≤ k): there are online algorithms that seem to have the same
competitiveness against an adaptive-online adversary with cache of size k, but
differ in competitiveness against an adaptive-online adversary with cache of size
h. This suggests that competitive analysis against an adaptive-online adversary
with cache of size h (≤ k) can give more precise results than is seen against an
adaptive-online adversary with cache of size k.

2.3.1 The algorithm and its analysis

Our algorithm is as follows.

Algorithm 4 (RECIPROCAL-SIZE(RS)) If there is not enough space to store
a requested file, repeatedly evict a randomly selected file, say p, from the cache
until sufficient space is created, where the probability that p is selected is

size(p)/cost(p)∑
x∈CRS

size(x)/cost(x)
,

and CRS denotes the set of the files that RECIPROCAL-SIZE has in its cache.

Before proving the competitiveness of RS against an adaptive-online adversary,
we review the standard potential-function-based technique, that is used in our
proof.

Suppose that the number of request is n (that may depend on adaptive-online
adversary ADV and the random choices of ALG). For i = 1, . . . n, let Φ2i−1 and
Φ2i be the value of function Φ after an adaptive-online adversary (ADV) and an
online algorithm (ALG), respectively, perform a series of elementary operations
to service the ith request. Here, we assume that ALG services the ith request after
ADV services the request. For an arbitrary request sequence given in an online
problem, denote the cost of the ith operation of ADV and ALG by ADVi and
ALGi, respectively.

Here, we assume the next two inequalities:

Φ2i−1 − Φ2(i−1) ≤ α · ADVi
and

Φ2i − Φ2i−1 ≤ −ALGi.
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By summing these inequalities over the request sequence,

(Φn − Φ0) ≤
n∑
i=1

(αADVi − ALGi),

where Φ0 is the initial value of Φ. If the left value is bounded below, we have

n∑
i=1

ALGi ≤ α
n∑
i=1

ADVi + constant,

i.e., ALG is α-competitive against an adaptive-online adversary.

Lemma 8 RS with cache of size k is k
k−h+1

-competitive against an adaptive-
online adversary with cache of size h (≤ k).

Proof. We first consider the actions of RS at the time when it misses requested
file q. If there is enough space to store q in its cache when RS retrieves q by
downloading q, RS puts q into its cache and no eviction occurs. Unless there is
enough space, it evicts one or more files in order to create a space to store q.

Thus, the only actions of RS when it incurs a fault are file retrieval, and/or one
or more file evictions followed by file retrieval. This is also true of an adaptive-
online adversary (ADV). Thus we can consider file retrieval and file eviction as
the two elementary operations for RS and ADV. In what follows, we will prove
that, for each elementary operation performed by ADV, potential function Φ in-
creases by at most k

k−h+1
times the value of the operation cost, and that for each

elementary operation by RS, Φ decreases by at least the value of the operation
cost. Note that retrieving file p costs cost(p), while any file can be evicted for
free. This completes the proof if Φ is bounded from below.

The potential function we use is

Φ =
k

k − h+ 1

∑
y∈CRS\CA

cost(y)−
∑
y∈CRS

cost(y) +
k

k − h+ 1

∑
y∈CA

cost(y),

where CRS and CA are the set of files stored in the cache of, respectively, RS and
ADV, and “\” denotes set difference. For each request, RS services the request
after ADV does.

Without loss of generality, we assume that both CRS and CA are initially
empty, i.e., Φ = 0. After having processed all requests, Φ is bounded from be-
low if file cost is constant for any file, since Φ does not depend on the number of
requests. Thus we will show the following facts at each request: (1) when ADV
retrieves file q, Φ increases by at most k

k−h+1
· cost(q), (2) when RS retrieves file

q, Φ is expected to decrease by at least cost(q), (3) at any other time Φ does not
increase.
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Eviction/retrieval by ADV: When ADV evicts file p, ADV incurs no cost. If p
is in CRS , p enters CRS \CA by evicting p from CA; otherwise CRS \CA does not
change. Thus, the first term of Φ increases by at most k

k−h+1
· cost(p). Clearly, the

second term does not change. The third term decreases by k
k−h+1

· cost(p). Hence
Φ does not increase.

When ADV retrieves file q, ADV incurs cost(q). If q is in CRS , q leaves
CRS \CA since q was not in CA before retrieving q; otherwise CRS \CA does not
change. Thus, the first term does not increase. Clearly, the second term does not
change. The third term increases by k

k−h+1
·cost(q). Hence Φ increases by at most

k
k−h+1

· cost(q).
Eviction/retrieval by RS: When RS evicts file p, RS incurs no cost. If p was
in CRS \ CA before evicting p, p leaves CRS \ CA and the first term decreases by

k
k−h+1

· cost(p). If p was not in CRS \CA, CRS \CA does not change, i.e., the first

term of Φ does not change. Since p is selected at probability size(p)/cost(p)P
x∈CRS

size(x)/cost(x)
,

the expected decrease of the first term is

k

k − h+ 1

∑
y∈CRS\CA

size(y)/cost(y)∑
x∈CRS

size(x)/cost(x)
cost(y) =

k
k−h+1

size(CRS \ CA)∑
x∈CRS

size(x)/cost(x)
,

where size(CRS \ CA) is the sum of the sizes of all files in CRS \ CA (here and in
the following analysis of expected decrease or increase, CRS is the file set before
evicting p). This notation of the size of a file set will be used hereafter. The
second term of Φ increases by cost(p) with probability size(p)/cost(p)P

x∈CRS
size(x)/cost(x)

. Thus

the second term is expected to increase by∑
y∈CRS

size(y)/cost(y)∑
x∈CRS

size(x)/cost(x)
cost(y) =

size(CRS)∑
x∈CRS

size(x)/cost(x)
.

Clearly, the third term does not change. Thus, the expected decrease of Φ is

k
k−h+1

size(CRS \ CA)− size(CRS)∑
x∈CRS

size(x)/cost(x)
.

Since size(CRS) is at most k, k
k−h+1

size(CRS \CA)− size(CRS) is not negative by
Claim 9; i.e., Φ does not increase.

When RS retrieves file q, it incurs cost(q). Since q has already been retrieved
by ADV, i.e., q is already in CA, CRS \ CA does not change. Hence, the first term
of Φ does not change. The second term decreases by cost(q), since q enters CRS .
The third term does not change. Thus, Φ decreases by exactly cost(q).

This completes the proof. �
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Claim 9 Inequality size(CRS \ CA) ≥ k − h + 1 holds immediately before RS
evicts a file to service a request.

Proof. Let q be the file to be requested. Since ADV has serviced the request for q
before q is requested to RS, ADV has q in its cache. Thus q is in CA \ CRS . This
leads to size(CA \ CRS) ≥ size(q). Since h ≥ size(CA \ CRS) + size(CRS ∩ CA),
h− size(CRS ∩ CA) ≥ size(q).

Let size(emptyRS) be the size of unused space in RS’s cache, i.e., k −
size(CRS). It follows that

size(emptyRS) + size(CRS \ CA) = k − size(CRS) + size(CRS \ CA)

= k − size(CRS ∩ CA)

≥ k − h+ size(q).

Since RS evicts a file in order to retrieve q, size(emptyRS) is less than size(q).
Hence size(CRS \CA) ≥ k− h+ size(q)− size(emptyRS) ≥ k− h+ 1, since file
size is integer. �

Remark 4 RS is a generalization of the RECIPROCAL algorithm [149] for the
weighted paging problem: each file is identical in size but file cost is arbitrary.
RECIPROCAL evicts file p with probability 1/cost(p)P

x∈CR
1/cost(x)

where CR is the set of

files stored in the cache. In other words, RS is obtained by replacing cost(p) of
RECIPROCAL’s eviction probability with cost(p)/size(p), which is the same ap-
proach used in generalizing the Greedy-Dual algorithm [200] to obtain Greedy-
Dual-Size [63, 202].

When RS is applied to the paging problem, a special case of the file caching
problem, RECIPROCAL is called the RANDOM algorithm. Since RANDOM’s
competitive ratio is at least k

k−h+1
[165] against an oblivious adversary, Lemma 8

leads to the next theorem.

Theorem 10 The competitive ratio of RS with cache of size k is k
k−h+1

against an
oblivious/adaptive-online adversary with cache of size h.

Implementing RS requires the dynamic generation of random variates on dis-
crete distributions, such that, when given elements 1, 2, . . . , N and their respective
weights w1, w2, . . . , wN ≥ 0, we generate integer j (1 ≤ j ≤ N ) with probability
wj/

∑
1≤i≤N wi. Furthermore, we often need to update the set of the elements.

Matias, Vitter and Ni [140] gave an efficient randomized algorithm for gen-
erating random variates. An implementation of RS using their algorithm realizes
the following time complexity.
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Theorem 11 RS is expected to take O(2log∗ k) time in the worst case and
O(log∗ k) time in the amortized case per file insertion or eviction.

Proof. Suppose that RS has N files in the cache, and that the files are numbered
from 1 to N and have weights w1, w2, . . . , wN ≥ 0, respectively. We note that the
files need not be numbered serially, if the numbers have a one-to-one correspon-
dence to the files.

When RS evicts a file, RS does the following process. RS first generates
integer j (1 ≤ j ≤ N ) with probability wj/

∑
1≤i≤N wi by using the algorithms

in [140], and evicts the file whose number is j. Then, RS updates the data structure
used by the algorithm to reflect the file eviction. Similarly, RS updates the data
structure when RS inserts a file.

The algorithm is expected to take O(log∗ k) time to generate a random variate
in the worst case, and O(2log∗ k) expected worst-case time and O(log∗ k) expected
amortized time to update the data structure according to insertion and eviction. �

Actually, 2log∗ n is quite small as shown in the next proposition.

Proposition 12 2log∗ n = o(log n)

Proof. Define a function F (k) such that F (1) = 2 and F (k + 1) = 2F (k) for
positive integer k, i.e.,

F (k) = 22·
··2
}
k.

In what follows, we will prove limn→+∞ 2log∗ n

logn
=0, leading to 2log∗ n = o(log n).

For positive integer n such that F (m) < n ≤ F (m+ 1), log∗ n = m+ 1 and
log n > F (m− 1) from the definition of log∗ n. Thus,

2log∗ n

log n
<

2m+1

F (m− 1)
= 2 · 2m−F (m−2).

Since F (m) > 2m (m ≥ 3) can be easily shown by induction, m− F (m− 2) <
m− 2m−2 for m ≥ 3. This results in

lim
m→+∞

{m− F (m− 2)} = −∞,

i.e.,
lim

m→+∞
2 · 2m−F (m−2) = 0.

Since F (m) is a monotone increasing function,

lim
n→+∞

2log∗ n

log n
= lim

m→+∞
2 · 2m−F (m−2) = 0.
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�

The binary-tree-based scheme developed by Wong and Easton [193] takes
O(log k) time in the worst case to generate a radom variate and update the set
of the elements. Thus, RS takes O(log k) time in the worst case per file insertion
or eviction, by the same argument as the above.

2.3.2 Comparison with RECIPROCAL

RECIPROCAL [165] takes the file cost into account but not file size. Intuitively,
RECIPROCAL seems to be much worse than RS in addressing the file caching
problem. However, it is as competitive as RS against an adaptive-online adversary
with cache of size k from Theorem 10, the next lemma, and the fact that the
competitive ratio of RANDOM is at least k [165] against an oblivious adversary.

Lemma 13 RECIPROCAL with cache of size k is k-competitive against an
adaptive-online adversary with cache of size k.

Proof. As in Lemma 8, for each file eviction and retrieval of an adaptive-online
adversary (ADV) and RECIPROCAL, we consider the increase or decrease of the
potential function,

Φ = k
∑

y∈CR\CA

cost(y)−
∑
y∈CR

cost(y) + k
∑
y∈CA

cost(y),

where CR and CA are the sets of files stored in the cache of, respectively, RE-
CIPROCAL and ADV. For each request, RECIPROCAL services the request after
ADV does.
Eviction/retrieval by ADV: When ADV evicts file p, ADV incurs no cost. The
first term of Φ increases by at most k · cost(p), since p may enter CR \ CA. The
second term does not change. The third term decreases by k · cost(p). Hence Φ
does not increase.

When ADV retrieves file q, ADV incurs cost(q). The first term does not
increase. The second term does not change, and the third term increases by
k · cost(q). Hence Φ increases by at most k · cost(q).
Eviction/retrieval by RECIPROCAL: When RECIPROCAL evicts file p, it
incurs no cost. If p was not in CR \ CA, the first term of Φ does not change;
otherwise the first term decreases by k · cost(p). Thus the expected decrease of
the first term is

k
∑

y∈CR\CA

1/cost(y)∑
x∈CR

1/cost(x)
cost(y) =

k|CR \ CA|∑
x∈CR

1/cost(x)
,
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where |CR \CA| represents the number of files in CR \CA. The second term of Φ
is expected to increase by∑

y∈CR

1/cost(y)∑
x∈CR

1/cost(x)
cost(y) =

|CR|∑
x∈CR

1/cost(x)
,

where |CR| is the number of files stored in RECIPROCAL’s cache. The third term
does not change. Thus, the expected decrease in Φ is

k|CR \ CA| − |CR|∑
x∈CR

1/cost(x)
.

Claim 9 is still true of RECIPROCAL, since it does not depend on the eviction
policy of RS. Thus size(CR \ CA) ≥ k − k + 1 = 1. This implies |CR \ CA| ≥ 1.
Thus k|CR \ CA| − |CR| is not negative, i.e., Φ does not increase, since |CR| is at
most k.

When RECIPROCAL retrieves file q, it incurs cost(q). Since q is already in
CA, the first term of Φ does not change. The second term decreases by cost(q).
The third term does not change. Hence Φ decreases by exactly cost(q). �

The next lemma implies that the competitive ratio of RECIPROCAL with
cache of size k is more than that of RS with cache of size k, against an
oblivious/adaptive-online adversary with cache of size h. The proof is similar
to, but much more complicated than, that introduced in the lower bound theorem
of the RANDOM algorithm for the paging problem [165]. The proof uses the next
proposition.

Proposition 14 ([149]) Let X be a random variable giving the “waiting time”
for success in a sequence of Bernoulli trials with success probability p. For any
positive integer t, define the “truncated” random variable, Xt, such that Xt = X
if X ≤ t and Xt = t otherwise. It follows that the expected value of Xt is
1
p
(1− (1− p)t).

Lemma 15 For the file caching problem, the competitive ratio of RECIPRO-
CAL with cache of size k is more than k

k−h+1
against an oblivious (and thus, an

adaptive-online) adversary with cache of size h (k > h > 10).

Proof. Let ε be given and the cache of RECIPROCAL be initially empty. We
consider the following request sequence:

σ = (b1, a2, . . . , ah−1)
m, (b2, a2, . . . , ah−1)

m, (b3, a2, . . . , ah−1)
m · · · ,

wherem is an integer whose value is determined later, and size(bi) = 2, size(aj) =
1 and cost(bi) = cost(aj) = 1 for each i (i = 1, 2, . . .) and j (j = 2, 3, . . . , h−1).
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For each i = 1, 2, . . ., the subsequence (bi, a2, . . . , ah−1)
m of σ, called the ith

block, is composed of m repetitions of the segment bi, a2, . . . , ah−1. RECIPRO-
CAL incurs the first fault while servicing the

(⌊
k−h+2

2

⌋
+ 1
)
st block since the

sum of the sizes of the files requested until the ith block is 2i + h − 2, and
2 × ⌊k−h+2

2

⌋
+ h − 2 ≤ k < 2

(⌊
k−h+2

2

⌋
+ 1
)

+ h − 2. In what follows, we
consider the ith block such that i ≥ ⌊k−h+2

2

⌋
+1. Clearly, the oblivious adversary

incurs exactly one fault for bi during the ith blocks for each i ≥ 2, since the sum
of the sizes of files requested in each block is h.

Immediately before servicing the ith block, RECIPROCAL keeps at most h−
2 files of those requested in the block since aj’s are common in all blocks but
bi is only in the ith block. Hereafter we consider RECIPROCAL’s cache when
servicing segment bi, a2, . . . , ah−1 of the ith block. We say that RECIPROCAL
succeeds if, on its fault, RECIPROCAL has exactly h−2 files of {bi, a2, . . . , ah−1}
and it evicts (if necessary) a file other than bi, a2, . . . , ah−1. RECIPROCAL evicts
at most one file when it succeeds since it evicts certain bi′ (i′ �= i) if it does,
which creates a space of size 2. For each segment repetition until after success,
RECIPROCAL incurs at least one fault, since RECIPROCAL does not have bi
before servicing the ith block. Thus we will evaluate the lower bound of the
expected number of segment repetitions until success within the ith block. This
lower bound directly represents that of the competitive ratio since the oblivious
adversary incurs just one fault during each block (except the first one). In what
follows, we consider the lower bound for the two cases where k − h+ 1 is either
even or odd.

(A) the case where k − h+ 1 is even:
(A-I) When RECIPROCAL incurs a fault for bi and keeps files a2, . . . , ah−1 in
its cache, RECIPROCAL also keeps 
k−(h−2)

2
� = k−h+1

2
bi′’s such that i′ �= i,

since k − (h− 2) is odd. To store bi and succeed, RECIPROCAL evicts a certain
bi′ (i′ �= i), since the unoccupied space is of size 1. Thus, the probability of a
success is at most

k−h+1
2

k−h+1
2

+ h− 2
=
k − h+ 1

k + h− 3
,

since each file cost equals 1 and RECIPROCAL evicts a file with equi-probability.

(A-II) When RECIPROCAL incurs a fault for certain al and keeps
files bi, a2, . . . , al−1, al+1, . . . , ah−1 in its cache, RECIPROCAL also holds

k−(h−3)−2

2
� = k−h+1

2
bi’s. Thus, the probability of a success is at most

k−h+1
2

k−h+1
2

+ h− 2
=
k − h+ 1

k + h− 3
.
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From (A-I) and (A-II), the expected number of faults incurred by RECIPRO-
CAL during the ith block is at least

k + h− 3

k − h+ 1

(
1−

(
1− k − h+ 1

k + h− 3

)m)
,

by using Proposition 14.
For any given ε, there exists sufficiently largem such that the online-to-offline

cost ratio with respect to σ is larger than k+h−3
k−h+1

− ε, since k−h+1
k+h−3

< 1 (k ≥ h > 2).
Clearly, k+h−3

k−h+1
> k

k−h+1
under h > 3.

(B) the case where k − h+ 1 is odd:
(B-I) When RECIPROCAL incurs a fault for bi and keeps files a2, . . . , ah−1 in its
cache, RECIPROCAL also keeps 
k−(h−2)

2
� = k−h+2

2
bi’s. Note that k − (h − 2)

is even. Thus, the probability of success is at most

k−h+2
2

k−h+2
2

+ h− 2
=
k − h+ 2

k + h− 2
.

(B-II) When RECIPROCAL incurs a fault for a certain al and keeps
files bi, a2, . . . , al−1, al+1, . . . , ah−1 in its cache, RECIPROCAL also keeps

k−(h−3)−2

2
� = k−h

2
bi’s. This implies that there is free space of size 1 in RE-

CIPROCAL’s cache. Since size(al) = 1, no file is evicted when inserting al. In
this case, RECIPROCAL succeeds with probability 1. However, this success is
thanks to the fact that RECIPROCAL keeps bi, a2, . . . , al−1, al+1, . . . , ah−1. In
other words, RECIPROCAL “implicitly succeeded” at the last fault.

More formally, we say that RECIPROCAL “implicitly succeeds” if on its
fault, RECIPROCAL has exactly h− 3 files of {bi, a2, . . . , ah−1} and after insert-
ing the new file RECIPROCAL has exactly bi and h−3 files of {a2, . . . , ah−1} by
evicting (if necessary) files other than bi, a2, . . . , ah−1. It follows that RECIPRO-
CAL will succeed during the next h−1 requests after it implicitly succeeds during
the ith block. The number of repetitions of the segment until an implicit success
is equal to or smaller by 1 than that of the repetitions of the segment until success,
since RECIPROCAL must implicitly succeed before success. Thus the expected
number of faults is at least equal to the number of repetitions of the segment until
an implicit success. We can regard the probability of an implicit success as that of
success in the case where the adversary’s cache size is h−1. Hence the probability
of an implicit success is at most

k − (h− 1) + 1

k + (h− 1)− 3
=
k − h+ 2

k + h− 4
,

since k − (h− 1) + 1 is even.
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When file g is requested:
1 if is not in the cache then
2 until there is space for g in the cache:
3 For each file f in the cache,

decrease credit(f) by Δ · size(f),
where Δ := minf∈cache credit(f)/size(f).

4 Evict from the cache any file f
such that credit(f) = 0.

5 Bring g into the cache
and set credit(g)← cost(g)/size(g) = 0.

6 else Reset credit(g) to any value
between its current value and cost(g).

Figure 11: Greedy-Dual-Size algorithm [202].

From (B-I), (B-II), k−h+2
k+h−2

< k−h+2
k+h−4

and Proposition 14, the expected number
of faults incurred by RECIPROCAL during the ith block is at least

k + h− 4

k − h+ 2

(
1−

(
1− k − h+ 2

k + h− 4

)m)
.

For any given ε, there exists a sufficiently large m such that the online-to-
offline cost ratio with respect to σ is larger than k+h−4

k−h+2
− ε. Further, we have

k+h−4
k−h+2

> k
k−h+1

if k > h > 10, since

k + h− 4

k − h+ 2
− k

k − h+ 1
=

(k − h)(h− 5)− 4

(k − h+ 2)(k − h+ 1)
> 0 (k > h > 10).

By (A) and (B), the proof is completed. �

Greedy-Dual-Size(GDS) [202] and its original version, Greedy-Dual [200]
have a similar relation. Greedy-Dual-Size maintains a variable “credit” for each
file as shown in Figure 11. Greedy-Dual-Size evicts a file if it has a credit of 0
when Greedy-Dual-Size needs to create space. If there is no such file, it decreases
the credit credit(f) of each file f by Δ · size(f) where Δ is the minimum value
of credit-size ratio among all cached files. When retrieving and storing a file,
Greedy-Dual-Size sets its credit as its cost. At the time of a hit, Greedy-Dual-Size
can optionally raise the credit of the hit file to at most its cost in line 6. Whether
raising the credit or not, Greedy-Dual-Size with cache size k has competitive ratio

k
k−h+1

[202] against an adversary with cache size h. Greedy-Dual can be obtained
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by setting size of every file to unit size in Figure 11. The next theorem says that
Greedy-Dual’s competitive ratio is larger than Greedy-Dual-Size when file size is
arbitrary.

Theorem 16 For the file caching problem, Greedy-Dual is k-competitive against
an adversary with cache of size k but not k

k−h+1
-competitive against an adversary

with cache of size h (≤ k).

The proof is similar to those of Lemmas 8 and 15.
Thus, Young’s result [202], i.e., k

k−h+1
-competitiveness of GDS, is meaningful

while Cao and Irani [63] proved before Young that GDS is k-competitive against
an adversary with cache of size k.

2.3.3 Empirical results

We conducted trace-driven simulations for four proxy cache logs: two from
NLANR [156] and the others from DEC [70]. We call the four logs, “Log I”,
“Log II”, “Log III” and “Log IV”. The number of requests in the logs ranges from
260,000 to 830,000. Performance was measured in terms of hit rate, byte hit rate,
and reduced latency.

We tested the following algorithms:

• RECIPROCAL-SIZE (RS)

• RECIPROCAL (R) [165]

• FIFO version of Greedy-Dual-Size (GDS) [202]

• LRU version of Greedy-Dual-Size (GDS(LRU)) [63, 202]

• Greedy-Dual (GD) [200]

• Least Recently Used (LRU).

GDS is obtained by not raising the credit in line 6 of Figure 11. GDS(LRU)
always raises credit(g) to cost(g) in line 6. Intuitively, GDS gradually decreases
the value of each file in the cache regardless of whether the file is requested fre-
quently. GDS is similar to FIFO in this sense. GDS(LRU) also gradually de-
creases the value, however, when a file is hit, GDS(LRU) raises its value to its
initial value. Hence, GDS is similar to LRU.

These algorithms can be characterized by the three types of information they
consider: request frequency, file size, and file cost. Request frequency is the in-
formation on how frequently each file has been requested while file size and cost
depend only on the characteristics of each file. Table 3 summarizes the informa-
tion used by each algorithm.
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Figure 12: Byte hit rate for Log I.
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Figure 13: Byte hit rate for Log II.
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Figure 14: Byte hit rate for Log III.

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20

B
yt

e 
H

it 
R

at
e(

%
)

Cache Size(%)

RS
GDS

GDS(LRU)
LRU

Figure 15: Byte hit rate for Log IV.
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Figure 16: Reduced latency for Log I.
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Figure 17: Reduced latency for Log II.
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Figure 18: Reduced latency for Log III.
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Figure 19: Reduced latency for Log IV.



2.3 Algorithms for the general model 43

Table 3: Characterization of algorithms by three types of information. If an al-
gorithm takes a certain type of information into account, “©” is placed in the
corresponding square; otherwise “×.”

RS R GDS GDS(LRU) GD LRU
Request × × × © © ©

Frequency
File Size © × © © × ×
File Cost © © © © © ×

In the simulations, algorithms R and GD performed much worse than RS,
GDS and GDS(LRU). These results would indicate that the competitive ratios of
R and GD against an adversary with cache of size h are larger than those of the
others. In the following, we show the results for RS, GDS, GDS(LRU) and LRU.

The first simulation involved the bit model, i.e., the cost model in which file
cost equals file size. Figures 12, 13, 14 and 15 are the results for Log I, II, III and
IV, respectively. The horizontal axes represent the percentage of the cache size
that the algorithms have against the sum of the size of the different files in the
corresponding request sequence. The vertical axes plot the percentage of the total
saved traffic (i.e., the sum of the size of hit files) of the algorithms against that of
a cache that has infinite space.

The second simulation involved the cost model in which file cost is taken as
latency (i.e., elapsed time from when the cache accepts an HTTP request until it
responds) as extracted from the logs. Figures 16, 17, 18 and 19 are the results
for Log I, II, III and IV, respectively. The horizontal axes have the same meaning
as the first simulation. The vertical axes plot the percentage of the total reduced
latency of the algorithms against that of a cache that has infinite space.

The first simulation results show that LRU is the best, and GDS(LRU) is com-
parable. RS and GDS is only slightly worse than LRU. From the second simula-
tion, GDS(LRU), GDS and RS are the best. LRU performance worsens as cache
size decreases. The results indicate that RS performs very well in terms of reduced
latency and attains sufficiently good byte hit rate.

LRU attains the best byte hit rate. In addition, LRU is not bad at reducing
latency, except for the case of small cache size. From a worst-cast analysis point
of view, however, LRU is not competitive in the general model.

For all simulations, GDS performs only slightly worse than GDS(LRU). This
may indicate that each request is little correlated to other requests for the same
file as is usual in second-level caches. GDS(LRU) and LRU have the possibility
of performing better for other logs that have much correlation between requests.
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Even so, RS is a good candidate for caches requiring high-speed processing,
since a reasonable situation requiring high-speed caches is second-level caching
in the large networks like those of network carriers.

2.4 Summary

In the bit model, LRU is competitive and can be performed in O(1) time per file
eviction by using doubly-linked lists, but does not take file size into account. On
the other hand, there are many heuristics considering the difference in size of files
that work well for the input distributions that are typical in practical environments.

We gave a simple but sufficient condition such that any algorithm subject
to the condition is k

max{k−h+1,s}-competitive, where s is the size of the smallest
file. Based on this condition, we developed a general framework to easily gener-
ate competitive algorithms from non-competitive heuristics; the generated algo-
rithms adaptively switch from the heuristics to LRU and vice versa according to
input requests. As an application of the framework, we constructed a competi-
tive algorithm, called Competitive SIZE, from SIZE heuristics. The results of our
event-driven simulations show that Competitive SIZE is much better than LRU
when smaller files are requested with higher probability. In other cases, Compet-
itive SIZE is comparable to or only slightly worse than LRU. Furthermore, we
showed that Competitive SIZE is better than either LRU or SIZE for a real web
proxy log. This is because Competitive SIZE chooses the most appropriate strat-
egy among SIZE and LRU, by implicitly analyzing local distributions of the given
request sequence. However, in general, the criterion for choosing strategies would
be quite sensitive. It would depend on how frequently local distributions change,
as well as storage space of cache and the heuristics that was made competitive. In
this sense, we have to tune the generated algorithm through simulations to the real
environments in which the algorithm is used.

In the general model, the Greedy-Dual-Size (GDS) is an optimal deterministic
competitive algorithm and is shown to achieve excellent performance in experi-
ments in terms of the amount of cost paid on faults. GDS with cache of size k,
however, takes as many as O(k) steps per file eviction in the worst case. This
would be disadvantage especially in file caching services to many hosts, which
requires a quick response to each request.

We gave a fast randomized algorithm that runs in O(log k) time in the worst
case and is expected to run in only O(2log∗ k) time per file eviction and file
insertion, while the algorithm is expected to be k

k−h+1
-competitive against an

oblivious/adaptive-online adversary , i.e., as competitive as GDS on average. We
conducted trace driven simulations to confirm the practicality of our algorithm.
Experimental results show that our algorithm performs very well in terms of re-
duced latency and attains a sufficiently good byte hit-rate.
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For the future work, we have several problems.
In the bit model, we have already known optimal deterministic on-line algo-

rithms such as LRU and an optimal randomized on-line algorithm (see the brief
survey in the next subsection). An interesting problem is to know whether these
algorithms are still optimal or not if we introduce some restriction on input request
sequences to competitive analysis, such as access graphs and the Markov model
introduced in the analysis of the paging problem [47].

In the general model, we have devised a fast randomized algorithm that is ex-
pected to be as competitive as GDS. However, we do not know the competitive
ratio of optimal randomized on-line algorithms (against an oblivious adversary).
It would be an interesting open problem to know the optimal randomized compet-
itive ratio, since we do not know any randomized online algorithm that achieves
the competitive ratio less than k against an oblivious adversary even in a special
case, i.e., the weighted caching problem, in which every file size equals 1. An-
other interesting direction is to develop a framework to generate a competitive
algorithm from a non-competitive heuristics, as we have done in the bit model.

For both of the bit and general models, it is NP -hard to solve the file caching
problem in an off-line manner. It is a well-known open problem to settle the
hardness of the off-line file caching problem in the fault model.

2.5 A brief survey of the caching problem

The file caching problem is a generalized form of the paging problem associated
with microprocessor caches, which has been extensively researched for decades.
The difference between these problems is that the former deals with objects (i.e.,
files) of various size while the latter handles objects (i.e., pages) of uniform size.

Sleator and Tarjan [176] first analyzed on-line paging algorithms by compar-
ing their performance on any sequence of requests to that of an optimal off-line
algorithm (i.e., an adversary): they applied the competitive analysis. They showed
that the least-recently-used (LRU) and many other deterministic algorithms with
cache of size k could be worse than an adversary with cache of size h by a factor
of k

k−h+1
, but not more, and that no deterministic on-line algorithm could achieve

a factor less than k
k−h+1

. Karlin, Manasse, Rudolph and Sleator [123] introduced
the term “competitive” and proposed a k-competitive deterministic paging strat-
egy, called flush-when-full (FWF) against an adversary with cache of size k.

Randomized paging was first studied by Fiat, Karp, Luby, McGeoch, Sleator
and Young [91]. They showed that their Randomized Marking Algorithm achieves
a competitive ratio no worse than 2Hk (against an oblivious adversary with cache
of size k), whereHk represents the kth Harmonic number. In addition, they proved
that no randomized paging algorithm can have a competitive ratio less than Hk.
McGeoch and Sleator [142] gave an optimal randomized algorithm that achieves a
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competitive ratio ofHk against an oblivious adversary. Later, Achlioptas, Chrobak
and Noga [14] proposed a much simpler optimal randomized algorithm achieving
a competitive ratio of Hk and also showed that the Randomized Marking Algo-
rithm [91] has the exact competitive ratio of 2Hk − 1.

From a point of view of web caching, Gopalan, Karloff, Mehta, Mihail and
Vishnoi [94] studied the paging problem assuming that pages have expiration
times beyond which they are no longer valid. They showed that LRU with mini-
mal adaptations is asymptotically optimal.

The above Sleator-Tarjan’s way of analysis is, however, too coarse to make a
distinction between LRU and FIFO, whereas in practice LRU is almost always su-
perior to FIFO. To address this fact, Borodin, Irani, Raghavan and Schieber [49]
developed a graph-theoretic model of a program’s locality reference, called the
access graph, and proved that the competitive ratio of LRU is at most twice that
of FIFO for any access graph, and LRU and FIFO are far from optimal com-
petitiveness for some graphs. They also gave an deterministic algorithm FAR
that achieves a competitive ratio within a factor of O(log k) of that of an optimal
on-line algorithm for any k and access graph. Actually, FAR was proved to be
strongly competitive by Irani, Karlin and Phillips [114], i.e., it achieves a compet-
itive ratio within a constant factor of that of an optimal on-line algorithm, for any
k and access graph. Fiat and Karlin [90] gave a strongly competitive randomized
algorithm for any access graph against an oblivious adversary. They also gave
another strongly competitive deterministic algorithm against adversaries that can
use multiple pointers into the undirected access graph to generate the request se-
quence; this models the reasonable situation where programs often use multiple
data structures. Chrobak and Noga [66] proved that LRU has the competitive ratio
that is less than or equal to that of FIFO under any access graph, which had been
conjectured by Borodin et al.. The access graph model assumes a prior knowledge
of the underlying access graph. There are models that require weaker assump-
tions. Fiat and Rosen [92] introduced the dynamic access graph and examined
LRU and several heuristics by simulations. Karlin, Phillips and Raghavan [125]
proposed the paging problem under the assumption that the sequence of pages
accessed is generated by a Markov chain, and provided a mathematical basis for
the poor performance in simulations of certain paging algorithms such as the ran-
dom placement algorithm, which randomly chooses a file to be evicted, and the
frequency count algorithm, which evicts the file that is least frequently accessed.
Koutsoupias and Papadimitriou [130] proposed a more general model, called the
diffuse adversary model, where a request sequence is generated by a probabil-
ity distribution that is chosen from a known class of distributions. Young [200]
defined a new notion of loose competitiveness against an adversary with cache
of size h (≤ k), which ignores input sequences giving a high competitive ratio
for only a few values of h. Lund, Phillips and Reingold [137] discusses caching
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strategies in the context of virtual circuit management, in which any particular
host may have only a fixed number k of virtual circuits open and it must choose
a virtual circuit to close, before opening a circuit to the destination of the packet
that has arrived. When the interarrival time of the packets exchanged between
each pair of hosts has a fixed and independent distribution, their first algorithm
has the competitive ratio that is at most 5 times that of the best on-line algorithm.
They also discusses a more general model in which, for each pair p, q of pages in
the cache, on-line algorithms can only determine the probability that pwill next be
accessed before q; for that model, they gave a randomized on-line algorithm with
the competitive ratio that is at most four times that of the best on-line algorithm.
Recently, Albers, Favrholdt and Giel [21] proposed a simple model for the paging
with locality of reference based on Denning’s working set concept [81, 82].

A generalized problem of the paging problem is called the weighted caching
problem, in which the size of each file is still uniform but the retrieval cost of each
file is arbitrary. Chrobak, Karloff, Payne and Vishwanathan [65] showed that a
simple algorithm (called “Balance” algorithm) is k-competitive against an adver-
sary with cache of size k. They also gave an optimal off-line polynomial time
algorithm for the problem. Subsequently, Young [200] proved that his Greedy-
Dual algorithm with cache of size k is k

k−h+1
-competitive against an adversary

with cache of size h, which implies that Greedy-Dual is optimal. The Greedy-
Dual algorithm generalizes many well-known paging and weighted paging strate-
gies, including least-recently-used (LRU), first-in-first-out (FIFO), flush-when-
full (FWF), and the Balance algorithm. Raghavan and Snir [165] gave a random-
ized algorithm (called “RECIPROCAL”2) that has competitive ratio k

k−h+1
against

an oblivious/adaptive-online adversary with cache of size h. Although this algo-
rithm does not defeat the deterministic algorithm in terms of competitiveness, it
does not make use of any information other than which pages are stored, i.e.,
memoryless. They also discussed the tradeoff between memory and randomness.
This simplicity realized by randomness is effective when available resource is
limited or time complexity per request is critical. In the special case where pages
have one of two fixed weights, Irani [113] developed an O(log k)-competitive
algorithm against an oblivious adversary with cache of size k by nesting the Ran-
domized Marking Algorithm. However, no randomized on-line algorithms with
competitive ratio less than k against an adversary with cache of size k are known
in the general case.

The file caching problem is further generalized form of the weighted caching
problem such that the size of each file (page), in addition to retrieval cost (or file
cost), is arbitrary. Irani [112] investigated the two special cases where file size is
arbitrary while file cost is uniform (the fault model), and where file cost equals

2In Ref. [165], this algorithm is called HARMONIC, but Ref. [149] calls it RECIPROCAL.
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file size (the bit model), and proved that LRU is optimally competitive in both
models. Although the paging problem is inherently on-line, on-line algorithms
for the problem often attempt to imitate the behavior of an optimal off-line algo-
rithm with partial information on the request sequence; LRU can be regarded as
an on-line version of the optimal offline polynomial-time algorithm shown in [38].
However, the off-line file caching problem isNP-hard in the bit model, and hence
in the general model, as proved in this section (it is unknown whether the problem
for the fault model is in P). Irani [112] thus presented polynomial time off-line
algorithms that achieve approximation ratio ofO(logK) for the fault and bit mod-
els, where K = k/Dmin and Dmin is the size of the smallest file among the files
that could be requested. She also gave O(log2 k)-competitive randomized on-line
algorithms in both models against oblivious adversaries.

As for the general model (arbitrary file sizes and costs), Cao and Irani [63]
proposed the a k-competitive algorithm, called Greedy-Dual-Size, against an
adversary with cache of size k by generalizing Greedy-Dual algorithm [200].
Young [202] gave the result that Greedy-Dual-Size3 is k

k−h+1
-competitive against

an adversary with cache of size h. Albers, Arora and Khanna [19] developed a
polynomial-time off-line approximation algorithm with cache size k for the gen-
eral model. The algorithm achieves constant factor approximation ratio against
the optimal off-line algorithm with cache of size k + O(S), for the largest file
size S among the sizes of the files that could be requested. They also gave an-
other polynomial-time off-line approximation algorithm with cache size k for the
general model with approximation ratio O(log(k + C)) against the optimal off-
line algorithm with cache of size k, for the largest file cost C among the costs
of the files that could be requested. They also presented a randomized on-line
algorithm with cache of size (1 + c)k for the bit model that achieves competitive
ratioO(ln(1+1/c)) against an oblivious adversary with cache of size k. Bar-Noy,
Bar-Yehuda, Freund, Naor and Schieber [33] presented a 4-approximation off-line
algorithm for the general model that does not use extra space.

There are also a lot of empirical studies of the file caching problem. In the bit
model, by using trace-driven simulations, Abrams, Standridge, Abdulla, Williams
and Fox [13] showed that the SIZE algorithm, which simply evicts files in non-
increasing order of their size, is often better for web requests than the most popular
algorithm, LRU. However, SIZE is highly dependent on the correlation between
file size and request frequency. To overcome this non-robustness, they also pro-
posed LOG(SIZE) and LRU-MIN as mixtures of SIZE and LRU. Subsequently,
Aggarwal, Wolf and Yu [16] developed an algorithm called SLRU, which can
also be regarded as a mixture of SIZE and LRU, by applying an approximation
algorithm for the KNAPSACK problem [144] to the set of stored files and the

3Actually, this algorithm is called “LANDLORD” in [202]
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currently requested every time a fault occurs. Unfortunately, the above mixtures
have no performance guarantee.

For the general model, Greedy-Dual-Size (GDS) also achieves excellent per-
formance in simulations [63], and is adopted as an optional caching strategy of a
major Web proxy server software, Squid [1]. Cao and Irani [63] showed an imple-
mentation of GDS that incurs O(log k) time per insertion or deletion in the worst
case. Their implementation, however, uses an “inflation” offset variable in order
to prevent the k subtractions that could occur when a file is evicted. If the value of
the variable is not allowed to inflate infinitely (for theoretical or practical reasons),
k subtractions occur when the value of the variable attains its limit. This pushes
up the worst-case time complexity to O(k), although amortized time per insertion
or eviction may still be O(log k).

Podlipnig and Boszörömenyi [160] comprehensively surveyed numerous
heuristics for the file caching problem by categorizing them in terms of kinds
of parameters the heuristics are based on.





51

3 Streaming-Type Multi-Point Communication
– IP-Unicast-Based Multicast (Flexcast) –

This section discusses an efficient way of streaming type multi-point communica-
tion: IP-unicast-based multicast.

3.1 The model

The Internet protocols span the complete range of the layers of the OSI (Open
Systems Interconnection) basic reference model defined by ISO (the International
Organization for Standardization).

The Internet Protocol (IP) [163] is the primary network-layer (Layer 3) proto-
col of the Internet that involves addressing information and some control informa-
tion that enables packets to be routed. IP provides connection-less and best-effort
delivery of datagrams through an internetwork, and realizes fragmentation and re-
assembly of datagrams to support data links with different maximum-transmission
unit (MTU) sizes.

The Transmission Control Protocol (TCP) [164] and the User Datagram Pro-
tocol (UDP) [161] are the two central protocols of the transport layer (Layer 4),
and work on the IP environment. TCP is a connection-oriented protocol and pro-
vides reliable transmission of data and flow control for each connection. UDP
is a connection-less protocol and provides no reliability and flow control. This
simplicity of UDP imposes less load on end hosts than TCP; UDP is useful in the
situations where the reliability mechanisms and/or flow control of TCP are not
appropriate to a higher-layer protocol.

In the following, our protocol is assumed to be realized on UDP (while it can
also be realized on TCP): the packets used in our protocol are all UDP datagrams,
and the source and destination addresses of the packets are those written in the IP
headers while the source and destination ports of the packets are those written in
the UDP headers. To avoid confusion, we use “sender” to indicate the source of a
multicast tree.

3.2 Flexcast protocol

We introduce here a new IP-unicast-based multicast protocol, called “Flexcast,”
which dynamically constructs a multicast tree for every pair (S,G) of a sender S
and a group identifier G that is unique within S, by sharing common segments
among unicast (reverse) paths from receivers to S. The communication realized
by the tree still appears to be one-to-one for each sender and receiver. Our tree
construction is based on a hierarchical keep-alive mechanism, i.e., join packets are
periodically sent destined to sender S. The mechanism dynamically reconstructs
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the tree so that it can prevent particular Flexcast nodes from being overloaded and
can optimize the tree against changes in IP-unicast routing paths (here we denote
by a Flexcast node, a node that can process the Flexcast packets and also work as
an ordinary router). Furthermore, this dynamic reconstruction naturally supports
the mobility of senders and receivers.

We will present the basic operation of Flexcast and then describe its functions
of load balancing and dynamic reconstruction. Next we consider how to imple-
ment the keep-alive mechanism used in the protocol.

3.2.1 Basic operation

Receivers send unicast packets, called join packets, containing the paired informa-
tion (S,G) of sender address S and group identifierG that is unique within sender
S, destined to a certain fixed port of S; the port should be reserved for Flexcast
in advance. In the following, pair (S,G) is called a “channel.” Legacy nodes
(i.e., non-Flexcast nodes that route unicast packets in an ordinary way) on the
unicast routing path between Flexcast nodes simply forward the Flexcast packets
(i.e., join packets and delivery packets, introduced later) according to their unicast
routing tables, since the Flexcast packets are just unicast packets. Suppose that
a join packet for (S,G) arrives at a Flexcast node which has no entry for (S,G)
in its Flexcast routing table, called delivery table. This table determines to which
children the multicast data is to be delivered. The Flexcast node recognizes the
join packet by its destination port, and registers its source address as a child on
the tree for channel (S,G) in the delivery table. The node then changes the source
address of the packet to itself and forwards it according to its unicast routing table.
Actually, the join packets to be forwarded should be aggregated in an appropriate
way so that the Flexcast node may not send join packets too often (if the node
forwards every received join packet, sender S should eventually receive too many
join packets in a short period). A heuristics to aggregate join packets will be
described later. This joining operation propagates from the receiver through inter-
mediate Flexcast nodes until the join packet reaches sender S or a Flexcast node
that already has some entries for (S,G) in its delivery table. This operation is
performed by a hierarchical “keep-alive mechanism.” Each receiver periodically
sends join packets as long as it wants to receive the multicast data. The parent
Flexcast node of the receiver continues to send the multicast data while the join
packets from the receiver continuously arrive within some predefined interval. In
other words, if a receiver stops sending join packets, the entry of the receiver will
soon expire in the delivery table of its parent, and the parent will then stop deliver-
ing the multicast data to the receiver. This keep-alive mechanism works between
every pair of a child and its parent. In this way, the keep-alive mechanism starts
from receivers and passes through each parent and child pair. Multicast data is
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Figure 20: Basic operation of the Flexcast protocol.

carried by another kind of unicast packets, called delivery packets, each of which
contains channel (S,G) and is destined to a fixed port; the port should be assigned
for Flexcast. Every Flexcast node forwards every received delivery packet to each
child according to its delivery table. For efficiency, we can optionally introduce
prune packets, that are sent by receivers or Flexcast nodes to inform their parents
that they want to leave the multicast tree. In what follows, we do not assume prune
packets for simplicity.

An example of the above operation is shown in Figure 20. Receivers R1, R2,
and R3 periodically send join packets for channel (S,G) destined to sender S.
Group id G is contained in both join packets and delivery packets, but we omit
G for simplicity in the figure. Suppose that Flexcast node F2 lies on both of the
unicast routing paths from R1 and R2 to S. Flexcast node F2 then intercepts the
join packets and registers their source addresses, i.e., R1 and R2, in its delivery
table, and forwards the join packets after setting their source addresses to F2, i.e.,
F2 works as a proxy. If Flexcast node F1 lies on both of the unicast routing paths
from F2 and R3 to S, F1 picks up the join packets from F2 and R3 and registers
F2 and R3 in its delivery table, and forwards the join packets that identify F1
as their source addresses. When S receives the join packets, it registers F1 as a
child and transmits delivery packets to F1. Flexcast node F1 copies the delivery
packets and sends them to F2 andR3 by referring to its delivery table. In the same
way, F2 sends the delivery packets to R1 and R2. Figures 21 and 22 precisely
describe the behavior of a Flexcast node when it receives a join packet and a
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Join Packet Processing Algorithm

1. Wait until receiving a join packet.
Let J be the received join packet.
Assume that J is for channel (S,G), and has source address s and destina-
tion address S.

2. Register tuple (S,G, s, t) in the delivery table, where t is the time when the
join packet J was received (if there is already (S,G, s, ∗) in the delivery
table, just overwrite (S,G, s, t)).

3. if (Tnow − Tlast(S,G)) ≥ D,
set Tlast(S,G) to Tnow and
send a join packet for (S,G) with source address F and destination address
S,
where Tnow is the current time and Tlast(S,G) is the time when F sent the
last join packet for (S,G).

Figure 21: The algorithm that processes join packets at Flexcast node F , where
D is a predefined interval.

delivery packet, respectively. The algorithm for processing join packets at sender
S is just performing steps 1 and 2 in Figure 21. Sender S transmits delivery
packets in the same way as step 2 of Figure 22.

From the above, it is clear that delivery traces the reverse of the unicast rout-
ing path from every receiver to sender S. Intuitively, the reverse paths between
receivers and sender S are agglomerated as much as possible by the Flexcast nodes
on the paths. Note that the Flexcast protocol can work even if the reverse paths
differ from the unicast routing paths (i.e., the forward paths) from sender S to the
receivers. While forward-paths generally yield higher stream delivery quality than
reverse-paths, forward-path-based tree construction often results in complicated,
non-adaptable or unstable protocols. Since IP networks are being optimized to
support peer-to-peer communication, it would be reasonable in many cases to as-
sume that there is little difference in quality between forward- and reverse-paths.
Thus the Flexcast protocol uses the reverse-path-based tree; this yields scalability
in terms of the number of nodes and significant adaptability to IP-route changes.

3.2.2 Load balancing

Consider the tree in Figure 23. The tree consists of sender S (the topmost node),
three Flexcast nodes (numbered F8 to F10) and six receivers (numbered R1 to
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Delivery Packet Processing Algorithm

1. Wait until receiving a delivery packet.
Let K be the received delivery packet.
Assume that K is for channel (S,G), and has source address S and destina-
tion address F .

2. For every entry (S,G, s, t) in the delivery table, forward delivery packet K
after changing its destination address to s if (Tnow − t) ≤ X , where Tnow is
the current time; otherwise remove entry (S,G, s, t) from the delivery table.

Figure 22: The algorithm that processes delivery packets at Flexcast node F ,
where X is the expiration interval determined by an appropriate heuristics (one of
such heuristics is described in 3.2.4).

R6). A new receiver R7 now starts to send join packets with destination S. Here
we assume that Flexcast nodes F9 and F10 can accommodate at most three and
four children, respectively, due to the limit of their computational power. Hence
F9 cannot register R7 in the delivery table, even if the first join packet from R7
arrives. F9 then routes the join packets from R7 toward sender S without any
change. When the first join packet from R7 arrives at F10, the source address
R7 of the join packet is registered in the delivery table of F10. The resulting
tree is shown in Figure 24. This is a natural extension of the basic protocol and
it accommodates as many receivers as possible without over-burdening particular
Flexcast nodes, at the cost of additional bandwidth. It is stressed that, when the
path from F10 to R7 is congested, this optional function may affect the quality of
the stream received by R4, R5 and R6.

3.2.3 Dynamic reconstruction of multicast trees

In Figure 24, we assume that R5 has stopped sending join packets. This causes
R5 to expire at F9. Flexcast node F9 can now accommodate one more child.
Thus, when the first join packet from R7 arrives at F9 after the expiration of R5,
R7 is registered in the delivery table of F9 as shown in Figure 25. Note that R7
periodically sends join packets to stay alive. The join packets from R7 are no
longer forwarded by F9 toward S. This leads to the expiration of R7 at F10.
In this way, the keep-alive mechanism dynamically reconstructs the tree so as to
minimize traffic.

This dynamic reconstruction is effective especially when receivers are mobile
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Figure 23: Receiver R7 joins when Flexcast node F9 cannot accommodate any
more children.
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Figure 24: The multicast tree after receiver R7 joined.
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Figure 25: The multicast tree after receiver R5 has stopped sending join packets
and expired.

hosts. In Figure 26,R3 moves and its neighbor changes from F10 to F8. Receiver
R3 is then registered at F8 and expires at F10.

Another reconstruction is triggered by the movement of sender S as is possible
when S is a mobile host such as a palm-top computer with a small video camera.
If the network has a platform to support unicast to mobile hosts, say, the mobile-
IP framework [159], the keep-alive mechanism reconstructs the tree as follows.
As in Figure 27, sender S moves and its neighboring Flexcast node changes from
F10 to F11. The join packets from receivers are routed for the new location of
S by the mobile-IP framework, since the join packets are unicast packets with
destination S. Here we assume that F11 comes to lie on the paths from R3, F8
and F9 to S, and that F10 is not on any of the paths yet. As a result, R3, F8
and F9 are registered at F11, and F11 sends toward S join packets with source
address F11. Flexcast node F10 may also be registered at F11 when the join
packets with source F10 destined to S arrive, if F11 is on the path from F10 to
S. R3, F8 and F9 will expire at F10 after a moment since the join packets from
them do not reach F10 any more. Flexcast node F10 will then stop sending join
packets destined to S and expire at F11.

During tree reconstruction, multiple packets carrying the same data may arrive
until the old parent-child relationships disappear. In Figure 25, F9 and F10 may
send redundant packets toR7. In Figure 27, F10 and F11 may send the redundant
packets to R3, F8 and F9. However, these packets can be discarded at receivers
or Flexcast nodes by checking the time-stamp and/or sequence number assigned
by sender S according to, say, RTP (Real-Time Transport Protocol) [171].
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Figure 27: Multicast tree reconstruction when the sender moves.
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3.2.4 Expiration time

The keep-alive mechanism must not allow any node to expire at its parent node
when the node has at least one child. A simple way of accomplishing this is to use
a timer at each Flexcast node in order to ensure that the node periodically sends
join packets toward the sender as long as it has at least one child. However, this
may so badly load resources that it may delay other tasks like data packet delivery.

Another way of implementing the keep-alive mechanism is to allow each Flex-
cast node to transmit a join packet toward the sender only when the node receives
a join packet from a child. If, however, each Flexcast node sends a join packet
every time it receives a join packet, the sender may receive more join packets than
it can process.

We now consider when a Flexcast node should send a join packet and how
to set the expiration time interval. Assume that all receivers send join packets
periodically at intervalD. Each Flexcast node has variable Tlast, which is the time
when the node sent the last join packet. When the node receives a join packet, it
compares the current time Tnow with Tlast. If (Tnow − Tlast) ≥ D, it sends a join
packet destined to the sender.

Before analyzing the above algorithm, we define the height of each Flexcast
node as the maximum length (i.e., the number of communication links) of the
unicast routing path from any descendant receiver of the node. Let Ds(h) and
Dr(h) be the maximum intervals between consecutive join packets being sent and
received, respectively, at a Flexcast node of height h.

If we assume that there is no jitter of link and processing delays, i.e., Dr(h) =
Ds(h− 1), we can prove by induction that

Dr(h) ≤ h×D,

as follows. Suppose that a Flexcast node of height h − 1 receives join packets
from all children at once just before time Dr(h− 1) has passed since the last time
the node sent a join packet. At this time the node does not send any join packet
since (Tnow − Tlast) < D. Obviously, the node will not receive any join packet
before time D passes from now. This case maximizes Ds(h− 1). Thus, we have
Dr(h) = Ds(h− 1) ≤ D +Dr(h− 1). Clearly, Dr(1) = D.

If we cannot ignore the jitter of link delay and processing delay, we can evalu-
ate Dr(h) by slightly modifying the above. Let ε1 and ε2 be the maximum differ-
ences between the maximum and minimum values of link delay and processing
delay, respectively. Dr(h) ≤ Ds(h− 1)+ ε1 and Ds(h) ≤ D+Dr(h)+ ε2. Thus,
we have

Dr(h) ≤ h× (D + ε1 + ε2),

since Dr(1) ≤ D + ε1 + ε2.
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In a reliable network in which packets are seldom lost, a straightforward way
of setting the expiration time interval is to set it to Dr(h

∗) for all nodes, where h∗

is the height of the sender. However,Dr(h
∗) is too large for nodes whose height is

less than h∗. This may result in consuming bandwidth wastefully, since a Flexcast
node does not stop sending delivery packets to its children until they expire. A
solution to this problem is to make each node dynamically set the expiration time
for every child of height i to Ds(i). The node can know the height of its children
by using join packets as follows. Receivers write height 0 in the join packets they
send. Flexcast nodes choose the maximum value among the heights written in join
packets sent by their children and write the value plus 1 in the join packet they
send. Clearly, the height of a child is equal to the value written in the join packets
sent by the child. This dynamic way of setting the expiration time interval ensures
that the keep-alive-based tree construction is scalable. The above procedure can
also be applied to computing other information such as the number of receivers
and packet loss rate [183].

3.3 Security issue and modifications to the Flexcast protocol

The protocol we described assumes that receivers know the correct sender address.
If a receiver sends join packets destined to an incorrect sender address, the entries
made in the delivery tables at Flexcast nodes are never used, but are kept until the
receiver stops sending the join packets. This situation could occur when a user
types an incorrect address in the sender address field of his receiver application
software.

An easy way to overcome this problem is to introduce a new packet by which
the receiver confirms the existence of the sender: the receiver transmits the packet
destined to the sender, and, only when receiving an acknowledgment packet from
the sender or the nearest Flexcast node that is already a member of the multicast
tree, starts to send join packets destined to the sender. However, if we assume
malicious receivers, they can still easily consume the resource of Flexcast nodes
by deliberately transmitting join packets destined to incorrect addresses so that
their source addresses can be registered in the delivery tables of the nodes. In
what follows, we will propose two modifications to the Flexcast protocol. The key
idea of these modifications is to allow the state (i.e., the content of the delivery
table) of any Flexcast node to be changed only when both a packet from a receiver
and a packet from the sender arrive at the node within a prespecified interval.
This makes it difficult for every end host to change the state of the Flexcast node
without collaboration.

The modified protocols still have the same advantages as the basic proto-
col, since they use only IP-unicast packets and adopt the hierarchical keep-alive
mechanism. Furthermore, they can work even if reverse-paths are different from
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forward-paths.

3.3.1 First Modification

The outline of the modification is as follows. Initially, no Flexcast nodes are
permitted to register the sources of join packets. For each channel, permission for
registration is given by special packets, called permission packets, which are sent
by sender S (or the Flexcast nodes F which already have the permission), when,
from the information carried by a received join packet, S (or F ) detects that there
is at least one Flexcast node that does not have the permission on the path from
the source of the join packet to S (or F ).

Concretely, every join packet includes a list of the Flexcast nodes through
which the join packet passed and that do not have the permission. We call this list
a host list. The host list will be updated each time the join packet passes through
a Flexcast node that does not have the permission. Consider a join packet for
channel (S,G) that arrives at a Flexcast node (or the sender) F . If F already has
at least one entry for (S,G) in the delivery table and the host list is empty, the
source is registered in the delivery table. This situation implies that there are no
Flexcast nodes that do not have the permission on the path from the source of
the join packet to F . If F is not the sender, it forwards the join packet toward
the sender after setting the source address to F . If F has an entry for (S,G) in
the delivery table, but the host list is NOT empty, there is at least one Flexcast
node F ′ that does not have the permission on the path from the source to F . In
this case, F sends a permission packet to the last host included in the host list
carried by the received join packet; the permission packet conveys the host list
obtained by removing the last host from the host list. The permission packet gives
F ′ permission to register the source of join packets for (S,G). The permission
packet is routed according to the host list it conveys, and gives the permission to
all hosts included in the host list. It is stressed that, the packet gives the permission
to all the Flexcast nodes that do not have the permission on the path from the
source of the join packet to F , even if unicast routing paths are asymmetric. If F ′

receives a join packet for (S,G) after obtaining the permission, F ′ processes the
packet in the same way as the basic Flexcast protocol: F ′ registers the source of
the packet, and forwards the join packet toward sender S after setting the source to
F ′. Figures 28 and 29 give the precise descriptions of the algorithms that process
join packets and permission packets, respectively. Delivery packets are processed
in the same way as the basic Flexcast protocol.

It is stressed that every permission packet affects no Flexcast nodes except
those included in the host list conveyed by the join packet that triggers the permis-
sion packet. It follows that malicious receivers cannot affect any Flexcast nodes
by sending join packets to randomly chosen addresses, and also, malicious senders
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Join Packet Processing Algorithm of the First Modification
1. Wait until receiving a join packet. Let J be the received packet.

Assume that J is for channel (S,G), and has source address s, destination
address S, and host list Q.

2. If F is already permitted to make entries for (S,G) in the delivery table and
Q is empty, perform the next steps and go back to step 1.

(a) Register (S,G, s, t) in the delivery table, where t is the time when join
packet J was received (if there is already (S,G, s, ∗) in the delivery
table, just overwrite (S,G, s, t)).

(b) If (Tnow − Tlast(S,G)) ≥ D, set Tlast(S,G) to Tnow and
send a join packet for (S,G) having source address F , destination
address S, and an empty host list,
where Tnow is the current time, Tlast(S,G) is the time when F sent the
last join packet for (S,G).

3. If F is already permitted to make entries for (S,G) in the delivery table and
Q is NOT empty, perform the next steps and go back to step 1.

(a) Let F ′ be the last host in Q and remove the host from Q.

(b) Transmit a permission packet for (S,G) that has source address F ,
destination address F ′, and host list Q.

4. Append F to the end of Q.
Send a join packet for (S,G) having source address s, destination address
S, and host list Q.

Figure 28: The algorithm that processes join packets of the first modification to
the Flexcast protocol at Flexcast node F .

cannot affect any Flexcast nodes by using permission packets if they do not know
exact addresses of the Flexcast nodes. The disadvantage of this solution is that the
sizes of join packets and permission packets are proportional to the length of the
path from a receiver to the sender or the nearest Flexcast node having the permis-
sion. This may increase the load of Flexcast nodes when they process join packets
or permission packets, while this modification can work even if the host list is long
since a standard implementation automatically divides a large UDP datagram into
small IP packets.

By using Figure 30, we describe the behavior of the protocol in the situation
where there are some Flexcast nodes having no permission on the path from re-
ceiver R1 to sender S. Suppose that receiver R1 starts to periodically send join
packets that have the “empty” host lists (1. in the figure). The join packet sent by
R1 goes through F2 and F1 and arrives at S. Sender S then sends a permission
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Permission Packet Processing Algorithm of the First Modification

1. Wait until receiving a permission packet. Let P be the received permission
packet.
Assume that P is for (S,G), and has source address s, destination address
F , and host list Q.

2. Give permission for (S,G) to F ; the permission expires when time X has
passed since the last join packet arrived.

3. If Q is empty, discard P and go back to step 1; othewise perform the next
steps.

(a) For the last host F ′ in Q, remove F ′ from Q.

(b) Forward a permission packet for (S,G) that has destination F ′ and
host listQ (the source address of the packet may optionally be changed
from s to F ).

Figure 29: The algorithm that processes permission packets of the first modifi-
cation to the Flexcast protocol at Flexcast node F . X is the expiration interval
determined by appropriate heuristics (one of such heuristics is described in 3.2.4).

packet for (S,G) to the last host in the host list conveyed by the join packet (2. in
the figure). The permission packet carries the host list obtained by removing the
last host from the host list extracted from the join packet. When this permission
packet arrives at F1, it gives the permission to F1 (3. in the figure). Then F1
transmits a permission packet to the last host in the host list carried by the re-
ceived permission packet. The permission packet sent by F1 includes the host list
obtained by removing the last host from the host list extracted from the received
permission packet, i.e., an “empty” host list in this case. When the permission
packet reaches F2, it gives the permission to F2. If F2 receives a join packet
for (S,G) after obtaining the permission, F2 registers the source of the packet (4.
in the figure) and forwards the join packet destined to sender S after setting the
source to F2. It is stressed that the host list carried by this packet is empty, which
enables the source of the join packet to be registered at F1. These operations
construct a multicast tree, and finally R1 receives delivery packets.

Figure 31 shows the situation where a new receiver R2 is joining the multicast
tree that has already been constrcuted. R2 periodically sends join packets for
(S,G) destined to S with an “empty” host list (7. in the figure). When F2 receives
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the join packet, F2 concludes that there are no Flexcast nodes that do not have the
permission on the path from the source of the join packet. Hence, F2 registers the
source and starts to send delivery packets to R2.

3.3.2 Second Modification

Another modification is secure as much as the first modification, and uses only
join packets and delivery packets. The length of join packets and delivery packets
is independent of the topology of networks. A unique feature is that delivery
packets as well as join packets contribute to constructing a multicast tree. As the
first modification, initially, no Flexcast nodes are permitted to register the sources
of join packets. For each channel (S,G), the permission for registration is given
by delivery packets, which are sent by sender S (or Flexcast node F which already
has the permission). When a join packet arrives at a Flexcast node F ′ that does not
have the permission, the packet is forwarded after the source is set to F ′. When the
join packet finally arrives at Flexcast node F that has the permission, the source
of the join packet is registered in the delivery table. Everytime a delivery packet
reaches this node from its parent, a copy of the packet is sent to each child by
referring to the delivery table. When the delivery packet arrives at F ′, the packet
gives the permission to F ′ since F ′ does not have the permission yet, and the
packet is then discarded. When a join packet arrives at F ′ after that, its source
address is registered in the delivery table. By repeating this procedure, a multicast
tree is constructed. More precisely, Figures 32 and 33 describe the algorithms that
process join packets and delivery packets, respectively, at Flexcast node F .

Figure 34 shows an example of the behavior of the second modification. Sup-
pose that receiver R1 sends a join packet for (S,G) destined to sender S (1. in
the figure). The join packet is routed along F2 and F1, and reaches S (2. in
the figure), since F2 and F1 do not have the permission for (S,G). It is stressed
that, before F1 and F2 transmit the join packet, F1 and F2 change the source
address of the packet to themselves, respectively. When the join packet reaches
S, the source F1 of the packet is registered in the delivery table of S. Sender S
then sends delivery packets for (S,G) to F1 (3. in the figure). When the delivery
packets arrive at F1, it gives F1 the permission for (S,G) (4. in the figure). If
a join packet arrives at F1 after F1 was given the permission, the source F2 of
the join packet is registered in the delivery table at F1 (7. in the figure), which
enables F1 to send delivery packets to F2 (8. in the figure). The delivery packets
will give the permission for (S,G) to F2. In this way, receiver R1 can finally
receive delivery packets. Figure 35 describes the situation where a join packet for
channel (S,G) reaches a Flexcast node that already has the permission for (S,G).
Suppose that receiver R2 sends a join packet for (S,G). When F3 receives the
packet, F3 changes the source of the packet to itself and forwards it toward S (12.
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Figure 30: An example of the behavior of the first modification to the Flexcast
protocol.
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Figure 31: Another example of the behavior of the first modification.

in the figure). When F2 receives the packet, it registers its source (since it already
has the permission) and starts to transmit delivery packets for (S,G) to F3, which
will give the permission to F3 (13. in the figure). F3 then registers the source
of a join packet that reaches F3 after F3 gets the permission (14. in the figure).
Finally, F3 sends delivery packets to R2.

The only disadvantage of this protocol is that receiver R has to send at least
m join packets in the worst case before receiving delivery packets, where m is
the length of the path from R to sender S. This may cause a large delay. If
m = 20 and the periodicity of sending join packets is one second, it takes at
least 20 seconds for a receiver to receive the first delivery packet. This problem
is solved by keeping the periodicity small until receiving the first delivery packet.
This initial small periodicity can be variable depending on the length of the path
from a receiver to the nearest Flexcast node having the permission, though the
length has to be measured by an appropriate protocol.

The protocol uses only two type of packets: join and delivery packets. Hence
the delay taken for receivers to start to receive delivery packets depends on the
time interval between consecutive delivery packets. In many cases, this causes no
problem, since the interval is usually sufficiently small. However, it is possible to
prepare special packets to give the permission to Flexcast nodes.
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Join Packet Processing Algorithm of the Second Modification

1. Wait until receiving a join packet. Let J be the received join packet.
Assume that J is for channel (S,G) and has source address s and destination
address S.

2. If there is at least one entry for (S,G) or F is already permitted to register
an entry of (S,G) in the delivery table, perform the next steps.

(a) Register (S,G, s, t) in the delivery table, where t is the time when
the join packet J was received (if there is already (S,G, s, ∗) in the
delivery table, just overwrite (S,G, s, t)).

(b) if (Tnow − Tlast(S,G)) ≥ D,
set Tlast(S,G) to Tnow and
send a join packet for (S,G) having source address F and destination
address S,
where Tnow is the current time, and Tlast(S,G) is the time when F sent
the last join packet for (S,G).

Otherwise send a join packet for (S,G) having source address F and desti-
nation address S.

Figure 32: The algorithm that processes join packets of the second modification
to the Flexcast protocol at Flexcast node F .

3.4 Tunneling function

Senders and receivers need to be able to run the Flexcast protocol, while there are
many commercial/free application softwares for IP multicast senders/receivers.
Hence it would be useful to provide a system that enables the users of IP multicast
application softwares to enjoy the benefit of Flexcast. In what follows, we de-
scribe a Flexcast-IP-multicast bidirectional translator, called a Flexcast gateway.
An example of Flexcast gateway use is shown in Figure 36, where S and R are
Flexcast gateways. They are on the segments connected to IP multicast sender
X and IP multicast receivers, respectively. Let Z be one of such IP multicast re-
ceivers. From the viewpoint of Flexcast, sender-side gateway S and receiver-side
gateR are a Flexcast sender and a Flexcast receiver, respectively. For IP multicast
senders/receivers, S and R provide a tunnel through which IP multicast packets
from X pass to receiver Z. The tunnel is a tree-shaped one connecting S and
multiple R’s, since the tunnel itself is a multicast tree of Flexcast. This achieves
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Delivery Packet Processing Algorithm of the Second Modification

1. Wait until receiving a delivery packet. Let K be the received delivery
packet.
Assume that K is for channel (S,G) and has source address S and destina-
tion address F .

2. If there is at least one entry of the form (S,G, ∗, ∗) in the delivery table,
perform the next step.

• For every entry (S,G, s, t) for channel (S,G) in the delivery table,
forward delivery packet K after changing its destination address to s
if (Tnow − t) ≤ X , where Tnow is the current time, otherwise remove
entry (S,G, s, t) from the delivery table.

Otherwise, give F the permission to register entries for (S,G) in the deliv-
ery table and discard K; the permission expires when time X has passed
since the last join packet arrived.

Figure 33: The algorithm that processes delivery packets of the second modifica-
tion to the Flexcast protocol at Flexcast node F , whereX is the expiration interval
determined by appropriate heuristics (one of such heuristics is described in 3.2.4).

remarkable efficiency, compared with ordinary unicast tunnels between IP mul-
ticast routers; the tunnels are usually configured manually for every pair of IP
multicast routers. Here we assume that IP multicast senders and receivers speak
the version 3 of Internet Group Management Protocol (IGMPv3) [62] (for IPv6,
we can assume the version 2 of Multicast Listener Discovery (MLD) [188], since
it has also a similar mechanism to IGMPv3). In what follows, we will describe
the behavior of the “Flexcast tunneling.”

Receiver-side Flexcast gateway R works as an ordianry IP multicast router on
a local segment: R issues IGMP queries to periodically check if there are IP mul-
ticast receivers which want to receive IP multicast data. If R detects an IGMP
membership report, it extracts sender address S and group id G (IP multicast
address) from the report, and starts to send join packets of Flexcast for channel
(S,G) destined to sender-side gateway S. When S receives join packets request-
ing channel (S,G), it picks up IP multicast packets for G that are passing through
the local segment connected to S, encapsulates them in delivery packets of Flex-
cast, and sends the delivery packets to the children of S according to the Flexcast
protocol. When R receives delivery packets for (S,G), it extracts the IP multi-
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cast packets from the delivery packets and releases the IP multicast packets on the
local segment it is connected to. Finally, IP multicast receiver Z can get the IP
multicast packets. Figure 37 describes the outline of the protocol sequence of the
Flexcast tunneling. It follows that the “Flexcast tunnels” are automatically created
and removed under the control of IP multicast receivers.

When using the version 2 of Internet Group Management Protocol
(IGMPv2) [89], gateway R cannot extract sender address S, since IGMPv2 mem-
bership reports contain no sender address. In this case, we need a system to re-
solve the sender address from the group id carried by the reports, which requires
a special system to guarantee the global uniqueness of every group id. This issue
reveals the limitation of the current IP multicast system based on IGMPv2.

3.5 Implementation of Flexcast nodes

Inoue et al. [109] proposed a scalable and fault-tolerant way of implementing
a Flexcast node at low cost. Their implementation is based on the technology
of cluster computing consisting of ordinary personal computers (PCs), which has
been developed for a high performance search engine and GRID computing. They
implemented a Flexcast node as a cluster of Linux PCs and examined them in
experiments. The experimental results showed that forwarding performance and
fault-tolerance are significantly enhanced by cluster computing. In what follows,
we review their technology.

In a general cluster-based system, users’ requests are distributed to each node
in the cluster (or cluster node) by a front-end node, called a load-balancer, in a way
of balancing the load of the cluster nodes. After cluster nodes process the requests,
the answers to the request are relayed by the load-balancer to the users that issued
them. When the load of distributing the requests is much heavier than that of
just forwarding the answers, this approach is effective. However, if the answer
causes quite heavy traffic such as moving picture stream, even just forwarding
the answer might burden the load-balancer with heavy load. To decrease the load
imposed on the load-balancer, a novel approach called the direct sender return
was developed: the answers bypass the load-balancer and are directly returned
to the users. Inoue et al. modified this approach for their cluster-based Flexcast
node: while join packets are distributed by the load-balancer, delivery packets
are directly delivered from/to the cluster nodes without passing through the load-
balancer. The same technique can be applied to Flexcast gatways.

They implemented a Flexcast node on a set of PCs connected to a real router
in use, as illustrated in Figure 38, where the router is called the mother router.
Each of the PCs works as either a load-balancer or a cluster node. Hereafter, we
call a cluster node a splitter, since the cluster node splits stream in this case.

Basically, the functions of a splitter are the same as those of the Flexcast node
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Figure 38: An implementation of a cluster-based Flexcast node [109].

except that it periodically sends keepalive packets to the load-balancer. The load-
balancer maintains a node table, which includes active splitters and the channels
assigned to each splitter. A splitter that stopped sending keepalive packets ex-
pires, and is removed from the node table. For high fault tolerancy, multiple
load-balancers can be installed in a single cluster together with a redundancy pro-
tocol like Virtual Router Redundancy Protocol (VRRP) [98]. In what follows,
we briefly introduce the behavior of the system when a single load-balancer is
installed.

The mother router is configured to examine the port number of UDP packets
passing through it, and intercepts the join packets of Flexcast. The intercepted
join packet is forwarded to the load-balancer. The load-balancer consults the node
table and finds the splitter assigned to the requested channel. If no splitter has
been assigned to the channel, the load-balancer uses an arbitrary algorithm to
select a splitter for the channel. Finally, the load-balancer forwards the packet
to the assigned splitter without changing the source address of the packet. The
splitter then registers the source address in its delivery table, and creates a new
join packet to be sent destined to the sender, if necessary. In this way, join packets
are distributed among the splitters in the cluster. Delivery packets from the parent
Flexcast node are directly delivered to the appropriate splitters without passing
through the load-balancer.
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3.6 Experiments over the Internet

Experiments on stream delivery using the basic version of the Flexcast proto-
col were conducted among three widely dispersed locations with senders and re-
ceivers located at each site. We observed the response time of Flexcast, and the
influence of communication delay jitter and the packet-loss rate, on the Flexcast
operations. The results show that, in the absence of unusual congestion on any
communication links, the Flexcast parameters such as the expiration time inter-
val, offer sufficient margins, confirming the robustness and stability of the Flex-
cast protocol.

3.6.1 Environment

We conducted streaming experiments [181, 107, 108, 71] over Internet2 [110] and
NTT’s4 experimental fiber-network connecting Japan and the U.S., called GEM-
net. Since GEMnet uses ATM (Asynchronous Transfer Mode), the available band-
width of one direction is independent of that of the other direction. Senders and re-
ceivers were located in NTT Yokosuka R&D Center (hereafter called Yokosuka),
the University of Southern California (USC), Los Angeles, and the University of
Illinois (UIC), Chicago. Yokosuka was connected to GEMnet; USC and UIC were
connected to Internet2. Since GEMnet and Internet2 had a bidirectional connec-
tion point in Sunnyvale, U.S., USC and UIC could communicate with Yokosuka
via Internet2 and GEMnet. GEMnet had a bottleneck link between Japan and the
U.S.; the link had a constant bit rate (CBR) of 17 Mbps in each direction. This
link was also the bottleneck of the entire network used in the experiments, since
Internet2 offered 10-Gbps links while the local networks of USC and UIC had
1-Gbps links. The main purpose of the experiments was to verify that the Flex-
cast protocol could handle widely separated locations. The distances involved
are: Yokosuka to Chicago: 12,000 km, Yokosuka to Los Angeles: 9,000 km, and
Chicago to Los Angeles: 4,000 km. Figure 39 schematically shows the networks
used. Each site had one or two Flexcast gateways on every local segment at the
site. In this experiment, we did not place any Flexcast nodes between the gate-
ways; the gateways directly communicated with each other. Each gateway had
IP-multicast senders and receivers on the local segment connected to the gate-
way. Since there were no Flexcast nodes between the gateways, two streams of
the same contents passed through GEMnet when a sender in Yokosuka serviced
receivers in Los Angeles and Chicago. This was not a problem because the exper-
iment was intended to verify the correct operation of the Flexcast protocol over a
very-wide-area network, not to measure its scalability in terms of the number of
receivers. We observed traffic at the three sites and checked the quality of moving

4Nippon Telegraph and Telephone Corporation (http://www.ntt.co.jp/).
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Figure 39: Schematic view of the network.

CODEC type Average bandwidth
System 1 MPEG2 7 Mbps
System 2 MS Windows Media ver. 7 625 Kbps

Table 4: Commercial IP-multicast sender/receiver systems used in the experi-
ments.

pictures delivered by the Flexcast protocol.

3.6.2 Parameters and metrics

We used software-based Flexcast gateways implemented on personal computers
(PCs) and two types of commercial IP-multicast sender/receiver systems as shown
in Table 4. The average bandwidth of an MPEG2 stream was 7 Mbps and that of
MS Windows Media version 7 was 625 Kbps. We measured the following metrics:

• Response time: the interval between the time when a receiver-side gateway
sent the first join packet and the time when the gateway received the first
delivery packet,
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• Join-packet sending-interval: the time interval between two consecutive
join packets sent by a sender, which was configured to be 1.0 second,

• Join-packet arrival-interval: the time interval between two consecutive join
packets as received by a sender-side gateway,

• Packet-loss rate: the percentage of packets lost while they were passing
through the networks.

Response time includes the round trip time (RTT) between sender-side and
receiver-side gateways, and the delay Δ at the sender-side gateway, where RTT
is the sum of communication delay from a receiver-side gateway to a sender-side
gateway and that from the latter to the former, and Δ includes the waiting-time un-
til the sender-side gateway receives IP-multicast packets and the processing time
taken to encapsulate the IP-multicast packets in delivery packets and transmit the
delivery packets.

We measured the response time and join packet sending-/arrival- interval by
using TCPDUMP [2], while we observed the packet-loss rate by serially num-
bering packets at sender-side gateways and checking the packet-number of each
packet received at receiver-side gateways.

3.6.3 Scenarios

The experiments were conducted using the following two scenarios:

Scenario A (Figure 40): MPEG2 live streams were simultaneously delivered to
Chicago and Yokosuka from Los Angeles. Only 7.5-Mbps traffic was sup-
posed to flow through the Japan-U.S. bottleneck link, which had the band-
width of 17 Mbps in each direction. This scenario assessed a congestion-
free situation.

Scenario B (Figure 41): Three sets of contents were simultaneously delivered:
MPEG2 live streams were delivered to Chicago and Los Angeles from
Yokosuka, another MPEG2 live stream to Yokosuka from Los Angeles, and
Windows Media live streams to Chicago and Los Angeles from Yokosuka.
Thus, over 16 Mbps of traffic had to pass from Japan to the U.S., while 7.5
Mbps of traffic was supposed to pass from the U.S. to Japan. This scenario
corresponded to a congested situation.
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Figure 40: Scenario A
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Response time (Av.) [ms] 136
Join-packet sending-interval (av.) [s] 1.00
Join-packet sending-interval (dev.) [s] 2.15E-03
Join-packet arrival-interval (av.) [sec] 1.00
Join-packet arrival-interval (dev.) [s] 2.12E-03
Packet-loss rate (Yokosuka→ Los Angeles) % 0
Packet-loss rate (Los Angeles→ Yokosuka) % 5

Table 5: Measured data of MPEG2 stream delivered by Flexcast from Los Angels
to Yokosuka in scenario A.

3.6.4 Data analysis (scenario A)

The measured data is summarized in Table 5. The standard deviation of the join-
packet arrival-interval was very small (below 10 milliseconds); the join-packet
arrival-interval was almost the same as the join-packet sending-interval. This
confirms the good stability of the Flexcast protocol, since the protocol allows the
intervals of consecutive join packets to be up to 2 seconds in the current setting.
The packet-loss rates in the directions from Yokosuka to Los Angeles and from
Los Angeles to Yokosuka were 0% and 5%, respectively. Since join packets were
transmitted from Yokosuka to Los Angeles, the observed packet loss rate implies
that no join packets were lost. The packet-loss rate of 5% may be due to the
burstiness of MPEG2, whose peak rate exceeded the bandwidth of the bottleneck
link.

The round-trip time (RTT) between Los Angeles and Yokosuka was 128 mil-
liseconds. This RTT is included in the response time of 136 milliseconds. The
delay at the Yokosuka gateway would be 136 − 128 = 8 milliseconds; this in-
cludes the waiting-time of IP-multicast packets and the processing time.

3.6.5 Data analysis (scenario B)

The traffic rate through the bottleneck link exceeded 16 Mbps in the Japan-to-
U.S. direction. Since streaming traffic is very bursty in general, this situation
was critical even though the bandwidth of GEMnet was 17 Mbps (CBR). We
investigated the influence of the congestion of the bottleneck link on both join and
delivery packets.

We observed the join packets from Yokosuka, since the congestion occurred
in the Japan-to-U.S. direction. The measured data is summarized in Table 6. The
standard deviation of the join-packet arrival-interval is extremely large compared
to that of the join-packet sending-interval. This is due to the communication delay
jitter and the high packet-loss rate (14%) caused by the congestion. Figure 42 plots
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Response time (av.) [ms] 143
Join-packet sending-interval (av.) [s] 1.00
Join-packet sending-interval (dev.)[s] 2.69E-03
Join-packet arrival-interval (av.) [s] 1.12
Join-packet arrival-interval (dev.)[s] 0.138
Packet-loss rate (Yokosuka→ Los Angeles)(%) 14
Packet-loss rate (Los Angeles→ Yokosuka)(%) 5.2

Table 6: Measured data of MPEG2 stream delivered by Flexcast from Los Angeles
to Yokosuka in scenario B.

the join-packet sending/arriving intervals. The largest and second-largest values
of the join-packet arrival-interval were almost integral, i.e., around 3 (second) and
2 (second), respectively. This means that some join packets may have been lost,
since the join-packet sending-interval was set to 1 second.

3.7 Summary

IP-multicast protocols have been standardized and there are many application soft-
wares and routers that conform to IP multicast. Nevertheless, there are still some
difficulties in using IP multicast over an internetwork. These difficulties result
essentially from using IP-multicast addresses that are quite different from unicast
addresses. Flexcast is an IP-unicast-based multicast that works across the network
and application layers, and uses only IP-unicast packets, which enables progres-
sive deployment over existing IP networks and solves the issue of the uniqueness
of multicast group addresses.

To construct a high-quality multicast tree, a straightforward idea is to agglom-
erate the maximal common segments of the forward-paths (i.e., the unicast routing
paths from the multicast sender to receivers). However, this forces the sender to
transmit a packet to every receiver to assess the maximal common segments each
time the receiver joins the multicast tree, since each node has only a part of the
information on unicast routing, and furthermore, such information may dynami-
cally change. It would follow that the sender is burdened with heavy load if many
receivers simultaneously join, and that multicast protocols are likely to be com-
plicated. Therefore, sharing the maximal common segments of the reverse-paths
(i.e., the unicast routing paths from receivers to the sender) would be a reasonable
strategy, if there is little difference in quality between forward-paths and reverse-
paths.

Flexcast constructs a multicast tree by sharing the maximal common segments
of reverse-paths and maintains it by a hierarchical keep-alive mechanism. Flexcast



80 STREAMING-TYPE MULTI-POINT COMMUNICATION

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

Time(s)

J
o
in
 
p
a
c
k
e
t
 
s
e
n
d
in
g
/
a
r
r
iv
a
l 
in
t
e
r
v
a
l 
(
s
)

Join packet arrival interval

Join packet sending interval

Figure 42: Join-packet sending/arrival-interval of scenario B.

protocol provides significant adaptability against the change of unicast routes, the
moving of receivers and senders, and the frequent joining and leaving of receivers,
with minimum rearrangement of the tree.

Many IP-unicast-based multicast protocols including the basic protocol of
Flexcast allow the packets from end-hosts (receivers or senders) to change the
states of network nodes. This fact may cause a serious security issue if we assume
malicious users that try to collapse the multicast system by using the packets.
Against this issue, we have proposed two modifications to the Flexcast protocol.

The key idea is that the states (i.e., the contents of the delivery table) of the
Flexcast nodes can be changed only when both a packet from a receiver and a
packet from the corresponding sender arrive at the node. This makes it difficult
for each end-hosts to change the states of the Flexcast nodes without collaboration

In the Flexcast protocol and its modifications, any Flexcast node needs to
change the destination of every delivery packet even if the node has only one
child. This could impose a heavier load on the node than just unicast-routing the
delivery packet. A modification to the Flexcast protocol was proposed in [106] to
allow a Flexcast node to just unicast-route delivery packets only when the node
has one child by using a similar idea introduced in [177, 72].

Streaming experiments were conducted to assess the robustness and stability
of the Flexcast protocol when used to deliver streaming data to widely dispersed
locations. We placed streaming servers and receivers in three locations: Yokosuka
in Japan and Chicago and Los Angeles in the U.S.. The results show that the jitter
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of communication delay was much smaller than expected and that the current con-
figuration of the Flexcast parameters offer sufficient margin if no communication
links experience unusual congestion. Good picture quality and quick response
time were also confirmed in the experiments.

Some other experiments were also conducted. It was reported in [184] that
streaming data of 1 Mbps was successfully delivered to 1,000 receiver-PC’s. It
was also demonstrated in [116, 178, 147] that Flexcast worked well on an MPLS
Network and/or for particular broad-band applications.

Basically, Flexcast has no transmission-error correction mechanisms, but can
be combined with various error correction technologies, including Automatic
Repeat reQuest (ARQ) and Forward Error Correction (FEC) [157]. ARQ cor-
rects errors by retransmitting the packets which have some errors or dropped.
To realize reliable multicast protocols using ARQ, a variety of heuristics have
been developed to avoid concentration of retransmission request on a sender
(e.g., [129, 158]). However, ARQ may cause large delay due to the retransmis-
sion; large delay spoils the value of real-time streaming and forces us to consume
large memory space for buffering all packets following dropped packets. On the
other hand, FEC only takes time to process error correcting codes. Even in the
case of large round trip time, FEC is quite effective for real-time streaming if the
number of error/dropped packets is so moderate that the error-correcting codes
can restore them.

Since ARQ and FEC each have own advantage, the combination of ARQ and
FEC has been also studied as a promising direction (e.g., [154]). To examine the
compatibility of Flexcast and FEC, we delivered the stream encoded by the code
introduced in [61] via Flexcast and confirmed their nice collaboration.

For the future work, we mention a couple of issues concerning protocol design.

We have shown the load balancing mechanism of Flexcast. However, this may
cause the congestion of particular communication links. Thus, it is important to
improve the mechanism so that it can decide where to split the streaming data
according to the conditions of both communication links and nodes. Of course, it
is a possible option to control admission to the multicast tree.

We have proposed a way of automatically setting expiration time in the de-
livery table of every Flexcast node, which sets expiration time to the interval that
is linear to the distance from the node to the farthest child. In a stable network,
however, this method seems to be too pessimistic. It would be interesting to de-
vise a more appropriate way of setting expiration time in a stable network, say, by
efficiently assessing the conditions of communication links.
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3.8 A brief survey of multicast

Constructing a multicast tree is strongly related to the Steiner tree problem [144],
which isNP-complete even if all edge weights are identical. There are many ap-
proximation algorithms for the problem (we can find an excellent review in [99]).
In the case of multicast, however, the set of the nodes that are supposed to form
the tree cannot be assumed to be known in advance, since nodes can dynamically
join and leave the multicast group. Waxman [190] first considered this situation,
and Imase and Waxman [105] formulated it as an online problem with a request
sequence of adding or removing nodes: the dynamic Steiner tree problem. They
gave an approximation algorithm whose approximation ratio5 is within a factor
of two against an optimal algorithm if no nodes are removed from the tree. They
also proved that, if both adding and removing nodes are allowed and if the tree
cannot be rearranged, no upper bound on the approximation ratio exists. Several
algorithms [37, 17, 97] have been proposed in order to accommodate both adding
and removing nodes while rearranging the tree is allowed within some limited
cost. They assumed, however, that every node v knows the cost of the shortest
path between v and every other node v′. This assumption would be unreasonable
in an internetwork.

Multicast routing protocols over an internetwork was first introduced by
Deering [78]. He proposed extensions to two common internetwork unicast
routing algorithms, distance-vector routing and link-state routing, to support
low-delay datagram multicasting: Distance Vector Multicast Routing Protocol
(DVMRP) [189] and Multicast Open Shortest Path First (MOSPF) [150]. These
multicast routing mechanisms were, however, intended for use within regions
where the members of a group were densely distributed. When group members
are distributed sparsely across a wide area, the mechanisms are quite inefficient.
Thyagarajan and Deering [187] proposed a hierarchical version of DVMRP to
improve its efficiency. Ballardie, Francis and Crowcroft [31, 30, 29] proposed
the Core-Based-Tree (CBT) protocol that uses a single multicast tree for each
group, even if there are multiple senders in the group. Shields and Garcia-Luna-
Aceves [172] observed the basic problem of CBT with multiple cores and pro-
vided a modification to the basic protocol of CBT. The total amount of control
traffic of CBT could be modest even in the case where group members are sparsely
distributed, however, CBT can result in traffic concentration on certain links and
large delay between a pair of group members. Deering, Estrin, Farinacci, Ja-
cobson, Liu and Wei [80, 88] developed a multicast routing architecture, called
Protocol Independent Multicast Sparse Mode (PIM-SM), that can efficiently es-

5The supremum, over all instances, of max0<i≤K
A(Si)

OPT (Si)
for a request sequence of length

K, where Si is the set of clients after the ith request, A(Si) is the cost of the multicast tree for Si

constructed by on-line algorithm A, and OPT (Si) is the cost of a minimum Steiner tree for Si.
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tablish multicast trees even when receivers are sparsely distributed. The above
protocols work in the network layer and are called IP multicast, for which we can
find more comprehensive surveys in [83, 168].

Many IP multicast protocols have been standardized, however there are still
some difficulties in using IP multicast over an internetwork. To use IP-multicast,
we need special IP addresses (or Class D addresses), called IP-multicast ad-
dresses, to specify the multicast groups. However, it is difficult to administrate IP-
multicast addresses in a distributed manner to guarantee the uniqueness of each of
the addresses, since IP-multicast addresses are basically independent of the struc-
ture of networks and group members may change frequently. Furthermore, all
routers need to be able to route IP-multicast packets, which prevents the progres-
sive deployment of the multicast service in existing unicast networks. As a result,
IP-multicast is used only in closed or experimental networks such as MBone [87].

Holbrook and Cheriton developed the Source-Specific Multicast protocol
(SSM) [100], which restricts the multicast communication to one-to-many so that
it can simplify group address allocation and data distribution. More concretely,
each multicast group (or channel) is represented by a pair of a multicast sender
address and a group identifier that needs to be unique only within the sender.
Even with this restriction, the protocol still covers most of the current multicast
applications. Nevertheless, SSM does not allow the progressive deployment of
the multicast service, since all routers still need to route IP-multicast packets.
There is some work in progress specific to multicast tunneling, i.e., transferring
IP multicast packets from/to remote multicast-capable networks by encapsulating
the packets in unicast packets. Basically, however, the endpoints of tunnels have
to be manually configured, or at best, one can find the endpoints by issuing a query
to the servers administrating the gateways (i.e., end-points) of multicast-capable
networks [133].

IP-unicast-based multicast is a technology that is promising as a tool for the
progressive deployment of multicast service. It is possible for legacy routers to
be located on the paths between receivers and senders, since they use just unicast
packets. There are two types of IP-unicast-based multicast technologies: “appli-
cation layer multicast” works in the application layer while the other works across
the network and application layers. In application layer multicast [67, 121, 32],
internal nodes of a multicast tree are usually located at the edges of the network
or the receivers themselves. Each internal node terminates the streaming data,
duplicates the data and forwards it to the next internal nodes or receivers. These
processes are executed in the application layer. However, receivers and nodes
require a special mechanism to know their children and parents, since a path be-
tween the sender and a receiver in the multicast tree is not necessarily the unicast
routing path between them. This would also cause redundant routes and make the
protocol not scalable.
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There are several technologies that work across the network and application
layers [177, 192, 72, 50], which all restrict multicast communication to one-to-
many. The advantage of this kind of multicast protocols is to use the unicast
routing in order to construct multicast trees. It follows that, basically, they can
construct shortest-path trees based on the unicast routing; they also enjoy other
benefits such as fault-tolerant routing that the unicast routing protocols provide.
Stoica, Eugene and Zhang proposed a protocol called REUNITE [177], which re-
cursively constructs a multicast tree for each channel defined as a pair of a sender
address and a group identifier that needs to be unique only within the sender.
REUNITE uses the unicast routing path from the sender to the receiver that first
joined as the trunk of the multicast tree. Thus, all paths from the sender to re-
ceivers may not be optimal, and the leaving of the first receiver may cause drastic
reconstruction of the tree, leading to instability. Furthermore, asymmetric routing
leads REUNITE to unneeded packet duplications on certain links (an example is
given in [72]). Costa, Fdida and Duarte [72] developed the Hop-By-Hop protocol
(HBH) by modifying REUNITE to avoid the instability of REUNITE. The mul-
ticast tree of HBH seems to be the best in quality even in asymmetric networks,
since HBH constructs forward-path-based shortest path trees: the path from the
sender to every receiver in the tree is the unicast path from the sender to the re-
ceiver. To realize this optimality of the tree, however, the sender needs to update
the tree each time a new receiver joins the tree. Furthermore, it is possible in a cer-
tain situation that a receiver cannot receive the streaming data even if it is sending
join messages, as indicated in [50]. Wen, Griffioen and Calvert [192] gave a pro-
tocol that can construct forward-path-based shortest-path trees by issuing packets
for probing the network. The probing packets are also used when nodes attempt
to move the branch points in a multicast tree. However, the sender and receivers
need to exchange many probing packets to gather information on network topol-
ogy and to negotiate which branch point should be moved. While some heuristics
to reduce the probing packets were given, the scalability of the protocol would be
limited to some extent.

For the multicast of a small number of receivers, there are protocols that have
a completely different idea from that of the above protocols. Xcast [46, 51] lists
all the receivers’ addresses in the header of packets sent by senders. Each Xcast-
aware router along the way parses the header, partitions the destinations with re-
spect to next hops, and forwards a copy of the packet with an appropriate Xcast
header to each next hop. Boudani and Cousin [50] proposed a similar approach,
but they separated control packets and data packets for efficiency.
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4 Quantum Multi-Point Communication
– Leader Election in Anonymous Networks –

This section discusses quantum multi-point communication by considering the
leader election problem in the anonymous setting.

4.1 Preliminaries

4.1.1 Quantum Computation

Here we briefly introduce quantum computation (for more detailed introduction,
see [153, 126]). Suppose that there is a system consisting of q components, each
of which has two states, say 0 or 1. If the system is subject to classical physics,
q bits are sufficient to describe a state of the system. However, in a quantum
system, 2q complex numbers are required to describe a state of the system. To be
more precise, each state of the quantum system is a unit-length vector of the 2q-
dimensional Hilbert space. For any basis {|B0〉, . . . , |B2q−1〉} of the space, every
state can be represented by

2q−1∑
i=0

αi|Bi〉,

where complex number αi, called amplitude, holds
∑

i |αi|2 = 1. Each com-
ponent of the quantum system is called a qubit, which is a unit of quantum
information and computation. There is a simple basis in which every basis
state |Bi〉 corresponds to one of 2q possible classical positions in the space:
(i0, i2, . . . , iq−1) ∈ {0, 1}q. We often denote |Bi〉 by

|i0〉 ⊗ |i2〉 ⊗ · · · ⊗ |iq−1〉,

|i0〉|i2〉 · · · |iq−1〉,
or

|i0i2 · · · iq−1〉,
where ⊗ denotes the tensor product. This basis is called the computational basis.

If the quantum system is measured with respect to any basis {B0, . . . , B2q−1},
the probability of observing basis state |Bi〉 is |αi|2. As a result of measurement,
the state is projected on the observed basis state. Measurement can also be per-
formed on a part of the system or some of the qubits forming the system. Let∑2q−1

i=0 αi|Bi〉 be |φ0〉|0〉 + |φ1〉|1〉. If we measure the last qubit with respect to
basis (|0〉, |1〉), we obtain |0〉 with probability 〈φ0|φ0〉 and |1〉 with probability
〈φ1|φ1〉, where 〈φ|ψ〉 is the inner product of vectors |φ〉 and |ψ〉, leaving post-
measurement states are |φ0〉/

√〈φ0|φ0〉 and |φ1〉/
√〈φ1|φ1〉, respectively. In the
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same way, we measure the system with respect to other bases. In particular, we
call ( |0〉+ |1〉√

2
,
|0〉 − |1〉√

2

)
the Hadamard basis of the 2-dimensional Hilbert space, denoted by (|+〉, |−〉). If∑2n−1

i=0 αi|Bi〉 is expressed as |φ+〉|+〉+ |φ−〉|−〉, by measuring the last qubit with
respect to the Hadamard basis, we observe |+〉 with probability 〈φ+|φ+〉 and |−〉
with probability 〈φ−|φ−〉, leaving post-measurement states are |φ+〉/

√〈φ+|φ+〉
and |φ−〉/

√〈φ−|φ−〉, respectively.
In order to perform computation over the quantum system, we must be able to

change the state of the system. The laws of quantum mechanics permit only uni-
tary transformations over the Hilbert space. These transformations are represented
by unitary matrices, where a unitary matrix is one whose conjugate transpose is
equal to its inverse.

4.1.2 The distributed network model

A distributed system (or network) is composed of multiple parties and bidirec-
tional classical communication links connecting parties. In a quantum distributed
system, every party can perform quantum computation and communication, and
each adjacent pair of parties has a bidirectional quantum communication link be-
tween them. When the parties and links are regarded as nodes and edges, re-
spectively, the topology of the distributed system is expressed by an undirected
connected graph, denoted by G = G(V,E). In what follows, we may identify
each party/link with its corresponding node/edge in the underlying graph for the
system, if it is not confusing. Every party has ports corresponding one-to-one to
communication links incident to the party. Every port of party l has a unique label
i, (1 ≤ i ≤ dl), where dl is the number of parties adjacent to l. More formally, G
has a port numbering, which is a set σ of functions {σ[v] | v ∈ V } such that, for
each node v of degree dv, σ[v] is a bijection from the set of edges incident to v to
{1, 2, . . . , dv}. It is stressed that each function σ[v] may be defined independently
of the others. Just for ease of explanation, we assume that port i corresponds to
the link connected to the ith adjacent party of party l. In our model, each party
knows the number of his ports and the party can appropriately choose one of his
ports whenever he transmits or receives a message.

Initially, every party has local information, such as his local state, and global
information, such as the number of nodes in the system (or his upper bound).
Every party runs the same algorithm, which has local and global information as
its arguments. If all parties have the same local and global information except
the number of ports the parties have, the system is said to be anonymous. This is
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essentially equivalent to the situation in which every party has the same identifier
since we can regard the local/global information of the party as his identifier.

Traditionally, the distributed system is either synchronous or asynchronous.
In the synchronous case, message passing is performed synchronously. The unit
interval of synchronization is called a round, which is the combination of the
following two steps [138], where two functions that generate messages and change
local states are defined by the algorithm invoked by each party: (1) each party
changes the local state as a function of the current local state and the incoming
messages, and removes the messages from the ports; (2) each party generates
messages and decides ports through which the messages should be sent as another
function of the current local state, and sends the messages via the ports. If message
passing is performed synchronously, a distributed system is called synchronous.

4.1.3 Leader election problem in anonymous networks

The leader election problem is formally defined as follows.

Definition 5 (Leader Election Problem (LEn)) Suppose that there is an n-party
distributed system with the underlying graph G, and that each party i ∈
{1, 2, . . . , n} in the system has a variable xi initialized to some constant ci. For a
certain integer k ∈ {1, 2, . . . , n}, set xk to 1 and xi = 0 for i �= k.

When each party i has his own unique identifier, i.e., ci ∈ {1, 2, . . . , n} such that
ci �= cj for i �= j, LEn can be deterministically solved in Θ(n) rounds in the
synchronous case and Θ(n log n) rounds in the asynchronous case [138].

When ci = cj for all i and j (i �= j), we say that the parties are anony-
mous and that distributed system (network) consisting of anonymous parties is
said to be anonymous. The leader election problem in an anonymous network
was first investigated by Angluin [27]. Her model is based on Milne and Milner’s
model [146], in which any adjacent two parties can toss coins, and among the two
parties a leader can exactly be elected, where “exactly” means “in bounded time
and without error.” In her model, she showed that there are anonymous networks
for which no algorithms exist that exactly solve the problem, and gave a neces-
sary and sufficient condition in terms of graph covering to exactly solve the leader
election problem. In the anonymous network model defined in subsection 4.1.2,
which does not assume coin-tossing between any adjacent parties, Yamashita and
Kameda [195] proved that, if the “symmetricity” (defined in [195]) of the network
topology is more than one, LEn cannot be solved exactly (more rigorously speak-
ing, there are some port numberings for which LEn cannot be solved exactly) by
any classical algorithm even if all parties know the topology of the network (and
thus the number of parties). Symmetricity more than one implies that, a certain
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port numbering satisfies that, for any party i, there is an automorphism on the un-
derlying graph with the port numbering that exchanges i and another party i′. This
condition holds for a broad class of graphs, including regular graphs. Formally,
the symmetricity is defined later by using “views”.

Since it is quite hard to exactly solve the problem in the classical setting, many
probabilistic algorithms were proposed. Itai and Rodeh [117, 118] gave a zero-
error algorithm for a synchronous/asynchronous unidirectional ring of size n that
is expected to take O(n)/O(n log n) rounds by O(n)/O(n log n) bit communica-
tion.

When every party knows only the upper bound of the number of the parties that
is at most twice the exact number, Itai and Rodeh [118] showed that the problem
can be solved with zero error. In general, however, they showed that there is no
zero-error classical algorithm for a ring. This impossibility result can be extended
to a general topology having cycles. They also proved that there is a bounded-
error algorithm for a ring, given an upper bound of the number of parties.

Schieber and Snir [169] gave bounded-error algorithms for any topology even
when no information on the number of parties is available, although every party
cannot detect the termination of the algorithms (such algorithms are called mes-
sage termination algorithms). Subsequently, Afek and Matias [15] described
more efficient bounded-error message termination algorithms.

Yamashita and Kameda [196] examined the case in which every party has an
identity number that is not necessarily distinct in four network models that differ
in every party’s ability to distinguish the ports through which he sends or receives
messages.

4.2 Quantum leader election algorithm I

For simplicity, we assume that the network is synchronous and each party knows
the number n of parties prior to algorithm invocation. It is easy to generalize our
algorithm to the asynchronous case and to the case where only the upper boundN
of the number of parties is given, as will be discussed at the end of this subsection.

Initially, all parties are eligible to become the unique leader. The key to solving
the leader election problem in an anonymous network is to break symmetry, i.e.,
to have just a single party possess a certain state corresponding to the leader.

First we introduce the concept of consistent and inconsistent strings. Sup-
pose that each party l has a c-bit string xl: the n parties share cn-bit string
x = x1x2 · · ·xn. For convenience, we may consider that each xl expresses
an integer, and identify string xl with the integer it expresses. Given a set
S ⊆ {1, . . . , n}, string x is said to be consistent over S if xl has the same value
for all l in S. Otherwise, x is said to be inconsistent over S. We also say that a
cn-qubit pure state |ψ〉 =

∑
x αx|x〉 shared by the n parties is consistent (incon-
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sistent) over S if αx �= 0 only for x’s that are consistent (inconsistent) over S. We
do not consider here a state in which both consistent and inconsistent strings are
superposed, since we do not use such a state in our algorithms. For a positive
integer m, we denote the pure state that is of the form of (|0m〉 + |1m〉)/√2, by
the m-cat state. When we apply the operator of the form∑

j

αj|ηj〉 �→
∑
j

αj|ηj〉 ⊗ |ηj〉

for some orthonormal basis {|ηj〉}, we just say “copy” if it is not confusing.

4.2.1 The algorithm

The algorithm repeats one procedure exactly (n− 1) times, each of which is
called a phase. In each phase, the number of eligible parties either decreases
or remains the same, but never increases or becomes zero. After (n− 1) phases,
the number of eligible parties becomes one with certainty.

Each phase has a parameter denoted by k, whose value is (n− i+ 1) in phase
i. In each phase i, let Si ⊆ {1, . . . , n} be the set of all ls such that party l is still
eligible. First, each eligible party prepares the state (|0〉+ |1〉)/√2 in register
R0, while each ineligible party prepares the state |0〉 in R0. Next every party calls
Subroutine A, followed by partial measurement. This transforms the system state,
i.e., the state in all parties’ R0s into either (|0|Si|〉+|1|Si|〉)⊗|0n−|Si|〉/√2 or a state
that is inconsistent over Si, where the first |Si| qubits represent the qubits in eligi-
ble parties’ R0s. In the former case, each eligible party calls Subroutine B, which
uses a new ancilla qubit in register R1. If k equals |Si|, Subroutine B always suc-
ceeds in transforming the |Si|-cat state in eligible parties’ R0s into a 2|Si|-qubit
state that is inconsistent over Si by using the |Si| ancilla qubits. Now, each eligible
party l measures his qubits in R0 and R1 in the computational basis to obtain (a
binary expression of) some two-bit integer zl. Parties then compute the maximum
value of zl over all eligible parties l, by calling Subroutine C. Finally, parties with
the maximum value remain eligible, while the other parties become ineligible.
More precisely, each party l having dl adjacent parties performs Algorithm I de-
scribed in Figure 43 with parameters “eligible,” n, and dl. The party who obtains
the output “eligible” is the unique leader. Precise descriptions of Subroutines A,
B, and C are to be found in 4.2.2, 4.2.3, and 4.2.4, respectively.

4.2.2 Subroutine A

Subroutine A is essentially for the purpose of checking the consistency over Si
of each string that is superposed in a quantum state shared by parties. We use a
commute operator “◦” over a set S = {0, 1, ∗,×} whose operations are summa-
rized in Table 7. Intuitively, “0” and “1” represent the possible values all eligible
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Algorithm I

Input: a classical variable status ∈ {“eligible”, “ineligible”}, integers n, d
Output: a classical variable status ∈ {“eligible”, “ineligible”}

1. Prepare one-qubit quantum registers R0, R1, and S.
2. For k := n down to 2, do the following:

2.1 If status = “eligible,” prepare the states (|0〉+ |1〉)/√2 and
|“consistent”〉 in R0 and S, otherwise prepare the states |0〉 and
|“consistent”〉 in R0 and S.

2.2 Perform Subroutine A with R0, S, status, n, and d.

2.3 Measure the qubit in S in the {|“consistent”〉, |“inconsistent”〉} basis.
If this results in |“consistent”〉 and status = “eligible,” prepare the
state |0〉 in R1 and perform Subroutine B with R0, R1, and k.

2.4 If status = “eligible,” measure the qubits in R0 and R1 in the
{|0〉, |1〉} basis to obtain a nonnegative integer z expressed by the two
bits; otherwise let z := −1.

2.5 Perform Subroutine C with z, n, and d to know the maximum value
zmax of z over all parties.
If z �= zmax, let status := “ineligible.”

3. Output status.

Figure 43: Quantum leader election algorithm I.

parties will have when the string finally turns out to be consistent; “∗” represents
“don’t care,” which means that the corresponding party has no information on
the values possessed by eligible parties; and “×” represents “inconsistent,” which
means that the corresponding party already knows that the string is inconsistent.
Although Subroutine A is essentially the same as the algorithm in [131], we give
the precise description of Subroutine A in Figure 44 for completeness.

As one can see from the description of Algorithm I, the content of S is
“consistent” whenever Subroutine A is called. Therefore, after every party fin-
ishes Subroutine A, the state shared by parties in their R0s is decomposed into
a consistent state for which each party has the content “consistent” in his S, and
an inconsistent state for which each party has the content “inconsistent” in his S.
Steps 4 and 5 are performed to disentangle work quantum registers X

(t)
i s.

The next two lemmas are for correctness and complexity.

Lemma 17 Suppose that n parties share n-qubit state |ψ〉 =
∑2n−1

i=0 αi|i〉
in n one-qubit registers R0s, where αis are any complex numbers such that
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∑2n−1
i=0 αiα

∗
i = 1. If each party runs Subroutine A with the following objects

as input: (1) R0 and another one-qubit quantum register S, which is initialized to
|0〉, (2) a classical variable status ∈ {eligible, ineligible}, (3) n and the number
d of neighbors of the party, Subroutine A then outputs R0 and S such that the
qubits in all parties’ R0s and Ss are in the state

∑2n−1
i=0 (αi|i〉 ⊗ |si〉⊗n), where si

is “consistent” if |i〉 is consistent over S, i.e., the set of indices of parties whose
status is “eligible,” and “inconsistent” otherwise.

Proof. Subroutine A just superposes an application of a reversible classical algo-
rithm to each basis state. Furthermore, no interference occurs since the contents
of R0s are never changed during the execution of the subroutine. Thus, it is suffi-
cient to prove the correctness of Subroutine A when the content of R0 is a classical
bit. It is stressed that all ancilla qubits used as work space can be disentangled by
inverting every communication and computation.

Suppose that we are given one-bit classical registers R0 and S, classical vari-
able status, and integers n and d. For any party l and a positive integer t, the
content of X

(t+1)
0,l is set to x(t)

0,l ◦ x(t)
1,l ◦ · · · ◦ x(t)

d,l in step 2.3, where X
(t)
i,l is X

(t)
i of

party l, and x(t)
i,l is the content of X

(t)
i,l . For any l, by expanding this recurrence

relation, the content of X
(n)
0,l can be expressed in the form of x(1)

0,l1
◦ · · · ◦ x(1)

0,lm
for

some m ≤ (n − 1)(n−1). Since the diameter of the underlying graph is at most
n−1, there is at least one x(1)

0,l′ in x(1)
0,l1
, . . . , x

(1)
0,lm

for each l′. Thus x(1)
0,l1
◦ · · · ◦x(1)

0,lm

is equal to x(1)
0,1 ◦ x(1)

0,2 ◦ · · · ◦ x(1)
0,n, since ◦ is commutative and associative, and

x ◦ x = x for any x ∈ {0, 1, ∗,×}.
Therefore, we can derive the following facts: (1) if and only if there are both

0 and 1 in the contents of R0s of all parties, Subroutine A outputs S =‘×’, which
will be translated into “inconsistent”; (2) if and only if there are either 0’s or 1’s
but not both in the contents of R0s (which possibly include ‘∗’), Subroutine A
outputs S =‘0’ or ‘1’, respectively, which are both translated into “consistent.” �

Lemma 18 Let |E| and D be the number of edges and the maximum degree of
the underlying graph, respectively. Subroutine A takes Θ(n) rounds and Θ(Dn)
time. The total communication complexity over all parties is Θ(|E|n).

Proof. Since step 3 takes constant time and steps 4 and 5 are just the inversions
of steps 2 and 1, respectively. We thus consider steps 1 and 2. Step 1 takes at
most Θ(Dn) time. For each t, steps 2.1 and 2.1 take Θ(D) time, and step 2.3 can
compute x(t)

0 ◦ x(t)
1 ◦ · · · ◦ x(t)

d in O(D) time by performing each ◦ one-by-one
from left to right. Hence step 2 takes Θ(Dn) time.

As for the number of rounds and communication complexity, it is sufficient to
consider just step 2, since only steps 2 and 4 involve communication and step 4 is
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Table 7: The definition of commute operator “◦.”

x y x ◦ y x y x ◦ y x y x ◦ y x y x ◦ y
0 0 0 1 0 × ∗ 0 0 × 0 ×
0 1 × 1 1 1 ∗ 1 1 × 1 ×
0 ∗ 0 1 ∗ 1 ∗ ∗ ∗ × ∗ ×
0 × × 1 × × ∗ × × × × ×

the inversion of step 2. It is easy to see that the number of rounds is Θ(n). With
regard to communication complexity, every party sends two qubit via each link
for each iteration in step 2. Hence every party needs to send Θ(nD) qubits in step
2. By summing up the number of qubits sent over all parties, the communication
complexity is Θ(|E|n). �

4.2.3 Subroutine B

Suppose that, among n parties, k parties are still eligible and share the k-cat state
(|0k〉+ |1k〉)/√2 in their R0’s. Subroutine B has the purpose of transforming the
k-cat state to an inconsistent state with certainty by using k fresh ancilla qubits
that are initialized to |0〉, when k is given. Figure 45 gives the precise description
of Subroutine B, where {Uk} and {Vk} are two families of unitary operators,

Uk =
1√
2

(
1 e−i

π
k

−eiπ
k 1

)
,

Vk =
1√

Rk + 1

⎛⎜⎜⎜⎝
1/
√

2 0
√
Rk ei

π
k /
√

2

1/
√

2 0 −√Rke
−iπ

k e−i
π
k /
√

2√
Rk 0 e−i π

2k Ik
i
√

2R2k
−√Rk

0
√
Rk + 1 0 0

⎞⎟⎟⎟⎠ ,

where Rk and Ik are the real and imaginary parts of ei
π
k , respectively.

The point is that the amplitudes of the states |00〉⊗k, |01〉⊗k, |10〉⊗k, and |11〉⊗k
shared by k eligible parties in their registers R0 and R1 are simultaneously zero
after every eligible party applies Subroutine B with parameter k, if the qubits in
R0s of all eligible parties form the k-cat state. The next two lemmas describe this
rigorously.

Instead of Uk, we give a proof for a more general case.
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Subroutine A

Input: one-qubit quantum registers R0 and S, a classical variable status ∈
{“eligible”, “ineligible”}, integers n, d

Output: one-qubit quantum registers R0 and S

1. Prepare two-qubit quantum registers
X

(1)
0 , . . . ,X

(1)
d , . . . ,X

(n−1)
0 , . . . ,X

(n−1)
d ,X

(n)
0 .

If status = “eligible,” copy the content of R0 to X
(1)
0 ; otherwise set the

content of X
(1)
0 to “∗.”

2. For t := 1 to n− 1, do the following:

2.1 Copy the content of X
(t)
0 to each of X

(t)
1 , . . . ,X

(t)
d .

2.2 Exchange the qubit in X
(t)
i with the party connected via port i for

1 ≤ i ≤ d (i.e., the original qubit in X
(t)
i is sent via port i, and the

qubit received via that port is newly set in X
(t)
i ).

2.3 Set the content of X
(t+1)
0 to x(t)

0 ◦ x(t)
1 ◦ · · · ◦ x(t)

d , where x(t)
i denotes

the content of X
(t)
i for 0 ≤ i ≤ d.

3. If the content of X
(n)
0 is “×,” turn the content of S over (i.e., if the content

of S is “consistent,” it is flipped to “inconsistent”).
4. Invert every computation and communication in Step 2.
5. Invert every computation in Step 1.
6. Output quantum registers R0 and S.

Figure 44: Subroutine A.

Lemma 19 Suppose that, for any even integer k(≥ 2), k parties each have one
of the k-cat-state qubits. After every party performs

Uk(ψ, t) =
1√
2

(
eiψ ei(ψ−

2t+1
k

π)

−e−i(ψ− 2t+1
k

π) e−iψ

)

to his qubit, the resulting k-qubit state is inconsistent over the set of the indices of
the k parties, where ψ and t are any fixed real and integer, respectively.

Proof. Uk(ψ, t) is unitary since Uk(ψ, t)Uk(ψ, t)† = Uk(ψ, t)
†Uk(ψ, t) = I ,

where Uk(ψ, t)† is the adjoint of Uk(ψ, t), and I is the two-dimensional iden-
tity operator. It is sufficient to prove that the amplitudes of states |00 . . . 0〉 and
|11 . . . 1〉 are both zero after every party applies Uk(ψ, t) to his k-cat-state qubit.
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Subroutine B

Input: one-qubit quantum registers R0,R1, an integer k
Output: one-qubit quantum registers R0,R1

1. If k is even, apply Uk to the qubit in R0; otherwise copy the content in R0

to that in R1, and then apply Vk to the qubits in R0 and R1.
2. Output quantum registers R0 and R1.

Figure 45: Subroutine B.

After every party applying Uk(ψ, t), the amplitude of state |00 . . . 0〉 is

1√
2

⎛⎝( eiψ√
2

)k
+

(
ei(ψ−

2t+1
k

π)

√
2

)k
⎞⎠ = 0.

The amplitude of state |11 . . . 1〉 is

1√
2

⎛⎝(−e−i(ψ− 2t+1
k

π)

√
2

)k

+

(
e−iψ√

2

)k⎞⎠ = 0,

since k is even. �

Corollary 20 Suppose that, for any even integer k(≥ 2), k parties each have one
of the k-cat-state qubits. After every party performs Uk ⊗ I to the qubit and a
fresh ancilla qubit, the resulting 2k-qubit state is inconsistent over S, where S is
the set of the indices of the k parties.

Proof. By setting both ψ and t to 0 in Lemma 19, the proof is completed. �

As for Vk, we can prove similarly.

Lemma 21 Suppose that, for any odd integer k (≥ 3), k parties each have two of
2k-cat-state qubits. After every party performs Vk to his two qubits, the resulting
2k-qubit state is inconsistent over S, where S is the set of indices of the k parties.

Proof. The matrix of Vk is well-defined since the denominator in any element of
Vk is positive due to Rk + 1 > 0 and R2k > 0 for k ≥ 3. We can verify that Vk is
unitary by some calculation.

To complete the proof, we will show that the amplitudes of states |00 . . . 00〉,
|01 . . . 01〉, |10 . . . 10〉, and |11 . . . 11〉 are all zero after every party applies Vk to
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his two qubits, since these states imply that all parties observe the same two-bit
value by measuring their two qubits. Here we assume the ordering of qubits in
which party l has the (2l − 1)st and 2lth qubits for l = 1, 2, . . . , k.

After every party applies Vk, the amplitude of state |00 . . . 00〉 is

1√
2

⎧⎨⎩
(

1√
2(Rk + 1)

)k

+

(
ei

π
k√

2(Rk + 1)

)k
⎫⎬⎭ = 0.

In the same way, the amplitudes of states |01 . . . 01〉 and |10 . . . 10〉 are

1√
2

⎧⎨⎩
(

1√
2(Rk + 1)

)k

+

(
e−i

π
k√

2(Rk + 1)

)k
⎫⎬⎭ = 0,

1√
2

{(
Rk√
Rk + 1

)k
+

(
− Rk√

Rk + 1

)k}
= 0,

respectively, since k is odd. The amplitude of state |11 . . . 11〉 is obviously 0. �

From the above two lemmas, the correctness of Subroutine B is immediate.

Lemma 22 Suppose that k parties each have a qubit in one-qubit register R0

whose content forms a k-cat state together with the contents of the (k − 1) qubits
of the other parties, and prepare a fresh ancilla qubit initialized to |0〉 in another
one-qubit register R1. After running Subroutine B with R0, R1 and k, the qubits
in R0s and R0s form an inconsistent state over S, where S is the set of the indices
of the k parties.

The next lemma is obvious.

Lemma 23 Subroutine B takes O(1) time and needs no communication.

4.2.4 Subroutine C

Subroutine C is a classical algorithm that computes the maximum value over the
values of all parties. It is very similar to Subroutine A. In fact, Subroutines A and
C can be merged into one subroutine, although we will explain them separately
for simplicity. Figure 46 gives the precise description of Subroutine C.

Lemma 24 Suppose that each party l has integer zl and dl neighbors in an n-
party distributed system. If every party l runs Subroutine C with z = zl, n and
d = dl as input, Subroutine C outputs the maximum value zmax among all zls.
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Subroutine C

Input: integers z, n, d
Output: an integer zmax

1. Let zmax := z.
2. For t := 1 to n− 1, do the following:

2.1 Let y0 := zmax.

2.2 Send y0 via every port i for 1 ≤ i ≤ d.
Set yi to the value received via port i for 1 ≤ i ≤ d.

2.3 Let zmax := max0≤i≤d yi.
3. Output zmax.

Figure 46: Subroutine C.

Proof. We will prove by induction the next claim: after repeating steps 2.1 to
2.3 t times, zmax of party l is the maximum among zjs of all parties j who can
be reached from party l via a path of length at most t. When t = 1, the claim
obviously holds. Assume that the claim holds for t = m. After the next iteration
of steps 2.1 to 2.3, zmax is updated to the maximum value among y0’s of party l
and his neighbors. Since y0 is the zmax of the previous iteration, the claim holds
for t = m+ 1 due to the assumption. Since any graph has diameter at most n− 1,
Subroutine C outputs the maximum value zmax among all zis. �

In a quite similar way of the proof of Lemma 18, we have the next lemma.

Lemma 25 Let |E| and D be the number of edges and the maximum degree of
the underlying graph, respectively. Subroutine C takes Θ(n) rounds and Θ(Dn)
time. The total communication complexity over all parties is Θ(|E|n).

4.2.5 Complexity analysis and generalization

Theorem 26 Let |E| and D be the number of edges and the maximum degree of
the underlying graph, respectively. Given a classical variable status initialized
to “eligible” and the number n of parties, Algorithm I exactly elects a unique
leader in Θ(n2) rounds and Θ(Dn2) time. Each party connected with d parties
requires Θ(dn2)-qubit communication, and the total communication complexity
over all parties is Θ(|E|n2).

Proof. Let Si be the set of the indices of parties with status = “eligible” (i.e.,
eligible parties) just before phase i. From Lemmas 17 and 22, we can see that,
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in each phase i, Algorithm I generates an inconsistent state over Si, if k = |Si|.
Algorithm I then decreases the number of the eligible parties in step 2.5 by at least
one, which is implied by Lemma 24. If k is not equal to |Si|, the number of the
eligible parties are decreased or unchanged. We can thus prove that k is always
at least |Si| in any phase i by induction, since k = |S1| before entering phase 1
and k is decreased by 1 in every phase. It is stressed that there is always at least
one eligible party, since the eligible parties having z = zmax at step 2.5 remain
eligible. It follows that, after step 2, the number of eligible parties is exactly 1.
This proves the correctness of Algorithm I.

As for complexity, Subroutines A, B and C are dominant in step 2. Due to
Lemmas 18, 23 and 25; the total communication complexity is Θ(|E|n) × n =
Θ(|E|n2) (each party with d neighbors requires Θ(dn2) communication complex-
ity); the time complexity is Θ(Dn)×n = Θ(Dn2); the number of rounds required
is Θ(n)× n = Θ(n2). �

If each party knows only the upper bound N of the number of parties in ad-
vance, each party has only to perform Algorithm I with N instead of n. The
correctness in this case is obvious from the proof of Theorem 26. The complexity
is described simply by replacing every n by N in Theorem 26.

Corollary 27 Let |E| and D be the number of edges and the maximum degree of
the underlying graph, respectively. Given a classical variable status initialized
to “eligible” and the number N of parties, Algorithm I exactly elects a unique
leader in Θ(N2) rounds and Θ(DN2) time. Each party connected with d parties
requires Θ(dN2)-qubit communication, and the total communication complexity
over all parties is Θ(|E|N2).

Furthermore, Algorithm I is easily modified so that it works well even in the
asynchronous settings. Note that all parties receive messages via each port at each
round. In the modified version, each party postpones performing the operations
of the (i + 1)st round until he finishes receiving all messages that are supposed
to be received at the ith round. If all communication links work in the first-in-
first-out manner, it is easy to recognize the messages sent at the ith round for
any i. Otherwise, we tag every message, which increases the communication
and time complexity by multiplicative factor O(log n), in order to know at which
round every received message was sent. This modification enables us to simulate
synchronous behavior in asynchronous networks.

4.2.6 Combination with the quantum amplitude amplification

Another exact algorithm can be obtained by combining Subroutines A and C with
the exact quantum amplitude amplification [182]; the algorithm has the same com-
plexity as Algorithm I up to a multiplicative constant factor.
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We first quote the exact quantum amplitude amplification theorem.

Proposition 28 ([64, 52]) Let A be any quantum algorithm that uses no mea-
surements to search a truth assignment for any Boolean function χ. Given the
success probability a ≥ 0.25 ofA , Q(A, χ, φ, ψ)A|0〉 gives a correct assignment
with certainty by setting ψ and φ (0 ≤ ψ, φ < 2π) to some appropriate values
depending on a, where Q(A, χ, φ, ψ) = −AF0(φ)A−1Fχ(ψ) such that: Fχ(ψ)
transforms |x〉 into eiψ|x〉 if χ(x) = 1 and |x〉 if χ(x) = 0, and F0(φ) transforms
|x〉 into eiφ|x〉 if x = 0 · · · 0 and |x〉 otherwise.

The structure of the algorithm is same as that of Algorithm I: the algorithm
consists of (n− 1) phases. Let Si be the set of the indices of eligible parties in
phase i. Each phase i prepares an uniform superposition of |Si|-bit strings x’s,
where x = x1 · · ·x|Si| and xl is a bit possessed by party l for l ∈ Si. The phase
then amplifies the amplitude of any basis state inconsistent over Si so that we can
get an inconsistent string over Si with certainty by measurement. This is possible
due to Proposition 28 if every party knows the number |Si| of eligible parties,
since he can exactly compute the probability of getting an inconsistent string by
measuring the uniform superposition, which is clearly 1− 2

2|Si| > 0.25, and set ψ
and φ to appropriate values ψ|Si| and φ|Si|, respectively.

Actually, every party does not know |Si|. However, we can detour to avoid this
issue by using parameter k = n− i+1 instead of |Si| for each phase i to set ψ and
φ to ψk and φk, due to the same argument as used in Algorithm I: for any phase i,
k is always at least |Si| (the argument will be described later in a more concrete
way). When amplifying the amplitude, Fχ(ψ) and F0(φ) need to be realized in a
distributed and anonymous way, i.e., in a way that every party performs the same
operation. This can be done as follows. For Fχ(ψ), every party multiplies the
amplitude of any inconsistent basis state by the factor of ei

1
n
ψ, which multiplies

it as a whole by the factor of eiψ. To distinguish inconsistent basis states from
consistent basis states, every party performs Subroutine A. For F0(φ), every party
multiplies the amplitude of the all-zero basis state |00 · · · 0〉 by the factor of ei

1
n
φ,

which multiplies it as a whole by the factor of eiφ. To distinguish the all-zero
basis state from the other basis states, every party performs a slight modification
to Subroutine A, called Subroutine Z (described later).

Once eligible parties share an inconsistent string after measurement, the num-
ber of eligible parties can be reduced with certainty by allowing only those parties
remain eligible who have the maximum one-bit value among all one-bit values in
the string.

As described above, every party uses k instead of |Si| to set ψ and φ to some
appropriate values. Hence, the eligible parties may not share an inconsistent state,
since k does not necessarily represent |Si|. In this case, the above operations
cannot reduce the eligible parties with certainty: the operations may not change
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Algorithm Using the Exact Amplitude Amplification

Input: a classical variable status ∈ {“eligible”, “ineligible”}, integers n, d
Output: a classical variable status ∈ {“eligible”, “ineligible”}

1. For k := n down to 2, do the following:

1.1 Prepare one-qubit quantum registers R0.
Call Subroutine EAA with status, n, d, k and R0 to share an incon-
sistent state over Sk−n+1.

1.3 If status = “eligible,” measure the qubit in R0 in the {|0〉, |1〉} basis
to obtain one-bit value z; otherwise let z := −1.

1.4 Perform Subroutine C with z, n, and d to know the maximum value
zmax of z over all parties.
If z �= zmax, let status := “ineligible.”

2. Output status.

Figure 47: Quantum leader election algorithm using the exact amplitude amplifi-
cation.

Table 8: The definition of commute operator “�.”

x y x � y x y x � y x y x � y x y x � y
0 0 0 1 0 × ∗ 0 0 × 0 ×
0 1 × 1 1 × ∗ 1 × × 1 ×
0 ∗ 0 1 ∗ × ∗ ∗ ∗ × ∗ ×
0 × × 1 × × ∗ × × × × ×

Si. If k equals |Si| by chance, |Si| is reduced by at least one (but not to zero),
although parties cannot recognize this case. It is clear from this observation that k
is always at least |Si| in each phase i, since k is n = |S1| before entering the first
phase and is decreased by 1 after each phase finishes. It follows that exactly one
leader is elected after the last phase.

More precisely, each party l performs the algorithm shown in Figure 47 with
parameters “eligible,” n, and the number dl of neighbors of party l. The party who
obtains the output “eligible” is the unique leader.

Subroutine Z works in almost the same way as Subroutine A except that it
uses commute operator � over set S = {0, 1, ∗,×} instead of ◦ and, “allzero”
and “nonallzero” instead of “eligible” and “ineligible,” respectively. Operator � is
defined in Table 8.

Theorem 29 Let |E| and D be the number of edges and the maximum degree of
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Subroutine EAA

Input: a classical variable status ∈ {“eligible”, “ineligible”}, integers n, d, k,
one-qubit register R0

Output: one-qubit register R0

1. If status = “eligible,” prepare the states (|0〉+ |1〉)/√2 and |“consistent”〉
in one-qubit registers R0 and S; otherwise prepare the states |0〉 and
|“consistent”〉 in R0 and S.

2. To realize Fχ(ψk), perform the next operations.

2.1 Perform Subroutine A with R0, S, status, n, and d.
2.2 Transform |r〉|s〉 into ei

1
n
ψk |r〉|s〉 if s is “inconsistent,” and |r〉|s〉 oth-

erwise, where r and s are the contents of R0 and S, respectively.
2.3 Invert every step of 2.1 to disentangle S.

3. If status=“eligible,” apply the Hadamard operator H to the qubit in R0.
4. To realize F0(φk), perform the next operations.

4.1 Perform Subroutine Z with R0, S, status, n, and d, which sets the
content of S to “allzero” if the contents of R0s are all 0’s, and to
“nonallzero” otherwise.

4.2 Transform |r〉|s〉 into ei
1
n
φk |r〉|s〉 if s is “allzero,” and |r〉|s〉 otherwise,

where r and s are the contents of R0 and S, respectively.
4.3 Invert every step of 4.1 to disentangle S.

5. If status=“eligible,” apply the Hadamard operator H to the qubits in R0.
6. Output R0.

Figure 48: Subroutine EAA.

the underlying graph, respectively. Given a classical variable status initialized
to “eligible” and the number n of parties, the above algorithm exactly elects a
unique leader in Θ(n2) rounds and Θ(Dn2) time. Each party connected with d
parties requires Θ(dn2)-qubit communication, and the total communication com-
plexity over all parties is Θ(|E|n2).

Proof. The correctness is obvious from Lemmas 17 and 24, and Proposition 28.
As for complexity, Subroutines A, Z and C are clearly dominant. From Lem-
mas 18 and 25, the theorem follows. �

Remark 5 The amplitude of desirable states can be amplified to one also by de-
creasing the success probability ofA [52]. Consider preparing α|0〉+β|1〉 instead
of (|0〉 + |1〉)/√2 in step 1 of Subroutine EAA for some complex numbers α and
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β such that |α|2 + |β|2 = 1. Suppose that Sn−k+1 = k (since it is sufficient). In
any phase i, the probability of getting an inconsistent string by measuring before
amplitude amplification, is 1− (|αk|2 + |βk|2). Thus, if we set α and β such that
1 − (|αk|2 + |βk|2) = 1/4, i.e., |αk|2 + |βk|2 = 3/4, the amplitude of the incon-
sistent states can be amplified to exactly one by applying Q(A, χ, π, π) to A|0〉.
Such α and β exist, since |αk|2 + |βk|2 = 1 > 3/4 if α = 0 and β = 1 and
|αk|2 + |βk|2 = 2/2k < 3/4 if α = β = 1√

2
.

4.3 Quantum leader election algorithm II

To reduce the amount of quantum communication, our second algorithm makes
use of a classical technique, called view, which was introduced by Yamashita and
Kameda [195, 196]. However, a naı̈ve application of view incurs exponential
classical time/communication complexity. To keep the complexity moderate, we
introduce the new technique of folded view, with which the algorithm still runs in
time/communication polynomial with respect to the number of parties.

4.3.1 View and folded view

First, we briefly review the classical technique, view. Let G = G(V,E) be the
underlying network topology and let n = |V |. Suppose that each party corre-
sponding to node v ∈ V , or simply party v, has a value xv ∈ U for a finite subset
U of the set of integers, and a mapping X : V → U is defined by X(v) = xv.
We identify the label of node in G with the value given by X . For each v and
port numbering σ, the view TG,σ,X(v) is a labeled, rooted tree with infinite depth
defined recursively as follows: (1) TG,σ,X(v) has the root u with label X(v), cor-
responding to v, (2) for each vertex vj adjacent to v in G, TG,σ,X(v) has vertex uj
labeled with X(vj), and an edge from root u to uj with label label((v, vj)), where
label((v, vj)) = (σ[v](v, vj), σ[vj](v, vj)), and (3) uj is the root of TG,σ,X(vj). It
should be stressed that v, vj , u, and uj are not identifiers of parties and are intro-
duced just for definition. For simplicity, we often use TX(v) instead of TG,σ,X(v),
because we usually discuss views of some fixed network with some fixed port
numbering. The view of depth h with respect to v, denoted by T hX(v), is the sub-
tree of TX(v) of depth h with the same root as TX(v).

If two views TX(v) and TX(v′) for v, v′ ∈ V are isomorphic (including edge
labels and node labels, but ignoring local names of vertices such as ui), their
relation is denoted by TX(v) ≡ TX(v′). With this relation, V is divided into
equivalence classes: v and v′ are in the same class if and only if TX(v) ≡ TX(v′).
In [195, 196], it was proved that all classes have the same cardinality for fixed
G, σ and X; the cardinality is denoted by cG,σ,X , or simply cX (the maximum
value of cG,σ,X over all port numbering σ is called symmetricity γ(G,X) and used
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to give the necessary and sufficient condition to exactly solve LEn in anonymous
classical networks). We denote the set of non-isomorphic views by ΓG,σ,X , i.e.,
ΓG,σ,X = {TG,σ,X(v) | v ∈ V }, and the set of non-isomorphic views of depth h
by ΓhG,σ,X , i.e., ΓhG,σ,X = {T hG,σ,X(v) | v ∈ V }. For simplicity, we may use ΓX
and ΓhX instead of ΓG,σ,X and ΓhG,σ,X , respectively. We can see that cX = n/|ΓX |,
since the number of views isomorphic to TX ∈ ΓX is constant over all TX . For
any subset S of U , let ΓX(S) be the maximal subset of ΓX such that any view
TX ∈ ΓX(S) has the root labeled with a value in S. Then the number cX(S) of
parties having values in S is cX |ΓX(S)| = n|ΓX(S)|/|ΓX |. When S is a singleton
set {s}, we may use ΓX(s) and cX(s) instead of ΓX({s}) and cX({s}).

To compute cX(S), every party v constructs T 2(n−1)
X (v), and then computes

|ΓX | and |ΓX(S)|. To construct T hX(v), in the first round, every party v constructs
T 0
X(v), i.e., the root of T hX(v). If every party vj adjacent to v has T i−1

X (vj) in the
ith round, v can construct T iX(v) in the (i + 1)st round by exchanging a copy of
T i−1
X (v) for a copy of T i−1

X (vj) for each j. By induction, in the (h + 1)st round,
each party v can construct T hX(v). It is clear that, for each v′ ∈ V , at least one node
in T n−1

X (v) corresponds to v′, since there is at least one path of length of at most
(n− 1) between any pair of parties. Thus party v computes |ΓX | and |ΓX(S)| by
checking the equivalence of every pair of views that have their roots in T n−1

X (v).
The view equivalence can be checked in finite steps, since TX(v) ≡ TX(v′) if
and only if T n−1

X (v) ≡ T n−1
X (v′) for v, v′ ∈ V [155]. This implies that |ΓX | and

|ΓX(S)| can be computed from T
2(n−1)
X (v).

Note that the size of T hX(v) is exponential in h, which results in exponential
time/communication complexity in n when we construct it if h = 2(n−1). To re-
duce the time/communication complexity to something bounded by a polynomial,
we introduce the new technique called folded view by generalizing Ordered Binary
Decision Diagrams (OBDD) [54]. A folded view (f-view) of depth h is a vertex-
and edge-labeled directed acyclic multigraph obtained by merging nodes at the
same level in T hX(v) into one node if the subtrees rooted at them are isomorphic.
An f-view is said to be minimal and denoted by T̃ hX(v) if it obtained by maximally
merging nodes of view T hX(v) under the above condition. For simplicity, we may
call a minimal f-view just an f-view only in this subsection. The number of nodes
in each level of an f-view is obviously bounded by n, and thus the total number
of nodes in an f-view of depth h is at most hn. Actually, an f-view of depth h
can be recursively constructed in a similar manner to view construction without
unfolding intermediate f-views. The details will be described in 4.4.

Theorem 30 If each party has a label of a constant-bit value, every f-view of
depth h is constructed in O(D2h2n(log n)2) time for each party and O(h) rounds
with O(D|E|h2n logD) bits of classical communication. Once T̃ 2(n−1)

X (v) is con-
structed, each party can compute |ΓX | and |ΓX(S)| without communication in
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O(Dn5 log n) time, where S is any subset of range U ofX , and |E| andD are the
number of edges and the maximum degree, respectively, of the underlying graph.

4.3.2 The algorithm

As in the previous subsection, we assume that the network is synchronous and
each party knows the number n of parties prior to algorithm invocation. Again
our algorithm is easily generalized to the asynchronous case. It is also possible to
modify our algorithm to work well even if only the upper bound N of the number
of parties is given, which is discussed in 4.3.4.

The algorithm consists of two stages, which we call Stages 1 and 2 here-
after. Stage 1 aims to have the n parties share a certain type of entanglement, and
thus, this stage requires the parties to exchange quantum messages. In Stage 1,
each party performs Subroutine Q s = log n� times in parallel to share s pure
quantum states |φ(1)〉, . . . , |φ(s)〉 of n qubits. Here, each |φ(i)〉 is of the form
(|x(i)〉+ |x(i)〉)/√2 for an n-bit string x(i) and its bitwise negation x(i), and the
lth qubit of each |φ(i)〉 is possessed by the lth party. It is stressed that only one
round of quantum communication is necessary in Stage 1.

In Stage 2, the algorithm decides a unique leader among the n parties only
by local quantum operations and classical communications with the help of the
shared entanglement prepared in Stage 1. This stage consists of at most s
phases, each of which reduces the number of eligible parties by at least half. Let
Si ⊆ {1, . . . , n} be the set of all ls such that party l is still eligible just before
entering phase i. First every party runs Subroutine Ã to decide if state |φ(i)〉
is consistent or inconsistent over Si. Here we assume consistent/inconsistent
strings/states as defined in the previous subsection. If state |φ(i)〉 is consistent,
every party performs Subroutine B̃, which first transforms |φ(i)〉 into the |Si|-cat
state (|0|Si|〉+ |1|Si|〉)/√2 shared only by eligible parties and then calls Subrou-
tine B described in the previous subsection to obtain an inconsistent state over
Si. Each party l then measures his qubits to obtain a label and performs Subrou-
tine C̃ to find the minority among all labels. The number of eligible parties is then
reduced by at least half via minority voting with respect to the labels.

More precisely, each party l having dl adjacent parties performs Algorithm II
described in Figure 49 with parameters “eligible,” n, and dl. The party who obtains
output “eligible” is the unique leader.

Subroutine Q:

Subroutine Q is mainly for the purpose of sharing a cat-like quantum state
|φ〉 = (|x〉+ |x〉)/√2 for an n-bit random string x. It also outputs a classical
string, which is used in Stage 2 for each party to obtain the information on |φ〉
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Algorithm II

Input: a classical variable status ∈ {“eligible”, “ineligible”}, integers n, d
Output: a classical variable status ∈ {“eligible”, “ineligible”}
Stage 1:

Let s := log n� and prepare one-qubit quantum registers R
(1)
0 , . . . ,R

(s)
0

and R
(1)
1 , . . . ,R

(s)
1 , each of which is initialized to the |0〉 state.

Perform s attempts of Subroutine Q in parallel, each with R
(i)
0

and d for 1 ≤ i ≤ s, to obtain d-bit string y(i) and to share
|φ(i)〉 = (|x(i)〉+ |x(i)〉)/√2 of n qubits.

Stage 2:
Let k := n.
For i := 1 to s, repeat the following:

1. Perform Subroutine Ã with status, n, d, and y(i) to obtain its output
consistency.

2. If consistency = “consistent,” perform Subroutine B̃ with R
(i)
0 ,

R
(i)
1 , status, k, n, and d.

3. If status = “eligible,” measure the qubits in R
(i)
0 and R

(i)
1 in the

{|0〉, |1〉} basis to obtain a nonnegative integer z (0 ≤ z ≤ 3); oth-
erwise set z := −1.
Perform Subroutine C̃ with status, z, n, and d to compute nonnega-
tive integers zminor and czminor

.
4. If z �= zminor, let status := “ineligible.”

Let k := czminor
.

5. If k = 1, terminate and output status.

Figure 49: Quantum leader election algorithm II.

via just classical communication. This subroutine can be performed in parallel,
and thus Stage 1 involves only one round of quantum communication. First each
party prepares the state (|0〉 + |1〉)/√2 in a quantum register and computes the
XOR of the contents of his own and each adjacent party’s registers. The party
then measures the qubits whose contents are the results of the XORs. This results
in the state of the form (|x〉+ |x〉)/√2. Figure 50 gives the precise description of
Subroutine Q.

The next two lemmas are for correctness and complexity.

Lemma 31 For an n-party distributed system, suppose that every party l calls
Subroutine Q with a one-qubit register whose content is initialized to |0〉 and the
number dl of his neighbors as input R0 and d, respectively. After performing Sub-
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Subroutine Q

Input: a one-qubit quantum register R0, an integer d
Output: a one-qubit quantum register R0, a binary string y of length d

1. Prepare 2d one-qubit quantum registers R′
1, . . . ,R

′
d and S1, . . . ,Sd, each of

which is initialized to the |0〉 state.
2. Generate the (d + 1)-cat state (|0d+1〉+ |1d+1〉)/√2 in registers R0,

R′
1, . . . ,R

′
d.

3. Exchange the qubit in R′
i with the party connected via port i for 1 ≤ i ≤ d

(i.e., the original qubit in R′
i is sent via port i, and the qubit received via

that port is newly set in R′
i).

4. Set the content of Si to x0 ⊕ xi, for 1 ≤ i ≤ d, where x0 and xi denote the
contents of R0 and R′

i, respectively.
5. Measure the qubit in Si in the {|0〉, |1〉} basis to obtain a bit yi, for

1 ≤ i ≤ d.
Set y := y1 · · · yd.

6. Apply CNOT controlled by the content of R0 and targeted to the content of
each R′

i for i = 1, 2, . . . , d to disentangle R′
is.

7. Output R0 and y.

Figure 50: Subroutine Q.

routine Q, all parties share (|x〉+ |x〉)/√2 with certainty, where x is a randomly
chosen n-bit string.

Proof. After step 2 of Subroutine Q, the system state, i.e., the state in R0’s,
R′

1’s, . . . ,R
′
d’s and S1’s, . . . ,Sd’s of all parties, is the tensor product of the

states of all parties as described by formula (1). Notice that the state in R0’s
and R′

1’s, . . . ,R
′
d’s of all parties is the uniform superposition of some basis

states in an orthonormal basis of 2
Pn

l=1(dl+1)-dimensional Hilbert space: the basis
states correspond one-to-one to n-bit integers a and each of them is of the form
|a1〉⊗(d1+1) ⊗ · · · ⊗ |an〉⊗(dn+1), where al is the lth bit of the binary expression of
a and al is the content of R0 of party l. If we focus on the lth party’s part of the

basis state corresponding to a, step 3 transforms |al〉⊗(dl+1) to |al〉
(⊗dl

j=1 |alj〉
)

,

where party l is connected to party lj via port j. More precisely, step 3 transforms
the system state into the state as described in formula (2). After step 4, we have
the state of formula (3). Then every party l measures the last dl registers Si’s at
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step 5.
n⊗
l=1

|0〉|0dl〉|0dl〉 →
n⊗
l=1

|0dl+1〉+ |1dl+1〉√
2

|0dl〉 (1)

→ 1√
2n

2n−1∑
a=0

n⊗
l=1

{
|al〉
(

dl⊗
j=1

|alj〉
)
|0dl〉

}
(2)

→ 1√
2n

2n−1∑
a=0

n⊗
l=1

{
|al〉
(

dl⊗
j=1

|alj〉
)(

dl⊗
j=1

|al ⊕ alj〉
)}

(3)

Claim 32 Suppose that every party l obtained measurement results y(l) =
y1(l)y2(l) · · · ydl

(l) of dl bits where yj(l) ∈ {0, 1}. There are exactly two binary
strings a = a1a2 · · · an that satisfy equations al ⊕ alj = yj(l)(l = 1, . . . , n, j =

1, . . . , dl). If the binary strings are A and A, then A is the bit-wise negation of A.

Proof. We call binary strings a “solutions” of the equations. By the definition,
there is at least one solution. If A is such a string, obviously its bit-wise negation
A is also a solution by the fact that ai ⊕ aj = ai ⊕ aj for 1 ≤ i, j ≤ n. We will
prove that there is the unique solution such that a1 = 0. It follows that there is the
unique solution such that a1 = 1 since the bitwise negation of a solution is also a
solution. This completes the proof.

Let {V0, V1, . . . , Vp} be the partition of the set V of the indices of parties such
that V0 = {1} and Vi = Adj(

⋃i−1
m=0 Vm) \ ⋃i−1

m=0 Vm, where p is the maximum
length of the shortest path from party 1 to party l over all l, and Adj(V ′) for a set
V ′ ⊆ V is the set of neighbors of the parties in V ′.

Equations al⊕alj = yj(l) are equivalent to alj = yj(l)⊕al (l = 1, . . . , n, j =
1, . . . , dl). Assume that a1 = 0. For all l in V1, al is uniquely determined by the
equations. Similarly, if al is fixed for all l in

⋃i−1
m=0 Vm, al is uniquely determined

for all l in Vi. Since the underlying graph of the distributed system is connected,
al is uniquely determined for all l. �

From the above claim, we get the superposition of two basis states correspond-
ing to A and its bit-wise negation A after step 5 as described by formula (4),
where Al is the lth bit of A. Step 6 transforms the state into that represented
by formula (5), in which registers R′

i’s of all parties are disentangled because of
|Al ⊕ Alj〉 = |Al ⊕ Alj〉. Thus, R0’s is in the state of (|x〉+ |x〉)/√2.

1√
2

n⊗
l=1

(
|Al〉

dl⊗
j=1

|Alj〉
)

+
1√
2

n⊗
l=1

(
|Al〉

dl⊗
j=1

|Alj〉
)

(4)

→ 1√
2

n⊗
l=1

(
|Al〉

dl⊗
j=1

|Al ⊕ Alj〉
)

+
1√
2

n⊗
l=1

(
|Al〉

dl⊗
j=1

|Al ⊕ Alj〉
)

(5)
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�

Lemma 33 Let |E| and D be the number of edges and the maximum degree of
the underlying graph of an n-party distributed system. Subroutine Q takes O(D)
time for each party and one round, and requires 2|E|-qubit communication.

Proof. Each party l performs just one-round communication of dl qubits. The
local computations can be done in time linear in dl. �

Subroutine Ã:

Suppose that, after Subroutine Q, n-qubit state |φ〉 = (|x〉+ |x〉)/√2 is shared
by the n parties such that the lth party has the lth qubit. Let xl be the lth bit
of x, and let X and X be mappings defined by X(v) = xl and X(v) = xl for
each l, respectively, where v ∈ V represents the node corresponding to the lth
party in the underlying graph G = G(V,E) of the network topology. For any v
in V , let W [v] : V → {0, 1} × {“eligible”, “ineligible”} be the mapping defined
as (Y [v], Z), where Y [v] is X if X(v) = 0 and X otherwise, and Z : V →
{“eligible”, “ineligible”} maps v ∈ V to the value of status possessed by the
party corresponding to v. We denote (Y [v], Z) by W [v].

Subroutine Ã checks the consistency of |φ〉, but in quite a different way from
Subroutine A. Every party l constructs the folded view T̃ n−1

W [v](v) by using the out-
put y of Subroutine Q. The folded view is constructed by the f-view construction
algorithm in Figure 59 with slight modification; the modification is required since
mapping W [v] is not necessarily common over all parties v. The construction is
still only by classical communication. By checking if the nodes for eligible parties
in the folded view have the same labels, Subroutine Ã can decide whether |φ〉 is
consistent or not over the set of the indices of eligible parties. Figure 51 gives the
precise description of Subroutine Ã. The next lemmas present the correctness and
complexity of Subroutine Ã.

Lemma 34 Suppose that the n parties share n-qubit cat-like state (|x〉+|x〉)/√2,
where x is n-bit string X(v1)X(v2) · · ·X(vn) for vi ∈ V and x is the bitwise
negation of x. Let S be the set of the indices of the parties among the n parties
whose variable status is “eligible,” and let v ∈ V be the corresponding node of
party l. If every party l runs Subroutine Ã with the following objects as input:

• a classical variable status ∈ {“eligible”, “ineligible”}

• n and the number dl of the neighbors of party l,
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Subroutine Ã

Input: a classical variable status ∈ {“eligible”, “ineligible”}, integers n, d, a
binary string y of length d

Output: a classical variable consistency ∈ {consistent, inconsistent}
1. Set T̃ 0

W [v](v) to a node labeled with (0, status),
where W [v] : V → {0, 1} × {“eligible”, “ineligible”} be the mapping de-
fined as (Y [v], Z), Y [v] is X if X(v) = 0 and X otherwise, and Z is the
underlying mapping naturally induced by the values of status.

2. For i := 1 to (n− 1), do the following:

2.1 Send T̃ i−1
W [v](v) and receive T̃ i−1

W [vj ]
(vj) via port j, for 1 ≤ j ≤ d, where

node vj corresponds to the party connected via port j.

2.2 If the jth bit yj of y is 1, transform T̃ i−1
W [vj ]

(vj) into T̃ i−1

W [vj ]
(vj) by negat-

ing the first element of every node label for 1 ≤ j ≤ d,
where W [vj] represents (Y [vj], Z).

2.3 Set the root of T̃ iW [vj ]
(v) to the node labeled with (0, status).

Set the jth child of the root of T̃ iW [v](v) to T̃ i−1

W [vj ]
(vj), for 1 ≤ j ≤ d.

For every level of T̃ iW [v](v), merge nodes at that level into one node if
the views rooted at them are isomorphic.

3. If both label (0, “eligible”) and label (1, “eligible”) are found among the
node labels in T̃ n−1

W [v](v), let consistency := “inconsistent”; otherwise let
consistency := “consistent.”

4. Output consistency.

Figure 51: Subroutine Ã.

• a binary string y = y1 · · · ydl
of length dl such that yj = X(v)⊕X(vj) for

j = 1, . . . , dl where vj is the jth adjacent node of v,

Subroutine Ã outputs a classical valuable consistency, which has value
“consistent” if (|x〉 + |x〉)/√2 is consistent over S, and “inconsistent” other-
wise.

Proof. It will be proved later that steps 1 and 2 construct an f-view of depth
(n−1) for mapping either (X,Z) or (X,Z). Since the f-view is made by merging
those nodes at the same depth which are the roots of isomorphic views, the f-view
contains at least one node that has the same label as (X(v), Z(v)) or (X(v), Z(v))
for any v ∈ V . Once the f-view is constructed, every party can know whetherX is
constant over all l ∈ S or not in step 3 by checking the labels including “eligible.”
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Notice that no party needs to know for which mapping of (X,Z) or (X,Z) it has
constructed the f-view.

In what follows, we prove that steps 1 and 2 construct an f-view for mapping
either X or X . The proof is by induction on depth i of the f-view. Clearly, step
1 generates T̃ 0

W [v](v). Assume that every party l′ has constructed T̃ i−1
W [v′](v

′) where

node v′ represents party l′. In order to construct T̃ iW [v](v), party l needs T̃ i−1
W [v](vj)

for every node vj adjacent to v. Although W [v] is not always identical to W [vj],
we can transform T̃ i−1

W [vj ]
(vj) to T̃ i−1

W [v](vj). Since yj is equal to X(v) ⊕ X(vj) =

X(v) ⊕ X(vj), each of X and X gives the same value for v and vj if and only
if yj = 0. This fact and Y [v](v) = Y [vj](vj) = 0 imply that Y [v] is identical to
Y [vj] if and only if yj = 0. It follows that, if yj = 0, T̃ i−1

W [vj ]
(vj) is isomorphic

to T̃ i−1
W [v](vj), and otherwise T̃ i−1

W [vj ]
(vj) is isomorphic to T̃ i−1

W [v](vj). In the latter

case, the party corresponding to v negates the first elements of all node labels in
T̃ i−1
W [vj ]

(vj) to obtain T̃ i−1

W [vj ]
(vj). Thus step 3 can construct T̃ iY [v](v). This completes

the proof. �

Lemma 35 Let |E| and D be the number of edges and the maximum degree
of the underlying graph of an n-party distributed system. Subroutine Ã takes
O(D2n3(log n)2) time for each party, O(n) rounds and requires classical com-
munication of O(D|E|n3 logD) bits.

Proof. Steps 1 and 2 is basically the f-view construction algorithm in Figure 59
except step 2.2; this step takes O(Dn2) time since an f-view of depth O(n) has
O(Dn2) edges. Thus, steps 1 and 2 take O(D2n3(log n)2) time for each party,
O(n) rounds and exchanges O(D|E|n3 logD) bits by Theorem 30. Step 3 takes
O(Dn2) time. �

Subroutine B̃:

Suppose that |φ〉 = (|x〉+ |x〉)/√2 shared by the n parties is consistent over the
set S of the indices of eligible parties. Subroutine B̃ is for the purpose of trans-
forming |φ〉 into an inconsistent state over S. Let k be |S|. First every ineligi-
ble party measures its qubit in the {|+〉, |−〉} basis, where |+〉 and |−〉 denote
(|0〉 + |1〉)/√2 and (|0〉 − |1〉)/√2, respectively. As a result, the state shared
by the eligible parties is either ±(|0k〉+ |1k〉)/√2 or ±(|0k〉 − |1k〉)/√2. The
state ±(|0k〉 − |1k〉)/√2 is shared if and only if the number of ineligible par-
ties that measured |−〉 is odd, as proved in Lemma 38. In this case, every el-
igible party applies unitary operator Wk to its qubit to transform the state into
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Subroutine B̃

Input: one-qubit quantum registers R0,R1, a classical variable status ∈
{“eligible”, “ineligible”}, integers k, n, d

Output: one-qubit quantum registers R0,R1

1. Let w := 0.
2. If status = “ineligible,” measure the qubit in R0 in the {|+〉, |−〉} basis.

If this results in |−〉, let w := 1.

3. Construct f-view T̃
(2n−1)
W (v) to count the number p of parties with w = 1,

where W is the underlying mapping naturally induced by the w values of
all parties.

4. If p is odd and status = “eligible,” apply Wk to the qubit in R0.
5. If status = “eligible,” perform Subroutine B with R0, R1 and k.
6. Output quantum registers R0 and R1.

Figure 52: Subroutine B̃.

±(|0k〉+ |1k〉)/√2, where the family {Wk} of unitary operators is defined by

Wk =

(
1 0
0 ei

π
k

)
.

Again let v denote the node corresponding to the party that invokes the subrou-
tine. Figure 52 gives the precise description of Subroutine B̃. The correctness and
complexity of the subroutine are described in Lemmas 36 and 37, respectively.

Lemma 36 Suppose that the n parties share n-qubit cat-like state |φ〉 = (|x〉 +
|x〉)/√2, where x is any n-bit string that is consistent over S, and x is the bitwise
negation of x. If each party l runs Subroutine B̃ with the following objects as
input:

• one-qubit register R0, which stores one of n qubits in state |φ〉,
• one-qubit register R1, which is initialized to |0〉,
• a classical variable status, the value of which is “eligible” if l is in S and

“ineligible” otherwise,

• integers k, n, and the number dl of neighbors of party l,

Subroutine B̃ outputs two one-qubit registers R0,R1 such that, given k is equal to
|S|, the qubits in the registers satisfy the conditions:
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• the 2k qubits possessed by all parties l′ for l′ ∈ S are in an inconsistent
state over S,

• the 2(n − k) qubits possessed by all parties l′ for l′ �∈ S are in a classical
state (as a result of measurement).

Proof. Lemma 38 guarantees that, after step 2, the eligible parties (i.e., the parties
who have status = “eligible”) share (|0k〉 + |1k〉)/√2 ((|0k〉 − |1k〉)/√2) if
the number of those parties is even (respectively, odd) who have measured |−〉.
When the eligible parties share (|0k〉−|1k〉)/√2, step 4 is performed to transform
(|0k〉 − |1k〉)/√2 into (|0k〉 + |1k〉)/√2. Due to Lemma 22, only the eligible
parties share an inconsistent state over S after step 5. This completes the proof. �

Lemma 37 Let |E| and D be the number of edges of the underlying graph of an
n-party distributed system. Subroutine B̃ takes O(Dn5 log n) time for each party,
O(n) rounds and requires O(D|E|n3 logD)-bit communication.

Proof. Since Subroutine B takes O(1) time and does no communication, step 3 is
dominant. The proof is completed by Theorem 30. �

Lemma 38 Let S be an arbitrary subset of {1, 2, . . . n} parties such that |S| = k.
Suppose that n parties share n-qubit cat-like state (|x〉 + |x〉)/√2, where x is
any n-bit string that is consistent over S, and x is the bitwise negation of x. If
every party l for l �∈ S measures his qubit with respect to the Hadamard basis
(|+〉, |−〉), the resulting state is (|0k〉 + |1k〉)/√2 ((|0k〉 − |1k〉)/√2) when the
number of those parties is even (respectively, odd) who have measured |−〉.

Proof. For an m-bit integer z = z1z2 · · · zm where zi ∈ {0, 1}, let z[i,m] be the
substring zizi+1 · · · zm of z for 1 ≤ i ≤ m. Thus, (|x〉 + |x〉)/√2 = (|x[1,n]〉 +
|x[1,n]〉)/

√
2. For simplicity, we also use z[m] instead of z[1,m], and zm instead of

z[m,m].
For any integerm (2 ≤ m ≤ n), we denotem-qubit states (|x[m]〉+|x[m]〉)/

√
2

and (|x[m]〉 − |x[m]〉)/
√

2 by C+(m) and C−(m), respectively. For any integer
m (1 ≤ m ≤ n), let HW (m) be the Hamming weight of the binary expression of
m (i.e., the number of bits of value 1 in the binary expression of m), and let |z̃[m]〉
be H⊗m|z[m]〉 for the 2-dimensional Hadamard operator H . For example,

|0[1]〉 − |1[1]〉√
2

⊗ |0[1]〉+ |1[1]〉√
2

= |1̃[1]〉 ⊗ |0̃[1]〉 = |2̃[2]〉.
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We will prove the next equation by induction on k in decreasing order: for any
k (0 ≤ k ≤ n− 1)

C+(n) =
1

2(n−k)/2
∑

i[n−k]∈En−k

(−1)HW (x[k+1,n]∧i[n−k])C+(k)|̃i[n−k]〉

+
1

2(n−k)/2
∑

j[n−k]∈On−k

(−1)HW (x[k+1,n]∧j[n−k])C−(k)|̃j[n−k]〉, (6)

where ∧ is the bitwise AND operation, Em is the maximal subset of
{0, 1, . . . , 2m−1} such that, for any i ∈ Em,HW (i) = 0 (mod 2),Om is defined
in the same way as Em, except for HW (i) = 1 (mod 2) instead of HW (i) = 0
(mod 2). The equation implies that, if there is an even number of parties which
have measured |−〉, the resulting state is C+(k), and otherwise the state is C−(k),
up to global phases. This completes the proof.

For any integer m (m ≥ 3), we can see by some calculations that

C+(m) = {C+(m− 1)|0̃[1]〉+ (−1)xmC−(m− 1)|1̃[1]〉}/
√

2, (7)

C−(m) = {C−(m− 1)|0̃[1]〉+ (−1)xmC+(m− 1)|1̃[1]〉}/
√

2. (8)

Eq. (6) holds for k = n − 1 by setting m in eq. (7) to n. Assume that eq. (6)
holds for k. By eqs. (7) and (8) for m = k, eq. (6) can be written as

C+(n) =
1

2(n−k)/2
1√
2

{
C+(k − 1)|0̃[1]〉+ (−1)xkC−(k − 1)|1̃[1]〉

}
×

∑
i[n−k]∈En−k

(−1)HW (x[k+1,n]∧i[n−k]) |̃i[n−k]〉

+
1

2(n−k)/2
1√
2

{
C−(k − 1)|0̃[1]〉+ (−1)xkC+(k − 1)|1̃[1]〉

}
×

∑
j[n−k]∈On−k

(−1)HW (x[k+1,n]∧j[n−k])|̃j[n−k]〉.

Equivalently,

C+(n) =
1

2(n−k+1)/2

∑
i[n−k+1]∈En−k+1

C+(k − 1)|̃i[n−k+1]〉

+
1

2(n−k+1)/2

∑
j[n−k+1]∈On−k+1

C−(k − 1)|̃j[n−k+1]〉.

In the above, we use the next basic relations:

En−k+1 =

⎛⎝ ⋃
i[n−k]∈En−k

{0[1]i[n−k]}
⎞⎠ ∪

⎛⎝ ⋃
j[n−k]∈On−k

{1[1]j[n−k]}
⎞⎠ ,
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Subroutine C̃

Input: integers z ∈ {−1, 0, 1, 2, 3}, n, d
Output: integers zminor, czminor

1. Construct f-view T̃
(2n−1)
Z (v), where Z is the underlying mapping naturally

induced by the z values of all parties.
2. For i := 0 to 3, count the number ci of parties having a value z = i using
T̃

(2n−1)
Z (v).

If ci = 0, let ci := n.
3. Let zminor ∈ {m | cm = min0≤i≤3 ci}.
4. Output zminor and czminor

.

Figure 53: Subroutine C̃

On−k+1 =

⎛⎝ ⋃
i[n−k]∈En−k

{1[1]i[n−k]}
⎞⎠ ∪

⎛⎝ ⋃
j[n−k]∈On−k

{0[1]j[n−k]}
⎞⎠ ,

HW (x[k+1,n] ∧ i[n−k]) = HW (x[k,n] ∧ 0[1]i[n−k]),

HW (x[k+1,n] ∧ i[n−k]) + xk = HW (x[k,n] ∧ 1[1]i[n−k]).

Hence, eq. (6) holds for any k (< n), which the lemma follows. �

Subroutine C̃:

Suppose that each party l has value zl. Subroutine C is a classical algorithm that
computes value zminor such that the number of parties with value zminor is non-
zero and the smallest among all possible non-negative zl values. It is stressed that
the number of parties with value zminor is at most half of the number of parties
having non-negative zl values, and that the parties having non-negative zl values
are eligible as described in Figure 49. Figure 53 gives the precise description of
Subroutine C̃.

The next two lemmas give the correctness and complexity of Subroutine C̃.

Lemma 39 Suppose that each party l among n parties has an integer zl ∈
{−1, 0, 1, 2, 3}. If every party l runs Subroutine C̃ with zl, n and the number
dl of neighbors as input, Subroutine C̃ outputs zminor ∈ {z1, . . . , zn} \ {−1}, and
czminor

such that the number czminor
of parties having zminor is not more than that

of parties having any other zl (ties are broken arbitrarily).



114 QUANTUM MULTI-POINT COMMUNICATION

Proof. The first line of step 2 in Figure 53 counts the number ci of parties having
i as z for each i ∈ {0, 1, 2, 3} by using f-view. Since ci = 0 implies zminor �= i, ci
is set to n so that i cannot be selected as zminor in step 3. Thus, zminor is selected
among {z1, . . . , zn} \ {−1}. �

Lemma 40 Let |E| and D be the number of edges and the maximum degree
of the underlying graph of an n-party distributed system. Subroutine C̃ takes
O(Dn5 log n) time for each party, O(n) rounds and requires O(D|E|n3 logD)-
bit communication.

Proof. Steps 1 and 2 are dominant. The proof is completed by Theorem 30. �

4.3.3 Complexity analysis

Theorem 41 Let |E| and D be the number of edges and the maximum degree of
the underlying graph, respectively. Given the number n of parties, Algorithm II
exactly elects a unique leader in O(Dn5(log n)2) time and O(n log n) rounds of
which only the first round requires quantum communication. The total communi-
cation complexity over all parties is O(D|E|n3(logD) log n) which includes the
communication of only O(|E| log n) qubits.

Proof. Lemma 31 guarantees that Stage 1 works correctly. We will prove that
steps 1 to 5 of Stage 2 decrease the number of eligible parties by at least half,
without eliminating all eligible parties, if there are at least two eligible parties.
This directly leads to the correctness of Algorithm II, since s := log n�.

The proof is by induction on phase number i. At the beginning of the first
phase, k represents obviously the number of eligible parties. Next we prove that
if k is equal to the number of eligible parties immediately before entering phase
i, steps 1 to 5 decrease the number of eligible parties by at least half without
eliminating all such parties, and set k to the number of the updated eligible parties.
By Lemmas 34 and 36 and the assumption that k is the number of eligible parties,
only eligible parties share an inconsistent state with certainty after steps 1 and 2.
Thus, it is impossible that all eligible parties get the same value by measurement
at step 3. Subroutine C̃ correctly computes zminor and the number czminor

as proved
in Lemma 39. Hence, step 4 reduces eligible parties by at least half with certainty
and sets k to the number of the updated eligible parties.

In what follows, we will analyze the complexity of Algorithm II. By
Lemma 33, Stage 1 takes O(D) time for each party and one round, and re-
quires O(|E| log n)-qubit communication. Stage 2 iterates Subroutines Ã, B̃ and
C̃ at most O(log n) times. By Lemmas 35, 37 and 40, Subroutines Ã, B̃ and C̃
take O(n) rounds, O(Dn5 log n) time and require O(D|E|n3 logD) classical bit
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communication for each iteration. Hence, Stage 2 takes O(n log n) rounds and
O(Dn5(log n)2) time, and requires O(D|E|n3(logD) log n) classical bit commu-
nication. This completes the proof. �

Remark 6 In fact, we can improve the number of rounds and the communication
complexity in the second stage (and, thus, those of Algorithm II) at the cost of a
constant multiplicative factor to the time complexity per phase when n holds a
certain condition described later; we modify Subroutine C̃ as follows: by using
constructed f-views T̃ 2(n−1)

Z (v), parties select a certain common equivalence class
of (n−1)-depth views rooted at nodes having i ∈ {0, 1, 2, 3}, and then every party
sets status to “ineligible,” if his view does not belong to the equivalence class,
and sets k to the number of the updated eligible parties, i.e., the cardinality of
the equivalence class. To carry out these operations on f-view T̃

2(n−1)
Z (v), every

party first selects in O(Dn5 log n) time an f-view that can be obtained from a
subtree with root having label i ∈ {0, 1, 2, 3} of depth (n − 1) of T 2(n−1)

Z (v),
i.e., a subgraph of T̃ 2(n−1)

Z (v), instead of an equivalence class. Every party then
checks if the f-view and T̃ (n−1)

Z (v) can be obtained from isomorphic views; this can
be done by simultaneously traversing both f-views as shown in Figure 62 in time
O(Dn2 log n) (by Lemma 56 with constant L). The cardinality of the equivalence
class can be computed by using the view counting algorithm in Figure 60; this
takesO(Dn5 log n) time due to Lemma 58. Thus, the modification to Subroutine C̃
increases the time complexity by a constant multiplicative factor.

The f-view of some representative view in the equivalence class can be found
without unfolding f-view T̃

2(n−1)
Z (v) in O(n5D log n) time as follows. First, ev-

ery party computes the set of f-views obtained from non-isomorphic subtrees of
depth (n − 1) (strictly, the set W of the roots of such f-views) in T̃ 2(n−1)

Z (v) by
using the view counting algorithm in Figure 60; this takes O(n5D log n) time
from Lemma 58. Every party then minimizes each of the f-views by using the f-
view minimization algorithm in Figure 57; this takes |W | × O(n2D(log n)2) =
O(n3D(log n)2) by setting |V f | = O(n2) and L = O(1) in Lemma 53, since
|W | = O(n) if there are n parties. Finally, every party encodes each of the
minimized f-views in any simple binary encoding scheme that maps any two f-
views to the same binary string if and only if the f-views are isomorphic, and
sorts the encoded f-views; the encoding takes |W | × O(Dn2 logD) and the sort-
ing takes O(|W | log |W |) × O(Dn2 logD) = O(Dn3(logD) log n), since each
of the f-views is of size O(Dn2) and has node labels of O(1) bits and edge labels
of O(logD) bits. Finally every party selects the first f-view among the sorted f-
views. Since the minimal f-view for any fixed view is unique up to isomorphism
by Corollary 51 and any two non-isomorphic views cannot be transformed into
isomorphic f-views, the f-views selected by all parties are those obtained from
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isomorphic views. Thus, the algorithm works well.
Let k be the number of eligible parties and let q be the cardinality of the

equivalence class. q is a divisor of k since all the equivalence classes have the
same cardinality. Thus, if n is expressed as pα1

1 p
α2
2 . . . pαm

m for prime numbers pis,
Algorithm II takes at most α =

∑m
j=1 αj phases in stage 2. In particular, when

α = O(1) (e.g. prime numbers), the algorithm takes only constant phases. Notice
that when n = 2m, the necessary number of phases is still m = log n.

4.3.4 Generalization of the algorithm

In the case where only the upper bound N of the number of parties is given, we
cannot apply Algorithm II as it is, since Algorithm II depends strongly on counting
the exact number of eligible parties and this requires the exact number of parties.

We modify Algorithm II so that it outputs status = “error” and halts (1) if
steps 1 to 5 of Stage 2 are iterated over log n times, or (2) if it is found that non-
integer values are being stored into the variables whose values should be integers.
Notice that we can easily see that this modified Algorithm II can run (though it
may halt with output “error”) even when it is given the wrong number of parties
as input, unless the above condition (2) becomes true during execution. Let the
modified Algorithm II be LE(status, n, d).

The basic idea is to run LE(“eligible”,m, d) (2 ≤ m ≤ N) in parallel. Here
we assume that every party has one processor, and all local computations are
performed sequentially. Instead, message passing is done in parallel, i.e., at each
round the messages of LE(“eligible”,m, d) (2 ≤ m ≤ N) are packed into one
message and sent to adjacent parties. Although this parallelism cannot reduce
time/communication complexity, it can reduce the necessary number of rounds.
Let M be the largest m ∈ {2, 3, . . . , N} such that LE(“eligible”,m, d) terminates
with output “eligible” or “ineligible.” The next lemma implies thatM is equal to the
hidden number of parties, i.e., n, and thus LE(“eligible”,M, d) elects the unique
leader. Figure 54 describes this generalized algorithm. We call it the generalized
Algorithm II.

Lemma 42 For any number m larger than the number n of parties, if every party
l runs LE(“eligible”,m, dl), it always outputs “error,” where dl is the number of
neighbors of party l.

Proof. It is sufficient to prove that k is never equal to 1 in the modified Algorithm
II, since step 5 of Stage 2 outputs status only when k = 1. k is set to czminor

at
step 4 of Stage 2 and czminor

is computed at step 3 of Subroutine C̃. If we prove
that, for any i, ci > 1 at step 2 of Subroutine C̃, the lemma follows. Subroutine C̃
computes

ci = m
|Γ2(m−1)(i)|
|Γ2(m−1)| .
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Generalized Algorithm II

Input: a classical variable status ∈ {“eligible”, “ineligible”}, integers N, d
Output: a classical variable status ∈ {“eligible”, “ineligible”}

1. Run in parallel LE(“eligible”,m, d) for m = 2, 3, . . . , N .
2. Output status returned by LE(“eligible”,M, d), where M is the largest

value ofm ∈ {2, 3, . . . , N} such that LE(“eligible”,m, d) outputs status ∈
{“eligible”, “ineligible”}.

Figure 54: Generalized Algorithm II.

If i is in {0, 1, 2, 3} \ {z1, . . . , zn} where zl is the z value of party l, ci is 0 and
then set to n; otherwise

ci ≥ m/n > 1,

since |Γ2(m−1)(i)| ≥ 1 and |Γ2(m−1)| ≤ n.
�

Theorem 43 Let |E| and D be the number of edges and the maximum degree
of the underlying graph, respectively. Given the upper bound N of the num-
ber of parties, the generalized Algorithm II exactly elects a unique leader in
O(DN6(logN)2) time and O(N logN) rounds of which only the first round re-
quires quantum communication. The total communication complexity over all
parties is O(D|E|N4(logD) logN) which includes the communication of only
O(|E|N logN) qubits.

Proof. From Lemma 42, the correctness is obvious. As for the complexity, we
can obtain the complexity of the modified Algorithm II, i.e., LE(“eligible”,m, d),
simply by replacing n with m in the complexity of the (original) Algorithm II.
Since the generalized Algorithm II runs LE(“eligible”,m, d) for m = 2, . . . , N in
parallel, the number of rounds required is the same as the maximum of that of the
modified Algorithm II over m = 2, . . . N . The time/communication complexity
is O(

∑N
m=2C(m)) = O(N ·C(N)), where C(m) is that of Algorithm II when m

is used instead of n, described in Theorem 41. �

In fact, it is possible to reduce the time/communication complexity at
the expense of the number of rounds. Suppose that every party l runs
LE(“eligible”,m, dl) sequentially in the decreasing order of m starting at N .
When LE(“eligible”,m, dl) outputs status that is either “eligible” or “ineligible,”
the algorithm halts. From Lemma 42, it is clear that the algorithm halts when
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m = n, which saves time and communication that are supposed to be taken by
LE(“eligible”,m, dl) for m < n.

4.3.5 Application to network topologies of directed graphs

Algorithm II can be easily modified so that it can be applied to the network topolo-
gies whose underlying graph is directed and strongly-connected.

We slightly modify the network model as follows. In a quantum distributed
system, every party can perform quantum computation and communication, and
each pair of parties has at most one unidirectional quantum communication link in
each direction between them. For each pair of parties, there is at least one directed
path between them for each direction. When the parties and links are regarded as
nodes and edges, respectively, the topology of the distributed system is expressed
by a strongly-connected graph, denoted by G = G(V,E). Every party has two
kinds of ports: in-ports and out-ports; they correspond one-to-one to incoming
and outgoing communication links, respectively, incident to the party. Every port
of party l has a unique label i, (1 ≤ i ≤ dl), where dl is the number of parties
adjacent to l and dl = dIl + dOl for the number dIl (dOl ) of in-ports (resp. out-ports)
of party l. For G(V,E), the port numbering σ is defined in the same as in the
case of the undirected graph model. Just for ease of explanation, we assume that
in-port i of party l corresponds to the incoming communication link connected to
the ith party among all adjacent parties that have an outgoing communication link
destined to party l; out-port i of party l is also assumed in a similar way.

The view for the strongly-connected underlying graph can be naturally de-
fined. For each v and port numbering σ, the view TG,σ,X(v) is a labeled,
rooted tree with infinite depth defined recursively as follows: (1) TG,σ,X(v)
has the root w with label X(v), corresponding to v, (2) for the source vj
of every directed edge coming into v in G, TG,σ,X(v) has vertex wj labeled
with X(vj), and an edge from root w to wj with label label((v, vj)) given by
label((v, vj)) = (σ[v](v, vj), σ[vj](v, vj)), and (3) wj is the root of TG,σ,X(vj).
T hX(v) is defined in the same way as in the case of the undirected graph model. The
above definition also gives the way of constructing T hG,σ,X(v). It is stressed that
every party corresponds to at least one node of the view if the underlying graph
is strongly-connected. It can be proved in almost the same way as [195, 196] that
the equivalence classes with respect to the isomorphism of views have the same
cardinality for fixed G = G(V,E), σ and X; cG,σ,X(S) can be computed from a
view.

Lemma 44 For the distributed system whose underlying graph G = G(V,E) is
strongly-connected, the number of views isomorphic to view T is constant over all
T for fixed σ and X .
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Proof. Let T (v) and T (v′) be any two non-isomorphic views for fixed σ and
X , and let {T (v1), . . . , T (vm)} be the set of all views isomorphic to T (v), where
v ∈ {vi | i = 1, . . . ,m} ⊆ V . Since the underlying graph is strongly-connected,
there is that subtree of T (v1) which is isomorphic to T (v′). Let s be the sequence
of edge and node labels from the root of T (v1) to the root u1 of the subtree. Since
all views in {T (v1), . . . , T (vm)} are isomorphic to one another, there is the node
ui that can be reached from the root of T (vi) along s for each i = 1, . . .m. Clearly,
every ui is the root of a tree isomorphic to T (v′). Since vi and vj correspond to
different parties if i �= j, so do ui and uj if i �= j. This implies that the number of
views isomorphic to T (v′) is not less than that of views isomorphic to T (v). By
changing T (v) for T (v′), we can see that the number of views isomorphic to T (v)
is not less than that of views isomorphic to T (v′). This completes the proof. �

Since f-view depends only on the outgoing edges of every node, f-view also
works for any strongly-connected underlying graph.

From the above, it is not difficult to see that Subroutines Ã, B̃ and C̃ can work
(with only slight modification), since they use only classical communication. In
what follows, we describe a modification, called Subroutine Q’, to Subroutine Q.
This leads to the correctness of the modification to Algorithm II for any strongly-
connected underlying graph.

Subroutine Q’ just restricts Subroutine Q so that every party can send qubits
only via out-ports and receive qubits only via in-ports. Figure 55 gives a precise
description of Subroutine Q’; the subroutine requires those two integers dI and dO

together with R0 as input, which are supposed to be dIl and dIl , respectively. Thus,
Algorithm II needs to be slightly modified so that it can handle dI and dO in stead
of d.

We can prove the next lemma in a similar way to Lemma 31.

Lemma 45 For an n-party distributed system, suppose that every party l calls
Subroutine Q’ with a one-qubit register whose content is initialized to |0〉 and dIl
and dOl as input R0, dI and dO, respectively. After performing Subroutine Q’, all
parties share (|x〉+ |x〉)/√2 with certainty, where x is a random n-bit string.

Proof (Sketch). After step 2, the state in R0’s and R′′
1’s, . . . ,R′′

dI ’s of all par-
ties is a uniform superposition of some basis states in an orthonormal basis of
2

Pn
l=1(dO

l +1)-dimensional Hilbert space: the basis states correspond one-to-one to
n-bit integers a and each of the basis states is of the form |a1〉⊗(dO

1 +1) ⊗ · · · ⊗
|an〉⊗(dO

n +1), where al is the lth bit of the binary expression of a. If we focus on the
lth party’s part of the basis state corresponding to a, step 3 transforms |al〉⊗(dO

l +1)

into |al〉
(⊗dI

l
j=1 |alj〉

)
, where we assume that party l is connected to party lj via

in-port j. Notice that the total number of qubits over all parties is preserved, since∑n
l=1 d

I
l =

∑n
l=1 d

O
l . More precisely, steps 1 to 4 transform the system state as
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Subroutine Q’

Input: a one-qubit quantum register R0, integers dI and dO

Output: a one-qubit quantum register R0, a binary string y of length dI

1. Prepare dO one-qubit quantum registers R′
1, . . . ,R

′
dO and 2dI one-qubit

quantum registers R′′
1, . . . ,R

′′
dI , S1, . . . ,SdI , each of which is initialized to

the |0〉 state.
2. Generate the (dO + 1)-cat state (|0dO+1〉+ |1dO+1〉)/√2 in registers R0,

R′
1, . . . ,R

′
dO .

3. Send the qubit in R′
i to the party connected via out-port i for 1 ≤ i ≤ dO.

Receive the qubit from the party connected via in-port i and store it into
one-qubit register R′′

i for 1 ≤ i ≤ dI .
4. Set the content of Si to x0 ⊕ xi, for 1 ≤ i ≤ dI , where x0 and xi denote the

contents of R0 and R′′
i , respectively.

5. Measure the qubit in Si in the {|0〉, |1〉} basis to obtain a bit yi, for
1 ≤ i ≤ dI .
Set y := y1 · · · ydI .

6. Apply CNOT controlled by the content of R0 and targeted to the content of
each R′′

i for i = 1, 2, . . . , dI to disentagle R′′
i s.

7. Output R0 and y.

Figure 55: Subroutine Q’

follows:

n⊗
l=1

|0〉|0dO
l 〉|0dI

l 〉 →
n⊗
l=1

|0dO
l +1〉+ |1dO

l +1〉√
2

|0dI
l 〉

→ 1√
2n

2n−1∑
a=0

n⊗
l=1

⎧⎨⎩|al〉
⎛⎝ dI

l⊗
j=1

|alj〉
⎞⎠ |0dI

l 〉
⎫⎬⎭

→ 1√
2n

2n−1∑
a=0

n⊗
l=1

⎧⎨⎩|al〉
⎛⎝ dI

l⊗
j=1

|alj〉
⎞⎠⎛⎝ dI

l⊗
j=1

|al ⊕ alj〉
⎞⎠⎫⎬⎭ .

After every party measures registers Si’s at step 5, the state transformation can
be described as follows, due to a similar argument to Claim 32 (using the strong
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connectivity of the underlying graph):

1√
2

n⊗
l=1

⎛⎝|Al〉 dI
l⊗

j=1

|Alj〉
⎞⎠+

1√
2

n⊗
l=1

⎛⎝|Al〉 dI
l⊗

j=1

|Alj〉
⎞⎠

→ 1√
2

n⊗
l=1

⎛⎝|Al〉 dI
l⊗

j=1

|Al ⊕ Alj〉
⎞⎠+

1√
2

n⊗
l=1

⎛⎝|Al〉 dI
l⊗

j=1

|Al ⊕ Alj〉
⎞⎠ .

Finally, the qubits in R0’s are in the state (|x〉+ |x〉)/√2.
�

4.3.6 A special case: n is a power of two

We introduce an algorithm in [182] that is restricted to the case wherein the num-
ber of parties is a power of two. The algorithm makes the most of the nice com-
bination of the view and operator Uk defined in Subroutine B; it takes at most
only 6n rounds for any topology, while the total communication complexity is
O(n6 log n) over which the quantum communication is dominant.

The idea is as follows. The algorithm generates an inconsistent state |φ〉 shared
by all parties such that |φ〉 is a superposition of only the n-bit strings of odd Ham-
ming weights (the Hamming weight is defined for any binary string x as the num-
ber of bits in x of value 1). Suppose that every party l obtains a single-bit value yl
by measuring his qubit. The number of the parties who got 1 is odd; the number is
relatively prime to n, since n is a power of two. In this case, Proposition 48 says
that, if every party l uses his view of depth n− 1 as its identifier, a unique leader
can be elected deterministically. Thus, only a single run of the above process is
sufficient to elect a unique leader, which takes just linear rounds in n.

First, every party prepares (|0〉 + |1〉)/√2 and |0〉 in one-qubit registers R0

and S, respectively. They then call Subroutine HW to set the content of S to the
Hamming weight (mod 2) of the contents in all R0s. Subroutine HW first com-
putes a superposition of the views of depth 2(n − 1), regarding the contents of
R0’s as node labels. This takes at most 2n rounds to construct the view. Subrou-
tine HW then computes cX(1) = n|Γ(n−1)

X (1)|/|Γ(n−1)
X | (mod 2) (i.e. the Ham-

ming weight) from the view with respect to each basis state, where X is the map-
ping naturally induced by each basis state. As in Subroutine A, Subroutine HW
finally disentangles all work qubits used while constructing the view by inverting
all computation and communication that was performed to construct the view; this
takes another 2n rounds. Next every party measures the qubit in S in the {|0〉, |1〉}
basis and stores the result into variable y. If y = 0 (1), the resulting state is a uni-
form superposition of only the n-bit strings that have the Hamming weights of
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Algorithm for the case where n is a power of two

Input: classical variable status = “eligible”, integers n, d
Output: classical variable status ∈ {“eligible”, “ineligible”}

1. Prepare (|0〉+|1〉)/√2 and |0〉 in one-qubit registers R0 and S, respectively.
2. Call Subroutine HW with R0, S, n and d, to set to S the Hamming weight

(mod 2) of the contents of all parties’ R0s.
Measure the qubit in S in the {|0〉, |1〉} basis and store the result into vari-
able y.

3. If y = 0, apply Un · H to the qubit in R0. Measure the qubit in R0 in the
{|0〉, |1〉} basis and store the result into variable z.

4. Call Subroutine L with status, z, n and d.
5. Output status.

Figure 56: Linear-round algorithm for the case where n is a power of two.

even (resp. odd) values. When y = 0, every party applies the Hadamard oper-
ator H and Un (in this order) to the qubit in R0 to transform the superposition
into a superposition of only the strings that have odd Hamming weights due to
Lemmas 46 and 47, where

Un =
1√
2

(
1 e−i

π
n

−eiπ
n 1

)
, H =

1√
2

(
1 1
1 −1

)
.

By measuring the qubit in R0, every party gets a single-bit value z. Finally, every
party calls Subroutine L, which elects a leader by classically constructing the view
of depth 2(n − 1) in 2n rounds by regarding z values as node labels. Lemma 48
implies that, when n is a power of two, no two parties have an isomorphic view if
the number of parties having 1 is odd. By regarding the view of every party as his
identifier, parties can elect a unique leader from among them. Therefore the total
number of rounds required is at most 6n rounds.

More precisely, each party l performs the algorithm shown in Figure 56 with
parameters “eligible,” n, the number dl of the neighbors of party l. The party who
obtains output “eligible” is the unique leader.

If we use f-views instead of views, the time/communication complexity can
be polynomially bounded in the number of parties.

The next lemmas prove that UnH transform a uniform superposition of all
n-bit strings having even Hamming weight into a superposition of only the n-
bit strings having odd Hamming weight. More precisely, the resulting state after
applying H is the n-qubit cat-state; Un transforms the cat-state into the state that
we want.
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Lemma 46 For any positive integer n, suppose that n parties share a uniform
superposition of all n-bit strings of even Hamming weight. If every party performs
the Hadamard operator H to its qubit that forms the superposition, the state is
transformed to the n-qubit cat state, i.e.,

(H)⊗n
1√
2n−1

∑
0≤j≤2n−1

HW(j)=0 (mod 2)

|j〉 =
|0n〉+ |1n〉√

2
,

where HW(j) denotes the Hamming weight of (the binary expression of) j.

Proof. Let |ψn〉 be

(H†)⊗n
|0n〉+ |1n〉√

2
= H⊗n |0n〉+ |1n〉√

2
.

It is sufficient to prove that |ψn〉 is a uniform superposition of all n-bit strings that
have even Hamming weight.

Fix an n-bit string j whose Hamming weight is 2m for any nonnegative integer
m (≤ 
n/2�). The amplitude of |j〉 in |ψn〉 is

1√
2

{(
1√
2

)n−2m(
1√
2

)2m

+

(
1√
2

)n−2m(−1√
2

)2m
}

=
1√
2n−1

.

Fix an n-bit string j whose Hamming weight is 2m − 1 for any positive integer
m (≤ 
(n+ 1)/2�). The amplitude of |j〉 in |ψn〉 is

1√
2

{(
1√
2

)n−(2m−1)(
1√
2

)(2m−1)

+

(
1√
2

)n−(2m−1)(−1√
2

)(2m−1)
}

= 0.

This completes the proof. �

Lemma 47 Suppose that |φn〉 = (Un)
⊗n((|0n〉 + |1n〉)/√2). Then |φn〉 is a su-

perposition of only the n-bit strings that have odd Hamming weight.

Proof. Fix an n-bit string j whose the Hamming weight is 2m for any nonnegative
integer m (≤ 
n/2�). The amplitude of |j〉 in |φn〉 is as follows:

1√
2

{(
1√
2

)n−2m(−eiπ
n√

2

)2m

+

(
e−i

π
n√
2

)n−2m(
1√
2

)2m
}

= 0.

�
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Proposition 48 Suppose that n is a power of two. For any n-party distributed
system with underlying graph G = (V,E), if X is a mapping such that X : V →
{0, 1} and cX(1) = 1 (mod 2), no two views T (n−1)

X,σ,G (v)’s are isomorphic to each
other.

Proof. The cardinality of each equivalence class with respect to view isomor-
phism is constant for fixed G, X and port numbering σ. Let this cardinality be
cX . Cardinality cX is thus a divisor of n. The roots of the views in any equiva-
lence class are mapped by X to the same value. Thus, the number of parties of
the same label (defined by X) needs to be a multiple of cX . Hence, cardinality cX
is a common divisor of n and cX(1). When n is a power of two and cX(1) = 1
(mod 2), the common divisor is uniquely determined to be 1. Since TX,σ,G(v) is
isomorphic to TX,σ,G(v′) if and only if T (n−1)

X,σ,G (v) is isomorphic to T (n−1)
X,σ,G (v′) for

any v, v′ ∈ V , the proof is completed. �

4.4 Folded view and its algorithms

View size is exponential against its depth since a view is a tree. Therefore, ex-
ponential communication bits are needed if the implementation simply exchanges
intermediate views. Hence we introduce a technique to compress views by shar-
ing isomorphic subtrees of the views. We call a compressed view a folded view
(or an f-view). The key observation is that there are at most n isomorphic subtrees
in a view when the number of parties is n. This technique reduces not only com-
munication complexity but also local computation time by folding all intermediate
views and constructing larger f-views without unfolding intermediate f-views.

4.4.1 Terminology

The folded view has all information possessed by the corresponding view. To
describe such information, we introduce a new notion, “path set,” which is equiv-
alent to a view in the sense that any view can be reconstructed from the corre-
sponding path set, and vice versa.

A path set, PG,σ,X(v), is defined for view TG,σ,X(v). Let uroot be the root
of TG,σ,X(v). Suppose that every edge of a view is directed and their sources
are the ends that are nearer to uroot. PG,σ,X(v) is the set of directed labeled
paths starting at uroot with infinite length in TG,σ,X(v). More formally, let
s(p) = (label(u0), label(e0), label(u1), · · · ) be the sequence of labels of those
nodes and edges which form an infinite-length directed path p = (u0, e0, u1, · · · )
starting at u0(= uroot), where ui is a node, ei is the directed edge from ui to ui+1

in TG,σ,X(v), and label(ui) and label(ei) are the labels of ui and ei, respectively. It
is stressed that ui and ei are not identifiers of a node and an edge, and are just used
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for definition. PG,σ,X(v) is the set of s(p) for all p in TG,σ,X(v). For T hG,σ,X(v), we
naturally define P h

G,σ,X(v), i.e., the set of all sequences of labels of those nodes
and edges which form directed paths of length h starting at uroot in T hG,σ,X(v). In
the following, we simply call a sequence in a path set, a path, and identify the
common length of the paths in a path set with the length of the path set.

By the above definition, P h
G,σ,X(v) is easily obtained by traversing view

T hG,σ,X(v). On the other hand, given P h
G,σ,X(v), we can construct the view rooted

at uroot by sharing the maximal common prefix of any pair of paths in P h
G,σ,X(v).

In this sense, P h
G,σ,X(v) has all information possessed by view T hG,σ,X(v). Let uj

be any node at depth j in T hG,σ,X(v), and suppose that uj corresponds to node vuj

of G. Since view is defined recursively, we can define the path set P h′
G,σ,X(vuj)

for the h′-depth subtree rooted at uj , as the set of h′-length directed paths starting
at uj for h′ ≤ h − j. To avoid complicated notations, we may use P h′

G,σ,X(uj)

instead of P h′
G,σ,X(vuj). We call P h′

G,σ,X(uj) the path set of length h′ defined for uj .

In particular, when h′ is the length from uj to a leaf, i.e., h− j, we call P h−j
G,σ,X(uj)

the path set defined for uj . For any node u of a view, we use depth(u) to represent
the depth of u, i.e., the length of the path from the root to u, in the view that u
belongs to.

4.4.2 Folded view

For any node u in a view and its corresponding party l, if an outgoing edge e of u
corresponds to the communication link incident to party l via port i, we call edge
e “i-edge of u” and denote the destination of e by Adji(u). Now we define an
operation, called the “merging operation,” which folds a view.

Definition 6 (Merging operation) For any pair of nodes u and u′ at the same
depth in a view, the merging operation eliminates one of nodes u and u′, and
redirects all incoming edges of this node to the remaining one, if u and u′ satisfy
the following conditions: (1) u and u′ have the same label, and (2) when u and
u′ have outgoing edges (i.e., neither u nor u′ is a leaf), u and u′ have the same
number of outgoing edges, and the i-edges of u and u′ have the same label and
are directed to the same node for all i.

Obviously, the merging operation never eliminates the root of a view. Further, the
merging operation does not change the length of the directed path from the root
to each (remaining) node. Thus, we define the depth of each node u that remains
after applying the merging operation as the length of the path from the root to u
and denote it again by depth(u). We call the directed acyclic graph obtained by
applying the merging operation to a view, a folded view (f-view), and define the
size of an f-view as the number of nodes in the f-view. Since views of finite depth
are sufficient for our use, we only consider f-views that are obtained by applying
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the merging operation to views of finite depth hereafter. For any view T hG,σ,X(v),
its minimal f-view is uniquely determined up to isomorphism as will be proved
later and is denoted by T̃ hG,σ,X(v). We can extend the definition of the path set
to f-views: the path set of length h defined for node u in an f-view is the set of
all directed labeled paths of length h from u in the f-view. For any node u in
an f-view, we often use du to represent the number of the outgoing edges of u
when describing algorithms later. Since the merging operation does not change
the number and labels of the outgoing edges of any remaining node, every node u
in an f-view has the same set of outgoing edges as the node corresponding to u in
the underlying graph of the distributed system.

The next lemma is essential.

Lemma 49 For any (f-)view, the merging operation does not change the path set
defined for every node of the (f-)view if the node exists after the operation. Thus,
the path set of any f-view obtained from a view by applying the merging operation
is identical to the path set of the view.

Proof. Let u′ be the node that will be merged into u (i.e., u′ will be eliminated).
By the definition of the merging operation, the set of the maximal length paths
starting at u is identical to the set of those starting at u′. Thus, by eliminating u′

and redirecting all incoming edges of u′ to u, the path set defined for every node
does not change. �

We can characterize f-views by using “path sets.” Informally, for every distinct
path set P defined for a node at any depth j in a view, any f-view obtained from
the view has at least one node which defines P , at depth j.

Before giving a formal characterization of f-views in the next lemma, we need
to define some notations. Suppose that uj be any node at depth j in T hG,σ,X(v). We

define PjG,σ,X(v) as the set of path sets P h−j
G,σ,X(uj)’s defined for all uj’s. For any

path set P , let P |x be the set obtained by cutting off the first node and edge from
all those paths in P which have x as the first edge label.

Lemma 50 T́ hG,σ,X(v) is an f-view of T hG,σ,X(v) if and only if T́ hG,σ,X(v) is a labeled
connected directed acyclic graphGf (V f , Ef ) such that V f is the union of disjoint
sets V f

j (j = 0, . . . , h) of nodes with |V f
0 | = 1, and Ef is the union of disjoint

sets Ef
j ⊆ V f

j × V f
j+1 (j = 0, . . . , h− 1) of directed edges, for which every node

in V f
j (j = 1, . . . , h) can be reached via a directed path from ur ∈ V f

0 , and there

is a mapping ψ from V f
j onto PjG,σ,X(v) for each j = 0, . . . , h such that,

C1 each node u ∈ V f has the label that is identical to the common label of the
first nodes of paths in ψ(u),



4.4 Folded view and its algorithms 127

C2 for each u ∈ V f , there is a bijective mapping from the set of outgoing
edges of u to the set of the first edge labels of paths in ψ(u), such that any
outgoing edge (u, u′) has label x to which (u, u′) is mapped and ψ(u′) is
equal to ψ(u)|x.

Proof. (⇒) We will prove that, for any f-view obtained by applying the merging
operation to T hG,σ,X(v), there exists ψ that satisfies C1 and C2. From Lemma 49,
the merging operation does not change the path set defined for any node (if it
exists after the operation). It follows that the path set defined for any node at
depth j in the f-view belongs to PjG,σ,X(v). Conversely, for every path set P in

PjG,σ,X(v), there is at least one node at depth j in the f-view such that the path
set defined for the node is P , since the merging operation just merges two nodes
defining the same path set. Let ψ be the mapping that maps every node u of the
f-view to the path set defined for u. From the above argument, ψ is a mapping
from V f

j onto PjG,σ,X(v) and meets C1. To show that ψ meets C2, we use simple
induction on the sequence of the merging operation. By the definition, T hG,σ,X(v)
meets C2. Suppose that one application of the merging operation transformed an
f-view to a smaller f-view, and that ψ meets C2 for the f-view before the operation.
If we define ψ′ for the smaller f-view as the mapping obtained by restricting ψ to
the node set of the smaller f-view, ψ′ meets C2 by the definition of the merging
operation.

(⇐) We will prove that any graphGf for which there is ψ satisfying C1 and C2
can be obtained by applying the merging operation to T hG,σ,X(v). We can easily
show by induction that the set P of all maximal-length labeled directed paths
starting at u0 ∈ V f

0 is identical to the path set P h
G,σ,X(v) of T hG,σ,X(v) from the

definition of Gf . We will give an inversion of the merging operation that does
not change P when it is applied to Gf , and show that we can obtain the view that
defines P h

G,σ,X(v) by maximally applying the inversion. This view is isomorphic
to T hG,σ,X(v), since the view is uniquely determined for a fixed path set. It follows
thatGf can be obtained from T hG,σ,X(v) by reversing the sequence of the inversion.

The inverse operation of the merging operation is defined as follows: if some
node uj ∈ V f

j (1 ≤ j ≤ h) has multiple incoming edges, say, e1, . . . et ∈ Ej−1,
the inverse operation makes a copy u′ of uj together with its outgoing edges and
redirects e2,. . . et to u′ (e1 is still directed to the original node uj). Let Gf ′ be
the resulting graph. The sets of maximal-length paths from u0 ∈ V f

0 and u′0 ∈
V f ′

0 are obviously identical to each other. Consider a mapping ψ′ such that ψ′ is
identical to ψ of Gf for all nodes except u′, and ψ′(u′) is equal to ψ(u). Then ψ′

is a mapping from V f ′
j onto PjG,σ,X(v) and meets C1 and C2. Thus, the inverse

operation can be applied repeatedly without changing the set of maximal-length
paths from u0 ∈ V f

0 until there are no nodes that have multiple incoming edges.
It follows that Gf is transformed into a view that defines P h

G,σ,X(v) by maximally
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applying the operation. �

From this lemma, we obtain the next corollary.

Corollary 51 Any minimal f-view T̃ hG,σ,X(v) is unique up to isomorphism and has

exactly |PjG,σ,X(v)| nodes at depth j (0 ≤ j ≤ h). The minimal f-view of depth
h for any n-party distributed system has O(hn) nodes and O(hDn) edges, where
D is the maximum degree over all nodes of the underlying graph.

Proof. When ψ in Lemma 50 is a bijective mapping from V f
j to PjG,σ,X(v) for

all j, the f-view is minimal. Thus, the f-view has |PjG,σ,X(v)| nodes at depth
j (0 ≤ j ≤ h).

Let T̃ hX,a(v) and T̃ hX,b(v) be any two minimal f-views of T hG,σ,X(v), and let ψa
and ψb be their corresponding bijective mappings defined in Lemma 50, respec-
tively. If we define φ = ψ−1

b ψa for the inverse mapping ψ−1
b of ψb, φ is a bijective

mapping from the node set of T̃ hX,a(v) to that of T̃ hX,b(v). Since any node ua at

depth j of T̃ hX,a(v) is mapped by ψa to some path set P in PjG,σ,X(v), which is
mapped to some node ub at depth j by ψ−1

b . Obviously, ua and ub have the same
degree and have the same label as the first node of paths in P . Let u′a be any node
incident to a directed edge with label x emanating from ua. Node u′a is mapped
to ψa(u)|x, which is mapped to node u′b incident to the directed edge with label x
emanating from ub. Thus, φ is an isomorphism from T̃ hX,a(v) to T̃ hX,b(v).

For the second part, if there are n parties, it is obvious that |PjG,σ,X(v)| ≤ n
for any j (0 ≤ j ≤ h). Since each node has at most D outgoing edges, the lemma
follows. �

4.4.3 Folded-view minimization

The key idea of the minimization algorithm is to maximally applying the merging
operation to the (f-)view to be minimized. This idea works well, because of the
next lemma.

Lemma 52 Let T́ hG,σ,X(v) be an f-view for view T hG,σ,X(v). T́ hG,σ,X(v) is isomor-

phic to the minimal f-view T̃ hG,σ,X(v) if and only if no merging operation is appli-

cable to T́ hG,σ,X(v).

Proof. Obviously, no more merging operation can be applied to the minimal f-
view. We will prove the other direction in the following. Suppose that there is
a non-minimal f-view T́ h expressing P h

G,σ,X(v), to which no more merging oper-

ation can be applied. T́ h must have more than |PjG,σ,X(v)| nodes at depth j for
some j. Let j′ be the largest such j. From Lemma 49, for any node uj

′
at depth j′
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in T́ h, the path set defined for uj
′
is in Pj′G,σ,X(v) if T́ h is an f-view of T hG,σ,X(v).

Thus, T́ h must have at least one pair of nodes at depth j ′ such that the path sets
defined for the two nodes are identical. Therefore, the outgoing edges of the two
nodes with the same edge label are directed to the same node, since no two nodes
at depth j′ + 1 have the same path set. Thus, the merging operation can still be
applied to the node pair. This is contradiction. �

The algorithm

The minimization algorithm applies the merging operation to every node in the
(f-)view in a bottom-up manner, i.e., in the decreasing order of the depth of nodes.
Clearly, this ensures that no application of the merging operation at any depth j
creates that new node pair at depth larger than j to which the merging operation is
applicable. Thus, no more merging operations can be applied when the algorithm
halts. It follows that the algorithm outputs the minimal f-view by Lemma 52.

In order to apply the merging operation, we need to be able to decide if two
edges are directed to the same node, which implies that we need to identify each
node. We thus assign a unique identifier, denoted by id(u), to each node u in the
(f-)view. In order to efficiently check condition (2) of the merging operation, we
also construct the data structure for each node that includes the label of the node,
and the labels and destination node id of all outgoing edges: the data structure,
called key, for node u is of the form (label(u), ekey(u)), where

• label(u) is the label of u,

• ekey(u) is a linked list of pairs (x1, y1) · · · (xdu , ydu) of the label xi and
destination yi, respectively, of the i-edge of u for all i, where du is the
number of outgoing edges of u.

We prepare another linked list V f
j of all nodes at depth j for each j to make sure

that the merging operation is applied to the set of all nodes at depth j before
moving on to depth j − 1. Data structures id(u) and ekey(u) for every node u and
V f
j for every depth j can be constructed by one traversal of the input f-view in a

breadth-first manner.
We then perform the merging operation in a bottom-up manner. For each depth

j from h to 1, the next operations are performed. (Notice that the algorithm ends
at j = 1, since at depth 0 is only the root, which is never removed.) First we
sort the nodes u’s in V f

j by regarding keys, i.e., (label(u), ekey(u)) as a binary

string, which makes all nodes having the same key adjacent to each other in V f
j .

For each maximal subsequence of those nodes in V f
j which have the same pair

(label(u), ekey(u)), we will remove all nodes but the first node in the subsequence
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and redirect all incoming edges of the removed nodes to the first node. Here
we introduce variables primary and primarykey to store the first node u and
its key (label(u), ekey(u)), respectively, of the subsequence currently processed.
Concretely, we perform the next operation to every node u in V f

j in the sorted
order: if (label(u), ekey(u)) is equal to primarykey (i.e., conditions (1) and (2)
of the merging operation are met), then remove u from V f

j , redirect all incoming

edges of u to primary, remove u and all its outgoing edges from T́ h, and set
id(u) to id(primary) so as to reflect the merger to ekey; otherwise, set primary
to u and primarykey to (label(u), ekey(u)). More precisely, the minimization
algorithm described in Figure 57 is invoked with an f-view T h and its depth h
(actually, h can be computed from T h, but we give h as input to simplify the
algorithm). The minimization algorithm calls Subroutine Traversal (I) shown in
Figure 58 to compute ekey and V f

j , where CONTINUE starts the next turn of the
inner-most loop where it lies with the updated index; DEQUEUE(Q) removes an
element from FIFO queue Q and returns the element; ENQUEUE(Q, q) appends an
element q to FIFO queue Q; CON(L, l) appends an element l to the end of list L.

The minimization algorithm is used as a subroutine when constructing the
minimal f-view from scratch as described later.

The next lemma states the time complexity of the minimization algorithm.

Lemma 53 If the input of the minimization algorithm is an f-view with node set
V f for an n-party distributed system, and any node label is represented by an
O(logL)-bit value for some positive integer L, the time complexity of the algo-
rithm is O(|V f |(log |V f |)(logL+D log(D|V f |))), where D is the maximum de-
gree of the underlying graph.

Proof. We first consider Subroutine Traversal (I) in Figure 58. It is obvious
that steps 1 and 2 take constant time. Notice that, by a standard implementation
of DEQUEUE, ENQUEUE and CON, each call of them takes constant time. Step 3
traverses the input (f-)view in a bread-first manner. Hence, the time required for
step 3 is proportional to the number of edges, which is at most D|V f |. Steps 3.2.2
and 3.2.3 take O(log |V f |). It follows that step 3 takes O(D|V f | log |V f |) time.

Now we consider the minimization algorithm in Figure 57. In step 2, steps
2.2 and 2.3 are dominant. In step 2.2, sorting all elements in V f

j for all j
needs O(|V f | log |V f |) comparisons and takes O(logL + D log(D|V f |)) time
for each comparison, since label(u) and ekey(u) have O(logL + D log(D|V f |))
bits for any u (ekey(u) has at most D pairs of an edge label and a node id,
which are logD� bits and log |V f |� bits, respectively). Thus step 2.2 takes
O(|V f |(log |V f |)(logL+D log(D|V f |)) time.

Step 2.3 repeats steps 2.3.1 and 2.3.2 at most |V f | times, since steps 2.3.1
and 2.3.2 are performed once for each node in T́ h except the root. Clearly,
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F-View Minimization Algorithm

Input: a(n) (f-)view T́ h of depth h, and a positive integer h
Output: minimal f-view T̃ h

1. Call Subroutine Traversal (I) with T́ h,
to compute ekey and V f

j (j = 1, . . . , h) by breadth-first traversal of T́ h.
2. For j := h down to 1, do the following steps.

2.1 Set primarykey := φ.

2.2 Sort all elements u in V f
j by the value obtained by regarding

(label(u), ekey(u)) as a binary string.

2.3 While V f
j is not empty, perform the following steps.

2.3.1 Remove the first element of V f
j and set u to the element.

2.3.2 If (label(u), ekey(u)) = primarykey,
redirect all incoming edges of u to primary
remove u and all its outgoing edges (if they exist) from T́ h

set id(u) := id(primary) to reflect this merger to ekey;
otherwise,
set primary := u and primarykey := (label(u), ekey(u)).

3. Output the resulting graph T̃ h.

Figure 57: F-view minimization algorithm.

each run of step 2.3.1 takes constant time. In each run of step 2.3.2, (a) it takes
O(logL+D log(D|V f |)) time to compare (label(u), ekey(u)) with primarykey,
(b) it takes O(dIu) time to redirect all incoming edges of u to primary where dIu
is the number of the incoming edges of u, and (c) it takes O(du) time to remove
u and all its outgoing edges (if they exist) from T́ h. More precisely, we implicitly
assume an appropriate data structure to represent T́ h: each u has two linked lists
of incoming edges and outgoing edges such that each edge is registered in the
incoming-edge list of his destination and the outgoing-edge list of his source, and
the two entries of the edge lists are linked to each other. Although the lists need to
be maintained when (b) and (c) are performed, we can easily see that the operation
including this maintenance can be done with the above time complexity. Finally,
it takes constant time to set id(u), primary and primarykey to new values. The
total time required for step 2.3 is proportional to

O

(
|V f |(logL+D log(D|V f |)) +

∑
u∈V f

dIu +
∑
u∈V f

du

)
= O

(|V f |(logL+D log(D|V f |)) +D|V f |+D|V f |) ,
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Subroutine Traversal (I)

Input: a(n) (f-)view T́ h

Output: ekey and V f
j (j = 1, . . . , h)

1. Perform ENQUEUE(Q, ur), where ur is the root of T́ h and Q is an empty
first-in-first-out queue.
Set depth(ur) := 0 and size := 1.

2. Set id(ur) := size and then set size := size + 1.
3. While Q is not empty, repeat the following steps.

3.1 Set u := DEQUEUE(Q) and then set ekey(u) := φ.
If u is a leaf, CONTINUE.

3.2 For i := 1 to du, where du is the degree of u,
3.2.1 Set ui := Adji(u).

If ui has already been traversed, CONTINUE.
3.2.2 Set id(ui) := size and then set size := size + 1.
3.2.3 Set depth(ui) := depth(u) + 1.

Perform CON(V f
depth(ui)

, ui) and ENQUEUE(Q, ui).
3.2.4 Perform CON(ekey(u), (label((u, ui)), id(ui))).

4. Output ekey and V f
j (j = 1, . . . , h).

Figure 58: Subroutine Traversal (I).

since no edge can be redirected or removed more than once in step 2.3.2. Hence,
step 2.3 takes O(|V f |(logL+D log(D|V f |)) time.

By summing these up, the total time complexity is

O(|V f |(log |V f |)(logL+D log(D|V f |)).

�

4.4.4 Minimal folded-view construction

We now describe the entire algorithm that constructs a minimal f-view of depth
h from scratch by using the f-view minimization algorithm as a subroutine. This
construction algorithm is almost the same as the original view construction al-
gorithm: parties exchange minimal intermediate f-views instead of intermediate
views, and they construct an f-view T́ jG,σ,X(v) of depth j by connecting received

minimal f-views T̃ j−1
G,σ,X(vi) of depth j − 1 to the root without unfolding them,

and then apply the f-view minimization algorithm to T́ jG,σ,X(v). It is stressed that
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F-View Construction Algorithm

Input: integers h, d and x
Output: minimal f-view T̃ hG,σ,X , where X is the underlying mapping naturally

induced by the x values of all parties.

1. Generate T̃ 0
G,σ,X(v), which consists of only one node with label x.

2. For j := 1 to h, perform the following steps.

2.1 Send a copy of T̃ j−1
G,σ,X(v) to every adjacent party.

2.2 Receive the minimal f-view T̃ j−1
G,σ,X(vi) via port i for 1 ≤ i ≤ d, where

vi is the node corresponding to the party connected via port i.

2.3 Construct an f-view T́ jG,σ,X(v) from T̃ j−1
G,σ,X(vi)’s as follows.

2.3.1 Set the root uroot of T́ jG,σ,X(v) to T̃ 0
G,σ,X(v),

2.3.2 Set the ith child ui of uroot to the root of T̃ j−1
G,σ,X(vi),

2.3.3 Label the edge from uroot to ui with (i, i′), where i′ is the port
from which T̃ j−1

G,σ,X(vi) was sent, i.e., i′ := σ[vi](v, vi).
2.4 Call the f-view minimization algorithm with T́ jG,σ,X(v) and j.

Set T̃ jG,σ,X(v) to the output of the algorithm.

3. Output T̃ hG,σ,X(v).

Figure 59: F-view construction algorithm.

T́ jG,σ,X(v) is an f-view, since T́ jG,σ,X(v) can be constructed from view T jG,σ,X(v)
by applying the merging operation to every subtree rooted at depth 1. Thus, the
minimization algorithm can be applied to T́ jG,σ,X(v). More precisely, each party
l having dl adjacent parties and xl as his label performs the f-view construction
algorithm described in Figure 59 with h, dl and xl, in which we assume that v is
the node corresponding to party l in the underlying graph.

Lemma 54 For any distributed system of n parties labeled with O(logL)-
bit values, the f-view construction algorithm constructs the minimal f-view
of depth h(= O(n)) in O(Dh2n(log n)(logLnD)) time for each party and
O(|E|h2n log(LDD)) communication complexity, where |E| and D are the num-
ber of edges and the maximum degree of the underlying graph.

Proof. T̃ j−1
G,σ,X(v) has at most j · n nodes. Thus, T̃ j−1

G,σ,X(v) can be expressed
by O(jn logL + jDn logD) = O(jn log(LDD)) bits. It follows that steps 2.1
and 2.2 take O(jDn log(LDD)) time. Since any party has at most D neighbors,
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T́ jG,σ,X(v) has at most j ·D · n+ 1 nodes. From Lemma 53, step 2.4 in Figure 59
takes

O(jDn log(jDn)(logL+D log(D · jDn))) = O(jDn(log n)(logL+D log n))

time for each j, since j = O(n). Thus the total time complexity is

O

(
h∑
j=1

jDn(log n)(logL+D log n)

)
= O(Dh2n(log n)(logLnD)).

A node label is represented by O(logL) bits. An edge label is a pair of port
numbers, which are O(logD)-bit values. Therefore the minimal f-view of depth
j can be expressed by O(j · n · logL + jDn · logD) = O(j · n log(LDD)) bits.
Hence, the sum of the bits exchanged by all parties is O(j · |E|n log(LDD)) for
each j. It follows that the total communication complexity to construct an f-view
of depth h is

O

(
h∑
j=1

(j|E|n log(LDD))

)
= O

(|E|h2n log(LDD)
)
.

�

Remark 7 Kranakis and Krizanc [131] gave a simple but efficient view construc-
tion algorithm with only slightly worse communication complexity. Their algo-
rithm, however, requires O(n2) rounds to construct an O(n)-depth view for an
n-party distributed system, while ours needs only O(n) rounds.

4.4.5 Counting the number of parties having specified values

After constructing T̃
2(n−1)
X (v), we often need to compute |Γ(n−1)

X | and/or
|Γ(n−1)
X (S)| for a subset S of the range ofX to obtain cX = n/|Γ(n−1)

X | or cX(S) =

n|Γ(n−1)
X (S)|/|Γ(n−1)

X |. We will give an algorithm that computes |Γ(n−1)
X (S)| from

given minimal f-view T̃
2(n−1)
X (v), S, and n. By setting S to the range of X , we

can also obtain |Γ(n−1)
X |. Hereafter, we use “a sub-f-view rooted at u” to indicate

the subgraph of an f-view induced by the set of nodes which includes node u and
all nodes that can be reached from u via directed edges.

The algorithm

The algorithm computes the maximal setW of those nodes of depth at most n−1

which define distinct path sets of length n − 1. Then |Γ(n−1)
X (S)| is computed
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by counting the number of those nodes in W which are labeled with values in
S. The algorithm traverses input f-view T̃

2(n−1)
X (v) in a breadth first manner, in

which each visit to a new node invokes a subroutine that traverses sub-f-views of
T̃

2(n−1)
X (v) in a breadth-first manner.

To help the breadth-first traversals and simplify the description, the algorithm
first calls Subroutine Traversal (II) to prepare the next objects by a breadth-first
traversal of T̃ 2(n−1)

X (v): (1) the size, size, of T̃ 2(n−1)
X (v), (2) function

depth : V f → {0, 1, . . . , 2(n− 1)}
that maps any node in node set V f of T̃ 2(n−1)

X (v) to their depth, (3) the bijective
mapping

id : V f → {1, . . . , |V f |}
such that id(u1) < id(u2) if depth(u1) < depth(u2) for any u1, u2 ∈ V f , and (4)
the inverse mapping id−1 of id.

To compute W , the algorithm first sets W to {ur}, where ur is the root of
T̃

2(n−1)
X (v), and repeats the following operations for each i (≥ 2) in an increasing

order until the depth of the ith node (= id−1(i)) is larger than n−1: for each node
u in W , the algorithm calls Subroutine P (described later) to test if the sub-f-view
rooted at id−1(i) has the same path set of length n − 1 as that rooted at u, and
sets W := W ∪ {id−1(i)} if the test is false (i.e., the two sub-f-views do not have
the same path set of length n − 1). At the ith repetition, W is clearly the subset
of {id−1(j) | j < i} such that no pair of sub-f-views rooted at nodes in W has a
common path set of length n− 1.

The entire algorithm is precisely described in Figure 60. Subroutine Traversal
(II) is precisely shown in Figure 61, where CONTINUE starts the new turn of the
inner-most loop where it lies with the updated index; BREAK quits the inner-most
loop and moves on to the next operation; DEQUEUE(Q) removes an element from
FIFO queue Q and returns the element; ENQUEUE(Q, q) appends q to Q. These
operations are assumed to be implemented in a standard way.

Subroutine P is based on the next lemma.

Lemma 55 Suppose that T́ (n−1)
X,a and T́ (n−1)

X,b are any two sub-f-views of depth (n−
1) of a minimal f-view T̃

2(n−1)
X (v), such that T́ (n−1)

X,a and T́ (n−1)
X,b are rooted at nodes

ur and wr of T̃ 2(n−1)
X (v), respectively, and depth(ur) ≤ depth(wr) ≤ (n− 1). Let

Va and Vb be the vertex sets of T́ (n−1)
X,a and T́ (n−1)

X,b , respectively, and let Ea and Eb
be the edge sets of T́ (n−1)

X,a and T́ (n−1)
X,b , respectively.

T́
(n−1)
X,a and T́ (n−1)

X,b have a common path set of length (n − 1), if and only if
there is a unique homomorphism φ from Va onto Vb such that,

C1: for each u ∈ Va, φ(u) has the same label as u,
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View Counting Algorithm

Input: minimal f-view T̃
2(n−1)
X (v), subset S of the range of X , and integer n

Output: |Γ(n−1)
X (S)|

1. Call Subroutine Traversal (II) with T̃ 2(n−1)
X (v) to compute the size, size, of

T̃
2(n−1)
X (v), depth, id and id−1.

2. Let W be {ur}, where ur is the root of T̃ 2(n−1)
X (v).

3. For i := 2 to size, perform the next operations.

3.1 If depth(id−1(i)) > n− 1, BREAK.

3.2 For each u ∈W ,
call Subroutine P with n, depth, id, and two sub-f-views rooted at
id−1(i) and u, to test if the two sub-f-views have the same path set of
length n− 1,
set W := W ∪ {u} if the result is “No.”

4. Count the number nS of those nodes in W which are labeled with some
value in S.

5. Output nS .

Figure 60: View counting algorithm.

C2: for each u ∈ Va, there is an edge-label-preserving bijective mapping from
the set of outgoing edges of u to the set of outgoing edges of φ(u) such that
any outgoing edge (u, u′) of u is mapped to (φ(u), φ(u′)).

Proof. (⇒) Let φ′ : Va → Vb be the mapping defined algorithmically as follows.
We first set φ′(ur) := wr. We then repeat the next operations for each j from 0
to (n − 1) − 1: for every node u ∈ Va of depth (j + depth(ur)) and every edge
(u, u′) ∈ Ea, set φ′(u′) := w′ ∈ Va if (u, u′) and (φ′(u), w′) ∈ Eb have the same
label. Notice that φ′(u) has been already fixed, since the above operations proceed
toward leaves in a breadth-first manner.

We will prove that, if T́ (n−1)
X,a and T́ (n−1)

X,b have a common path set of length
(n− 1), φ′ is well-defined, meets C1 and C2, and also an onto-mapping. Finally,
we prove the uniqueness of φ satisfying C1 and C2.

Suppose that T́ (n−1)
X,a and T́ (n−1)

X,b have a common path set of length (n−1). We
prove that φ′ is well-defined and meets C1 and C2 by induction with respect to
depth.

Clearly, φ′ is well-defined for ur, and meets C1 for ur. Furthermore, ur and
wr define the same path set of length 2(n − 1) − depth(wr), since two views of



4.4 Folded view and its algorithms 137

Subroutine Traversal (II)

Input: minimal f-view T̃
2(n−1)
X (v).

Output: variable size of T̃ 2(n−1)
X (v), and functions depth, id and id−1.

1. ENQUEUE(Q, uroot), where Q is an empty first-in-first-out queue, and uroot

is the root of T̃ 2(n−1)
X (v).

Set size := 1.
2. Set id(uroot) := size and id−1(size) := uroot.

Set depth(uroot) := 0.
3. Set size := size + 1.
4. While Q is not empty, repeat the following steps.

4.1 Set u := DEQUEUE(Q).

4.2 If u is a leaf, CONTINUE.

4.3 For i := 1 to du, do the following.

4.3.1 Set ui := Adji(u).
4.3.2 If ui has already been traversed, CONTINUE.
4.3.3 Set id(ui) := size and id−1(size) := ui.

Set depth(ui) := depth(u) + 1.
4.3.4 ENQUEUE(Q, ui).
4.3.5 Set size := size + 1.

5. Output size, depth, id and id−1.

Figure 61: Subroutine Traversal (II).

infinite depth are isomorphic if and only if the two views are isomorphic up to
depth (n − 1). Thus, φ′ is well-defined for every node incident to an outgoing
edge of ur (i.e., every node at depth (1 + depth(ur)), and meets C2 for ur.

For j ≥ 1, we assume that for any u ∈ Va at depth not more than (j +
depth(ur)), φ′ is well-defined, meets C1, and u and w = φ′(u) define the same
path set of length (2(n − 1) − depth(w)). Further, we assume that φ′ meets C2
for any u ∈ Va at depth not more than ((j − 1) + depth(ur)). For any fixed
u ∈ Va at depth (j + depth(ur)) and every edge (u, u′) ∈ Ea, there is a node
w′ that satisfies the condition of the above algorithmic definition (i.e., (u, u′) and
(φ′(u), w′) have the same label), since u and w = φ′(u) define the same path set
of length (2(n−1)−depth(w)). If we set φ′(u′) := w′, φ′ meets C1 for u′ and C2
for u, and u′ and w′ have the same path set of length (2(n− 1)− depth(w′)). To
show that φ′ is well-defined for any node at depth ((j + 1) + depth(ur)), we have
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to prove that, for any node u1, u2 at depth j + depth(ur), there are no two edges
(u1, u

′), (u2, u
′) ∈ Ea that induce two distinct images of u′ by φ′. We assume

that such two edges exist and let w′
1 and w′

2 be the distinct images of u′. This
implies that path set P 2(n−1)−depth(w′

1)
X (w′

1) is identical to P
2(n−1)−depth(w′

2)
X (w′

2),
since both of them are identical to the path set of length 2(n − 1) − depth(w′

1)
(= 2(n− 1)− depth(w′

2)) defined for u′. This contradicts Corollary 51, since w′
1

and w′
2 are nodes at the same depth of minimal f-view T̃

2(n−1)
X (v).

If we assume that φ′ is not an onto-mapping, there is at least one node in
Vb \ {φ′(u) | u ∈ Va}. Let w be the node of the smallest depth in Vb \ {φ′(u) | u ∈
Va}. Thus, the source of any incoming edge of w is in {φ′(u) | u ∈ Va}. Since
the source satisfies C2, w needs to be in {φ′(u) | u ∈ Va}. This is contradiction.

Finally, we prove the uniqueness of φ. We assume that there are two different
homomorphisms satisfying C1 and C2. Let φ1 and φ2 be the two homomorphisms.
Then there is at least one node u in Va such that φ1(u) = w1 �= w2 = φ2(u). Since
any (n− 1)-length directed path emanates from wr in T́ (n−1)

X,b , φ1(ur) = φ2(ur) =
wr. For any directed path from ur to u, φ1 and φ2 define a path from wr to w1

and a path from wr to w2, respectively. By C1 and C2, these two paths are both
isomorphic to the path from ur to u. Since there is at most one such path in T́ (n−1)

X,b

by the definition of f-views, w1 must be identical to w2. This is contradiction.

(⇐) If φ meets C1 and C2, any directed edge (u, u′) in T́
(n−1)
X,a is mapped

to a directed edge (φ(u), φ(u′)) in T́ (n−1)
X,b of the same edge and node labels. It

follows that any directed path in T́ (n−1)
X,a is mapped to an isomorphic directed path

in T́ (n−1)
X,b . Thus, any (n − 1)-length directed path from ur in T́ (n−1)

X,a has to be

mapped to some isomorphic (n − 1)-length directed path in T́ (n−1)
X,b . Therefore,

the path set of T́ (n−1)
X,a is a subset of that of T́ (n−1)

X,b .
Conversely, fix an (n − 1)-length directed path p starting at wr. Since any

(n− 1)-length directed path in T́ (n−1)
X,a is mapped to some (n− 1)-length directed

path in T́ (n−1)
X,b , ur is only the preimage of wr by φ. If u is a preimage of the jth

node on p with respect to φ, there is only one preimage of the (j + 1)st node on
p among nodes incident to the outgoing edges of u due to C2. By induction, a
unique path is determined as the preimage of p. Thus, the path set of T́ (n−1)

X,b is a

subset of that of T́ (n−1)
X,a .

If there are at least two homomorphisms that meet C1 and C2, T́ (n−1)
X,a and

T́
(n−1)
X,b have a common path set from the above argument. It follows that there is

a uniqe homorphism that meets C1 and C2 by the (⇒) part. This is contradiction.
�

Lemma 55 implies that, if we can construct φ′ (defined in the proof) that meets
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Subroutine P

Input: an integer n;
functions depth that gives the depth of nodes in T̃ 2(n−1)

X (v), and id;
two sub-f-views, T́ (n−1)

X,a rooted at ur and T́ (n−1)
X,b rooted at wr, of a minimal

f-view T̃
2(n−1)
X (v) such that depth(ur) ≤ depth(wr) ≤ n− 1

Output: “Yes” or “No”

1. Perform ENQUEUE(Q, ur), where Q is an empty first-in-first-out queue.
2. Set φ(ur) := wr.
3. While Q is not empty, repeat the following steps.

3.1 Set u := DEQUEUE(Q).

3.2 If depth(u) > (n− 1) + depth(ur), go to step 4.

3.3 If label(u) �= label(φ(u)), go to step 5.

3.4 If depth(u) = (n− 1) + depth(ur), CONTINUE.

3.5 If du �= dφ(u), go to step 5;
otherwise, for i := 1 to du, perform the next steps.

3.5.1 Set ui := Adji(u) and wi := Adji(φ(u)).
3.5.2 If label((u, ui)) �= label((φ(u), wi)), go to step 5.
3.5.3 If ui has already been traversed and id(φ(ui)) �= id(wi), go to

step 5; otherwise set φ(ui) := wi.
3.5.4 ENQUEUE(Q, ui).

4. Halt and output “Yes.”
5. Halt and output “No.”

Figure 62: Subroutine P.

C1 and C2, T́ (n−1)
X,a and T́ (n−1)

X,b have a common path set of length (n − 1). Con-
versely, if we cannot construct φ′, there is no mapping φ that satisfies C1 and C2;
T́

(n−1)
X,a and T́ (n−1)

X,b do not have a common path set of length (n− 1).
As described in the proof, φ′ can be constructed by simultaneously traversing

T́
(n−1)
X,a and T́ (n−1)

X,b in a breadth-first manner. Figure 62 gives a precise description
of Subroutine P, where ENQUEUE, DEQUEUE and CONTINUE are defined in the same
way as in the case of Subroutine Traversal (II), and are assumed to be implemented
in a standard way.

Lemma 56 Suppose that minimal f-view T̃
2(n−1)
X (v) is a view of a distributed sys-

tem of n parties having O(logL)-bit values. Given two sub-f-views T́ (n−1)
X,a and
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T́
(n−1)
X,b of depth (n − 1) of a minimal f-view T̃

2(n−1)
X (v), Subroutine P outputs

“Yes” if and only if T́ (n−1)
X,a and T́ (n−1)

X,b have a common path set of length (n− 1).
The time complexity is O(n2 log(nDL)), where D is the maximum degree over all
nodes of the underlying graph of the distributed system.

Proof. Subroutine P constructs φ = φ′ (defined in the proof of Lemma 55).
Subroutine P outputs “Yes” only when the subroutine visits some node at depth
n + depth(ur) or Q is empty. The former case implies that the subroutine has
already visited all nodes in T́ (n−1)

X,a , since the subroutine visits nodes by breadth-
first traversal. The latter case occurs only when (n − 1) + depth(ur) is 2(n − 1)

(i.e., the bottom level of T́ (n−1)
X,a is identical to that of T̃ 2(n−1)

X (v)), and this implies

again that the subroutine has already visited all nodes in T́ (n−1)
X,a . It follows that,

when Subroutine P outputs “Yes,” φ meets C1 of Lemma 55 (due to step 3.3) and
C2 (due to the first part of step 3.5 and step 3.5.2). Thus, T́ (n−1)

X,a and T́ (n−1)
X,b have

a common path set of length (n − 1) by Lemma 55. Conversely, if T́ (n−1)
X,a and

T́
(n−1)
X,b have a common path set of length (n − 1), the subroutine outputs “Yes,”

by the only-if part in the proof of Lemma 55. This proves the correctness.
Let Va and Ea be the edge set and node set, respectively, of T́ (n−1)

X,a . Step 3 is
obviously dominant in terms of time complexity. Step 3.1 takes just constant time
for each evaluation. Steps 3.2 and 3.4 take O(log n) time for each u; they take
O(|Va| log n) time in total. Step 3.3 takes O(logL) time for each u since node
labels are O(logL)-bit values; it takes O(|Va| logL) time in total. The first line
of step 3.5 takes O(du) time for each u; it takes O(|Ea|) time in total. Steps 3.5.1
and 3.5.4 take constant time. Each execution of step 3.5.2 takes O(logD) time,
since edge labels are O(logD)-bit values. Each excecution of step 3.5.3 takes
O(log n) time, since T̃ (n−1)

X has O(n2) nodes. Since every edge is visited exactly
once, step 3.5 takes O(|Ea| log n) time in total. The time complexity of step 3 is
thusO(|Va| log(nL)+ |Ea| log n); this isO(n2 log(LnD)) since |Va| = O(n2) and
|Ea| = O(n2D). �

The correctness and complexity of the view counting algorithm is described
in the next lemmas.

Lemma 57 Given a minimal f-view T̃
2(n−1)
X (v), a subset S of the range of X , and

the number n of parties, the algorithm correctly outputs |Γ(n−1)
X (S)|.

Proof. Let C̃ be the collection of distinct path sets of length (n − 1) defined
for all nodes uj at depth j over all j ≤ n − 1 in f-view T̃

2(n−1)
X (v), and let C be⋃

j≤n−1

⋃
uj
P

(n−1)
X (uj) where uj denotes a node at depth j in T 2(n−1)

X (v). Suppose

that n′
S is the number of those path sets in C̃ of which the first node is labeled with
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some value in S. Since C̃ is identical to C by Corollary 50, n′
S = |Γ(n−1)

X (S)|. By
Lemma 56, n′

S is equal to the number nS of those nodes in W which are labeled
with values in S. This completes the proof. �

Lemma 58 For a given distributed system of n parties each of which has a value
of O(logL) bits, |Γ(n−1)

X | and |Γ(n−1)
X (S)| for any subset S of the range of X can

be computed from T̃
2(n−1)
X (v) in O(n5 log(nDL)) time for each party, where D is

the maximum degree over all nodes of the underlying graph.

Proof. The dominant part of Subroutine Traversal (II) is step 4 in Figure 61,
which performs a simple bread-first traversal of T̃ 2(n−1)

X (v). The traversal takes
O(log |V f |) time for each edge. Thus, the time complexity of step 1 in Figure 60
is O(n2D log |V f |).

Next we analyze step 3 of the view counting algorithm in Figure 60. We can
see that (1) |W | is at most n since there are n parties in the system, and (2) there
are O(n2) nodes whose depth is at most n − 1 in T̃ 2(n−1)

X (v) since there are at
most n nodes at each depth. Hence, Subroutine P is called for each of O(n3)
pairs of sub-f-views. Since one call of Subroutine P takes O(n2 log(nDL)) time
by Lemma 56, step 3.2 thus takes O(n5 log(nDL)) time; this is also sufficient to
perform the other operations.

The total time complexity is thus O(n5 log(nDL)). �

4.5 Summary

It is well-known that LEn in the anonymous setting cannot be solved classically in
a deterministic sense for a certain broad class of network topologies such as regu-
lar graphs, even if all parties know the exact number of parties. We have proposed
two quantum algorithms that exactly solve the problem when each party knows
the number of parties. The two algorithms each have their own characteristics.

The first algorithm runs in O(n2) rounds for any topology of anonymous net-
works. The communication complexity of this algorithm is O(n4), but it requires
quantum communication of O(n4) qubits. The local computation requires O(n3)
steps for each party.

The second algorithm has communication complexity O(n5(log n)2), but in-
volves quantum communication of just O(n2 log n) qubits of one round. Further-
more the second algorithm runs in O(n log n) rounds. As for local computation
time, the algorithm requiresO(n6 log n) time for each party. To reduce the amount
of quantum communication, the second algorithm makes use of a classical tech-
nique, called view. However, a naı̈ve application of view incurs exponential classi-
cal time/communication complexity. To reduce time/communication complexity,
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we introduced the view compression technique, which enables views to be con-
structed in polynomial time and communication. The technique can be used to
deterministically check if the unique leader is selected or not in polynomial time
and communication. As another application of this techinique, we can construct
zero-error probabilistic algorithms requiring expected polynomial time and com-
munication for any topology by combining the technique and usual coin flipping.

Furthermore, our leader election algorithms can solve the problem exactly
even when each party knows only the upper bound of the number of parties. In
this setting for any topology with cycles, no zero-error probabilistic algorithms
can solve the problem. From anther point of view, our algorithms can exactly
solve the problem when the underlying graph is not connected: for a given n-
distributed system that consists of multiple connected components, elect a unique
leader in each component for a given n.

As a generalization in terms of the underlying graph, the second algorithm
can easily be modified so that it can be applied even when the underlying graph
is directed (and strongly connected). In contrast, such modification is not easy for
the first algorithm, since, at some points, the first algorithm needs to invert the
computation and communication that were performed in the previous steps.

Our algorithms use unitary gates depending on the number of parties that are
eligible for a leader during their execution. Thus, the algorithms require an ele-
mentary gate set of size O(n) for the number n of parties. From a practical point
of view, however, it would be desirable to perform leader election for any n by us-
ing a constant-sized set of elementary unitary gates. It is open whether the leader
election problem in an anonymous network can exactly be solved in the quantum
setting by using a constant-sized set of elementary gates.

Improving the complexity of solving the problem would also be interesting. In
general, however, it is difficult to optimize both communication complexity and
round complexity (i.e., the number of rounds required). A reasonable direction
is to clarify the tradeoff between them. As for communication complexity, it is
also a natural open question what kind of tradeoff between quantum and classical
communication complexity exists.

It is also open whether the problem can be solved by a processor terminating
algorithm (i.e., the algorithm that terminates when every party goes into a halting
state) in the quantum setting even without knowing the upper bound of the number
of parties. In this situation, there are just message terminating algorithms with
bounded error in the classical setting.

4.6 A brief survey of quantum distributed computing

Quantum bits (or qubits) are the units of quantum information. Holevo [101]
proved that qubits cannot be used to compress classical messages better than with
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classical bits: an n-bit classical message needs n qubits to be stored or sent via
a communication channel. If two parties share prior entanglement, one party can
transfer an n-bit classical message to the other by n/2-qubit communication via
superdense coding, which was found by Bennet and Wiesner [45], but cannot
compress the message more. Interestingly, however, quantum bits can signifi-
cantly reduce the amount of communication when we perform certain distributed
computational tasks.

The quantum communication complexity model first proposed by Yao [198]
is one of the extensively studied areas in quantum distributed computing as a
quantum counterpart of the classical communication complexity model, which
was introduced by Abelson [12] and Yao [197]. While there are a lot of variations
of the model with respect to the number of parties, the quantumness of links and
prior entanglement, the standard setting is that two parties which are connected
via a bidirectional quantum communication link, get inputs x ∈ {0, 1}n and y ∈
{0, 1}n , respectively, and have to output fn(x, y) : {0, 1}n × {0, 1}n → {0, 1},
by communication and local computation. In what follows, we denote the ith bit
of x (y) by xi (resp. yi).

For exact computation, Buhrman, Cleve and Wigderson [58] showed an ex-
ponential gap between quantum and classical models for the equality function
with the promise that the Hamming distance between x and y is either 0 or
n/2, while the bounded-error classical communication complexity for this func-
tion is just O(1). However, for any total function fn, Kremer [132] showed that
the quantum communication complexity in the exact setting has a lower bound
(log rank(Mfn))/2, and Buhrman and de Wolf [59] proved that this bound is true
even in the case where parties share an unlimited number of prior EPR pairs, i.e.,
(|00〉+ |11〉)/√2, where communication matrix Mfn is the 2n× 2n matrix whose
(x, y) element is b if fn(x, y) = b, and rank(Mfn) is the rank ofMfn (this is quite
similar to a lower bound log rank(Mfn) in the classical case [143]). This implies
that, for any function fn of rank(Mfn) = n, quantum communication can reduce
communication complexity by at most half. De Wolf [76] gave the tight lower
bound n + 1 of exactly computing the equality function and the disjoint function
(defined later) by proving a general lower bound of non-deterministic quantum
communication complexity.

For the zero-error setting, Buhrman, Cleve, de Wolf and Zalka [55] showed a
total relation problem with n-bit input given to each party, for which, there exists a
zero-errorO(n2/3 log n)-qubit quantum protocol, whereas any zero-error classical
protocol needs Ω(n) bits of communication. Subsequently, Klauck [127] gave a
polynomial gap for a total Boolean function fn with n-bit input given to each
party: there is a quantum zero-error protocol for fn with O(n10/11+ε) qubits of
communication for any ε > 0, whereas every classical zero-error protocol for f
needs Ω(n/ log n) bits of communication.
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In the case of bounded-error computation, Buhrman, Cleve and Wigder-
son [58] proved by using Grover search [96] that, the disjoint function DISJ=∧n
i=1 xi ∧ yi, which is known to be in co NPcc-complete [28], has the quantum

communication complexity of O(
√
n log n), while the classical communication

complexity is known to be Ω(n) [122]. This was improved to O(
√
nclog� n) for

a constant c by Høyer and de Wolf [102], and O(
√
n) by Aaronson and Am-

bainis [10], which matches the lower bound Ω(
√
n) given by Razborov [167].

Raz [166] obtained an exponential gap in the bounded-error setting between quan-
tum and public-coin classical models for a partial function P (in which the set of
possible inputs for each player is infinite, but output is a Boolean value). Sub-
sequently, Bar-Yossef, Jayram and Kerenidis [34] gave an exponential gap in the
case restricted to one-way bounded-error communication (allowing public coins
only in the classical setting) for a relation problem. Ambainis, Achulamn, Ta-
Shma, Vazirani and Wigderson [26] gave an exponential separation in the bounded
error setting for the sampling model: two parties get no inputs, and each have to
output (x, fn(x, y)) and (y, fn(x, y)) for x and y chosen according to some pre-
specified distribution. Tani, Nakanishi and Yamashita [185] extended the public-
to-private classical coin conversion technique [151] to the quantum case in order
to give a quantum protocol that computes a total Boolean function more efficiently
than in the classical case. On the other hand, there is a function for which the
quantum model has as high communication complexity as the classical one has:
for function IP=

⊕n
i=1(xi ∧ yi), Kremer [132] and Yao proved by applying the

discrepancy method that the bounded-error quantum communication complexity
is Ω(n), and Cleve, van Dam, Nielsen and Tapp [69] proved that the complexity
is Ω(n) even with an unlimited number of prior EPR-pairs.

Non-deterministic quantum communication complexity was considered in de
Wolf [76]. He proved that non-deterministic quantum communication complexity
of function fn is equal to the logarithm of the rank of a non-deterministic version
of communication matrix Mfn . He also gave total functions for which the non-
deterministic quantum communication complexity is exponential smaller than the
classical one. His definition of non-determinism is somewhat different from the
standard definition and is shown to be strictly stronger than the latter [76]: non-
deterministic communication complexity is the worst case communication com-
plexity of the optimal protocol that can compute a function with some positive
probability.

Klauck, Nayak, Ta-Shma and Zuckerman [128] considered the tradeoff be-
tween the number of rounds and the number of qubits that have to be exchanged,
and showed that there is a problem such that its (k+1)-round classical communi-
cation complexity is exponentially smaller than its k-round quantum communica-
tion complexity in the bounded-error setting. They also obtained an Ω(n1/k) lower
bound for k-round bounded-error protocols for DISJ, which generalizes an Ω(n)
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lower bound of one-round protocols for DISJ in [59, 127]. Further, they gave
an exponential separation between k and k + 1 round bounded-error protocols
for the pointer jumping function when k is small (the pointer jumping function
has been studied a lot in the past to show rounds versus communication tradeoffs
in classical communication complexity). Subsequently, Jain, Radhakrishnan and
Sen [119] gave, for all k, an exponential separation between k and k + 1 round
bounded-error protocols for (a slightly different version of) the pointer jumping
function. Later, Jain, Radhakrishnan and Sen [120] proved a lower bound of a
multi-party version of DISJ and gave as a corollary Ω(n/k2) lower bound for two-
party k-round protocols for DISJ, which is better than Razborov’s bound O(

√
n)

when k = o(n
1
4 ).

The simultaneous message passing (SMP) model is a three-party one-way
communication model, where two party are each given input x and y and send
one message to the third party called a referee, who receives the messages from
the two parties and computes a function f(x, y) and outputs the result. Buhrman,
Cleve, Watrous, de Wolf [57] proved an exponential gap for the equality function
of n bits in the SMP model: the bounded-error quantum communication complex-
ity is O(log n), while the classical one (without public coins) is Θ(

√
n) [22, 152].

Yao [199] generalized this result: for any n-bit function for which there is a clas-
sical bounded-error public-coin protocol of O(1)-bit communication, there is a
quantum bounded-error protocol of O(log n)-qubit communication. (Note that
the equality function can be computed in O(1) communication complexity in the
SMP model.) Bar-Yossef, Jayram and Kerenidis [34] gave an exponential separa-
tion even when classical protocols are allowed to use public coins for a relation
problem instead of Boolean functions.

Quantum entanglement is one of the most remarkable notion of quantum com-
putation and communication. Entangled particles exhibit characteristic effects,
“nonlocal effects”, which Einstein, Podolsky and Rosen [85] first alluded to. Un-
fortunately, this does not mean that entanglement contributes to transferring in-
formation to a physically separated place, as described previously. On the other
hand, it is well-known that public coins can significantly reduce the communica-
tion required to compute certain functions such as the equality function. Moti-
vated by this fact, entanglement has been studied in the communication complex-
ity scenario, where two parties connected by a classical communication link share
prior entanglement. Cleve and Buhrman [68] proved that, three parties with prior
entanglement can exactly compute a certain promise Boolean function by two
bits of communication, whereas they require three bits of communication without
prior entanglement. Buhrman and de Wolf [59] proved a general lower bound
log rank(Mfn) for any Boolean function fn. Buhrman, Cleve and van Dam [56]
proved that two parties with prior entanglement can produce a certain correla-
tion by two bits of communication with higher probability than those who share a
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random string instead of quantum entanglement.
For multiparty communication, Buhrman, van Dam, Høyer and Tapp [60] gave

a separation by a logarithmic factor in the number of parties.
Quantum distributed computing has also been extensively studied in crypto-

graphic context (e.g., [35, 73, 24, 25, 148, 42]), where parties have to do some
computational tasks without being affected by cheating parties as little as possi-
ble. This research field has its own characteristics in the sense that algorithms or
protocols are evaluated by security measures as well as efficiency measures. This
paper does not give further information on this field.
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5 Conclusion

The thesis has made theoretical and practical contributions to improve the effi-
ciency of major types of multi-point communication on the present network, and
to assess a new type of multi-point communication that would be a crucial com-
ponent in the future network.

With regard to multi-point communication on the present network, one-to-
many communication is an essential building block whose improvement in com-
munication efficiency has a great impact on various multi-point communication.
We have first discussed two major types of one-to-many multi-point communica-
tion: file-transfer type multi-point communication and streaming type multi-point
communication.

To improve the efficiency of the file-transfer type multi-point communication,
the most popular strategy is network caching. We described on-line algorithms
that solve one of the most important problems of network caching: the file caching
problem. For the bit model, our purpose was to develop performance-guaranteed
on-line algorithms that can achieve high hit-rate with the help of heuristics, since
LRU does not fully utilize the information on file size (although it is competitive
and achieve relatively high-hit rate in practical environments). We have given a
simple but sufficient condition of competitiveness of deterministic on-line algo-
rithms and developed a general framework by using the condition to easily con-
struct a competitive algorithm from a non-competitive heuristics. The constructed
algorithm adaptively switches from the heuristics to LRU and vice versa accord-
ing to the characteristics of input requests. As an application of the framework, we
constructed a competitive algorithm, called Competitive SIZE, from SIZE heuris-
tics. We confirmed its performance by conducting event-driven simulations and
trace-driven simulations using a real web proxy log. As a future work, it would be
interesting to introduce a modification to competitive analysis so that it can handle
the distribution of input request sequences, such as access graphs and the Markov
chain model, which were introduced to precisely analyze the paging problem.

For the general model, an optimal deterministic competitive algorithm,
Greedy-Dual-Size(GDS), is known to achieve excellent performance even in ex-
periments. GDS with storage size k, however, takes as many as O(k) steps per
file eviction in the worst case. We have given a fast randomized on-line algorithm
that runs in O(log k) time and is expected to work in only O(2log∗ k) time per file
eviction or insertion, while the algorithm is expected to be k

k−h+1
-competitive,

i.e., as competitive as GDS. We conducted trace driven simulations by using real
web proxy logs to confirm its practicality. Experimental results show that our al-
gorithm performs as well as GDS when file cost is set to communication latency
required to get a file. As a future work, it is an interesting open problem to settle
the competitive ratio of optimal randomized on-line algorithms. Another interest-
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ing direction is to develop a framework to construct a competitive algorithm from
a non-competitive heuristics, as we have done in the bit model.

For both of the bit and general models, it is NP -hard to solve the file caching
problem in the off-line setting. It is a well-known open problem to settle the
hardness in the fault model.

As for the streaming type multi-point communication, we have proposed an
IP-unicast-based multicast, called Flexcast, that works across the network and
application layers; it enables progressive deployment in an autonomous and dis-
tributed fashion over existing IP networks that support only unicast, and solves
the issue of preserving the uniqueness of multicast group addresses. Flexcast con-
structs a multicast tree by sharing the maximal common segments of any pair of
reverse-paths and maintains it by a hierarchical keep-alive mechanism. Flexcast
protocol provides significant adaptability against the change of unicast routes, the
moving of receivers and senders, and the frequent joining and leaving of receivers,
with minimum rearrangement of the tree. We have also discussed the issues re-
lating to many IP-unicast-based multicast protocols, including the basic protocol
of Flexcast, and proposed two modifications to the Flexcast protocol against the
issues.

Streaming experiments were conducted to confirm the robustness and stability
of the Flexcast protocol when used to deliver streaming data to widely dispersed
locations; streaming servers and receivers were placed at three locations: Yoko-
suka in Japan, and Chicago and Los Angeles in the U.S..

We have a couple of future works concerning protocol design.
We have shown a node-load balancing mechanism of Flexcast. However, this

may cause traffic congestion on particular communication links. Thus, it is im-
portant to improve the mechanism so that it can decide where to split streaming
data according to the conditions of communication links as well as those of nodes.
Obviously, a possible option is to control admission to the multicast tree. This is
exactly an on-line problem similar to the file caching problem, since every node
can decide to which receivers it should send streaming data whenever it gets re-
quests from a new node but cannot accommodate more. Another future work is
concerned with reasonably setting expiration time in the delivery table at every
Flexcast node. We have proposed a way of automatically setting the expiration
time: our method sets the expiration time to a certain interval that is linear to
the distance from the node to the farthest descendant. In a stable network, how-
ever, this method could be too pessimistic. It would be interesting to devise a
more appropriate way of setting the expiration time in a stable network, say, by a
probabilistic method.

We have mainly considered one-to-many communication, since many-to-
many communication often consists of one-to-many or many-to-one communi-
cations, and many-to-one communication intrinsically involves little redundant
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traffic. If, however, we take into account specific tasks that end hosts want to do,
we may improve the efficiency of even many-to-one communication by perform-
ing some computation depending on the tasks at network nodes, as commented in
Section 3. This approach seems to be effective if we can select a small number
of typical applications, and can manage to avoid imposing heavy load on network
nodes.

We have next considered multi-point communication on the future network
based on quantum mechanics. To this end, we considered the leader election
problem in an anonymous network; every party needs to work in a highly au-
tonomous and distributed fashion to solve the problem, since parties are assumed
to be completely identical to one another. It is well-known that the problem cannot
be solved classically in a deterministic sense for a certain broad class of network
topologies such as regular graphs, even if all parties know the exact number of par-
ties. We have proposed two quantum algorithms that exactly solve the problem for
any topology in time/communication/round complexity polynomially bounded in
the number of parties, when each party knows the number of parties in advance.
The two algorithms each have their own characteristics in terms of the above com-
plexity measures. Furthermore, our leader election algorithms can exactly solve
the problem even when each party knows only the upper bound of the number of
parties in advance. In this setting of any classical networks with cycles, there are
no zero-error probabilistic algorithms.

Theoretically, our quantum results imply the separation in computability be-
tween quantum and classical distributed environments. From a practical point of
view, however, it is hard to exactly solve the problem for a large number of parties
due to the limited precision of physical devices. In this sense, our quantum results
are in a position to motivate us to develop efficient quantum protocols in practical
environments.

There are some interesting open problems. One is whether the leader election
problem in an anonymous network can exactly be solved in the quantum setting
by using a constant-sized set of elementary gates, since this leads to computing by
using physical devices of limited precision. Improving the complexity of solving
the problem would also be interesting. In general, however, it is difficult to opti-
mize both communication complexity and round complexity (i.e., the number of
rounds required). A reasonable direction is to clarify the tradeoff between them.
As for communication complexity, it is also a natural open question what kind
of tradeoff between quantum and classical communication complexities exists. It
is also open whether the problem can be solved by a processor terminating algo-
rithm (i.e., every party goes into a halting state whenever the algorithm stops) in
the quantum setting even without knowing the upper bound of the number of par-
ties. In this situation, there are just message terminating algorithms with bounded
error in the classical setting.
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Our quantum results naturally raise the question: can quantum communication
make a contribution to efficient data transfer? Obviously, this is impossible when
we focus on one-way communication between two parties due to the Holevo’s the-
orem. However, we do not know the answer to the question in more complicated
situations relating to multi-point communication. Network caching and multicast
both essentially duplicate data on the network to make communication efficient.
A negative thing is that it is impossible to duplicate (or clone) quantum superposi-
tion while superposition is the most significant aspect of quantum communication
and computation. It would be essential to overcome this contradiction.
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[160] Stefan Podlipnig and Laszlo Böszörmenyi. A survey of web cache replace-
ment strategies. ACM Computing Surveys, 35(4):374–398, 2003.

[161] J. Postel. User Datagram Protocol. RFC 0768, IETF, August 1980.

[162] J. Postel. Internet Control Message Protocol. RFC 0792, IETF, September
1981.

[163] J. Postel. Internet Protocol. RFC 0791, IETF, September 1981.

[164] J. Postel. Transmission Control Protocol. RFC 0793, IETF, September
1981.

[165] Prabhakar Raghavan and Marc Snir. Memory versus randomization in
on-line algorithms. In Proceedings of the Sixteenth International Col-
loquium on Automata, Languages and Programming(ICALP’89), volume
372 of Lecture Notes in Computer Science, pages 687–703. Springer, 1989.
Revised version available as IBM Journal of Research and Development,
38(6):683-708, 1994.

[166] Ran Raz. Exponential separation of quantum and classical communication
complexity. In Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing, pages 358–367, 1999.

[167] Alexander A. Razborov. Quantum communication complexity of symmet-
ric predicates. Izvestiya Mathematics, 67(1):145–159, 2003.

[168] Laxman H. Sahasrabuddhe and Biswanath Mukherjee. Multicast routing
algorithms and protocols: A tutorial. IEEE Network, 14(1):90, 2000.

[169] Baruch Schieber and Marc Snir. Calling names on nameless networks.
Information and Computation, 113(1):80–101, 1994. (Conference ver-
sion [170]).



166 REFERENCES

[170] Baruch Schieber and Marc Snir. Calling names on nameless networks.
In Proceedings of the Eighth Annual ACM Symposium on Principles of
Distributed Computing (PODC ’89), pages 80–101. ACM, 1994. (Journal
version [169]).

[171] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Trans-
port Protocol for Real-Time Applications. RFC 3550, IETF, July 2003.

[172] Clay Shields and J. J. Garcia-Luna-Aceves. The ordered core based tree
protocol. In Proceedings of the Sixteenth Annual IEEE Conference on Com-
puter Communications [104], pages 884–891.

[173] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proceedings of the Thirty-Fifth Annual IEEE Symposium
on Foundations of Computer Science [3], pages 124–134. (Journal ver-
sion [174]).

[174] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, 1997. (Conference version [173]).

[175] Peter W. Shor and John Preskill. Simple proof of security of the BB84
quantum key distribution protocol. Physical Review Letters, 85(2):441–
444, 2000.

[176] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of
list update and paging rules. Communications of the ACM, 28:202–208,
1985.

[177] Ion Stoica, T. S. Eugene Ng, and Hui Zhang. REUNITE: A recursive uni-
cast approach to multicast. In Proceedings of the Nineteenth Conference
on Computer Communications (INFOCOM’00), pages 1644–1653. IEEE
Computer and Communication Societies, 2000.

[178] Hirokazu Takahashi, Takeru Inoue, Hiroshi Tohjo, Kan Toyoshima, and
Shin’ichi Minato. A study on IP distance education system using Flexcast
(in Japanese). Technical Report IN2005-50.

[179] Kiyoshi Tamaki, Masato Koashi, and Nobuyuki Imoto. Security of the
Bennett 1992 quantum-key distribution protocol against individual attack
over a realistic channel. Physical Review A, 67(3):032310, 2003.

[180] Kiyoshi Tamaki and Norbert Lütkenhaus. Unconditional security of the
Bennett 1992 quantum key-distribution protocol over a lossy and noisy
channel. Physical Review A, 69(3):032316, 2004.



REFERENCES 167

[181] Seiichiro Tani, Takeru Inoue, Hirokazu Takahashi Shin’ichi Minato, Satoru
Kotabe, and Toshiaki Miyazaki. Global multi-point streaming experiments
based on the Flexcast protocol. NTT Technical Review, 1(5):24–30, 2003.

[182] Seiichiro Tani, Hirotada Kobayashi, and Keiji Matsumoto. Quantum leader
election via exact amplitude amplification. In Proceedings of ERATO con-
ference on Quantum Information Science, pages 11–12, 2005.

[183] Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi. Adaptive
stream multicast based on IP unicast and dynamic commercial attachment
mechanism: An active network implementation. In Proceedings of IFIP-
TC6 Third International Working Conference on Active Networks (IWAN
’01), volume 2207 of Lecture Notes in Computer Science, pages 116–133.
Springer, 2001.

[184] Seiichiro Tani, Toshiaki Miyazaki, Noriyuki Takahashi, and Shin’ichi Mi-
nato. Flexcast: Self-organizing multicast technology (in Japanese). NTT
R&D, 52(3):213–222, 2003.

[185] Seiichiro Tani, Masaki Nakanishi, and Shigeru Yamashita. A quantum
protocol for the list-nonequality function. In Proceedings of the Eleventh
Quantum Information Technology Symposium (QIT11), number QIT2004-
51, pages 21–25. IEICE.

[186] Olivier Temam. An algorithm for optimally exploiting spatial and tem-
poral locality in upper memory levels. IEEE Transactions on Computers,
48(2):150–158, 1999.

[187] Ajit S. Thyagarajan and Stephen E. Deering. Hierarchical distance-vector
multicast routing for the MBone. In Proceedings of the ACM SIGCOMM
1995 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, pages 60–66, 1995.

[188] R. Vida and L. Costa. Multicast Listener Discovery Version 2 (MLDv2)
for IPv6. RFC 3810, IETF, June 2004.

[189] D. Waitzman, C. Partridge, and S.E. Deering. Distance Vector Multicast
Routing Protocol. RFC 1075, IETF, November 1988.

[190] Bernard M. Waxman. Routing of multipoint connections. IEEE Journal on
Selected Areas in Communications, 6(9):1617–1622, 1988.

[191] Su Wen, Jim Griffioen, and Kenneth L. Calvert. Building multicast services
from unicast forwarding and ephemeral state. In Proceedings of the Fourth



168 REFERENCES

International Conference on Open Architectures and Network Program-
ming (OPENARCH ’01). IEEE Communication Society, 2001. (Journal
version [192]).

[192] Su Wen, Jim Griffioen, and Kenneth L. Calvert. Building multicast ser-
vices from unicast forwarding and ephemeral state. Computer Networks,
38(3):327–345, 2002. (Conference version [191]).

[193] Chak-Kuen Wong and Malcolm C. Easton. An efficient method for
weighted sampling without replacement. SIAM Journal on Computing,
9(1):111–113, 1980.

[194] Masafumi Yamashita and Tsunehiko Kameda. Computing on an anony-
mous network. In Proceedings of the Seventh Annual ACM Symposium on
Principles of Distributed Computing (PODC ’88), pages 117–130, 1988.
(Journal version [195]).

[195] Masafumi Yamashita and Tsunehiko Kameda. Computing on anonymous
networks: Part I – characterizing the solvable cases. IEEE Transac-
tions on Parallel Distributed Systems, 7(1):69–89, 1996. (Conference ver-
sion [194]).

[196] Masafumi Yamashita and Tsunehiko Kameda. Leader election problem
on networks in which processor identity numbers are not distinct. IEEE
Transactions on Parallel and Distributed Systems, 10(9):878–887, 1999.

[197] Andrew Chi-Chih Yao. Some complexity questions related to distributed
computing. In Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing, pages 209–213, 1979.

[198] Andrew Chi-Chih Yao. Quantum circuit complexity. In Proceedings of
the Thirty-Fourth Annual IEEE Symposium on Foundations of Computer
Science, pages 352–361, 1993.

[199] Andrew Chi-Chih Yao. On the power of quantum fingerprinting. In Pro-
ceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Com-
puting, pages 77–81, 2003.

[200] Neal E. Young. The k-server dual and loose competitiveness for paging.
Algorithmica, 11(6):525–541, 1994.

[201] Neal E. Young. On-line file caching. In Proceedings of the Ninth Annual
ACM/SIAM Symposium on Discrete Algorithms (SODA ’98), pages 82–86,
1998. (Journal version [202]).



REFERENCES 169

[202] Neal E. Young. On-line file caching. Algorithmica, 33:371–383, 2002.
(Conference version [201]).





I

List of Publications by the Author

Journal

1. Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The complexity of
the optimal variable ordering problems of a shared binary decision diagram.
IEICE Transactions on Information and Systems, E79-D(4):271–281, 1996.

2. Seiichiro Tani, Mitsuo Teramoto, Tomoo Fukazawa, and Kazuyoshi Mat-
suhiro. Efficient path selection for delay testing based on path clustering.
Journal of Electronic Testing (JETTA), 15(1/2):75–85, 1999.

3. Seiichiro Tani and Toshiaki Miyazaki. A design framework for online al-
gorithms solving the object replacement problem. IEICE Transactions on
Information and Systems, E84-D(9):1135–1143, 2001.

4. Shin’ya Ishihara, Toshiaki Miyazaki, Atsushi Takahara, and Seiichiro Tani.
An approach to adaptive network. IEICE Transactions on Information and
Systems, E85-D(5):839–846, 2002.

5. Seiichiro Tani and Toshiaki Miyazaki. A randomized online algorithm for
the file caching problem. IEICE Transactions on Information and Systems,
E86-D(4):686–697, 2003.

6. Takeru Inoue, Seiichiro Tani, Hirokazu Takahashi, Shin’ichi Minato, Toshi-
aki Minato, and Kan Toyoshima. Design and implementation of the incre-
mentally deployable multicast system based on Flexcast (in Japanese). IE-
ICE Transactions on Information and Systems, J88-D1(2):272–291, 2004.



II LIST OF PUBLICATIONS BY THE AUTHOR

Conference

1. Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The complexity of
the optimal variable ordering problems of shared binary decision diagrams.
In Proceedings of the Fourth International Symposium on Algorithms and
Computation (ISAAC’93), volume 762 of Lecture Notes in Computer Sci-
ence, pages 389–398. Springer-Verlag, 1993.

2. Seiichiro Tani and Hiroshi Imai. A reordering operation for an ordered
binary decision diagram and an extended framework for combinatorics of
graphs. In Proceedings of the Fifth International Symposium on Algorithms
and Computation (ISAAC’94), volume 834 of Lecture Notes in Computer
Science, pages 575–583. Springer-Verlag, 1994.

3. Kazuyoshi Hayase, Kunihiko Sadakane, and Seiichiro Tani. Output-
size sensitiveness of OBDD construction through maximal independent set
problem. In Proceedings of the First Annual International Conference on
Computing and Combinatorics, (COCOON ’95), volume 959 of Lecture
Notes in Computer Science, pages 229–234. Springer, 1995.

4. Kyoko Sekine, Hiroshi Imai, and Seiichiro Tani. Computing the Tutte
polynomial of a graph of moderate size. In Proceedings of the Sixth In-
ternational Symposium on Algorithms and Computation (ISAAC ’95), vol-
ume 1004 of Lecture Notes in Computer Science, pages 224–233. Springer,
1995.

5. Seiichiro Tani, Mitsuo Teramoto, Tomoo Fukazawa, and Kazuyoshi Mat-
suhiro. Efficient path selection for delay testing based on partial path eval-
uation. In Proceedings of the Sixteenth IEEE VLSI Test Symposium (VTS
’98), pages 188–193, 1998.

6. Atsushi Takahara, Seiichiro Tani, Shin’ya Ishihara, Toshiaki Miyazaki, Mit-
suo Teramoto, and Tomoo Fukazawa. Virtual BUS: An easy-to-use envi-
ronment for distributed resources. In Proceedings of the Twenty-Fourth
Conference on Local Computer Networks, pages 62–70. IEEE Computer
Society, 1999.

7. Shin’ya Ishihara, Seiichiro Tani, and Atsushi Takahara. Virtual BUS: A
simple implementation of an effortless networking system based on PVM.
In Proceedings of the Sixth European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face (PVM/MPI ’99), volume 1697 of Lecture Notes in Computer Science,
pages 461–468. Springer-Verlag, 1999.

8. Toshiaki Miyazaki, Atsushi Takahara, Shin’ya Ishihara, Seiichiro Tani,
Takahiro Murooka, Tomoo Fukazawa, Mitsuo Teramoto, and Kazuyoshi



III

Matsuhiro. Virtual Bus: A network technology for setting up distributed
resources in your own computer. In Proceedings of the Fourteenth Inter-
national Parallel & Distributed Processing Symposium (IPDPS’00), pages
535–540. IEEE Computer Society, 2000.

9. Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi. Adaptive
stream multicast based on IP unicast and dynamic commercial attachment
mechanism: An active network implementation. In Proceedings of IFIP-
TC6 Third International Working Conference on Active Networks (IWAN
’01), volume 2207 of Lecture Notes in Computer Science, pages 116–133.
Springer, 2001.

10. Satoru Ohta, Seiichiro Tani, and Toshiaki Miyazaki. Multicast as a traffic
variance smoother for IP streaming service. In Proceedings of Networks
2002, pages 105–110, 2002.

11. Takeru Inoue, Seiichiro Tani, Katsuhiro Ishimaru, Shin’ichi Minato, and
Toshiaki Miyazaki. Wide-area multicasting based on Flexcast: Toward the
ubiquitous network. In Proceedings of the Fifth Asia-Pacific Symposium
on Information and Telecommunication Technologies (APSITT’03), pages
301–306. IEICE Communication Society, 2003.

12. Takeru Inoue, Seiichiro Tani, Hirokazu Takahashi, Shin’ichi Minato, Toshi-
aki Miyazaki, and Kan Toyoshima. Design and implementation of multicast
routers based on cluster computing. In Proceedings of International Con-
ference on Parallel and Distributed Systems (ICPADS’05), pages 328–334.
IEEE, 2005.

13. Seiichiro Tani, Hirotada Kobayashi, and Keiji Matsumoto. Exact quantum
algorithms for the leader election problem. In Proceedings of the Twenty-
Second Symposium on Theoretical Aspects of Computer Science (STACS
’05), volume 3404 of Lecture Notes in Computer Science, pages 581–592.
Springer, 2005.

14. Seiichiro Tani, Hirotada Kobayashi, and Keiji Matsumoto. Quantum leader
election via exact amplitude amplification. In Proceedings of ERATO con-
ference on Quantum Information Science, pages 11–12, 2005.

15. Seiichiro Tani. An application of entanglement to leader election in anony-
mous networks (invited paper). In Proceedings of COE-Kakenhi Workshop
on Quantum Information Theory and Quantum Statistical Inference, pages
59–62, 2005.

16. Seiichiro Tani, Masaki Nakanishi, and Shigeru Yamashita. Quantum com-
munication complexity for the distinctness function on a ring. In Proceed-
ings of Workshop on Theory of Quantum Computation, Communication,
and Cryptograpy, 2006.



IV LIST OF PUBLICATIONS BY THE AUTHOR

Technical Reports

1. Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The complexity of
the optimal variable ordering problems of shared binary decision diagrams
(in Japanese). Technical Report COMP92-100, IEICE, March 1993.

2. Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The complexity of
the optimal variable ordering problems of shared binary decision diagrams.
KUIS Technical Report KUIS-93-0009, Kyoto University, July 1993.

3. Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The complexity of
the optimal variable ordering problems of shared binary decision diagrams.
Technical Report TR93-6, University of Tokyo, December 1993.

4. Hiroshi Imai and Seiichiro Tani. Ordered binary decision diagrams, gaus-
sian elimination, and graph theory. IPSJ SIG Notes 94-AL-41, IPSJ, 1994.

5. Hiroshi Imai, Seiichiro Tani, and Kyoko Sekine. Ordered binary decision
diagrams, graph theory and computational geometry. Technical Report
TR95-05, University of Tokyo, Tokyo, July 1995.

6. Kyoko Sekine, Hiroshi Imai, and Seiichiro Tani. Computation of the Tutte
polynomial and BDD. Technical Report 1995-07, IEICE, 1995.

7. Kyoko Sekine, Hiroshi Imai, and Seiichiro Tani. Computing the Tutte
polynomial of a graph and the Jones polynomial of an alternating link of
moderate size. Technical Report TR95-06, University of Tokyo, Tokyo,
July 1995.

8. Seiichiro Tani, Mitsuo Teramoto, Tomoo Fukazawa, and Kazuyoshi Mat-
suhiro. Path selection based on real delay estimation
for path delay fault testing. Technical Report VLD97-83, IEICE, 1997.

9. Seiichiro Tani, Shin’ya Ishihara, and Atsushi Takahara. A resource-
organizing method in networks (in Japanese). Technical Report IN99–122,
IEICE, 2000.

10. Seiichiro Tani. A competitive algorithm for network caching and its de-
sign methodology (in Japanese). Technical Report COMP2000-10, IEICE,
2000.

11. Toshiaki Miyazaki, Seiichiro Tani, and Noriyuki Takahashi. A stream-data
multicast protocol using IP unicast address (in Japanese). Technical Report
IN2001-9, IEICE, 2001.



V

12. Satoru Ohta, Seiichiro Tani, and Toshiaki Miyazaki. Traffic smoothing
effect by an adaptive multicast technique (in Japanese). Technical Report
IN2002-19, IEICE, 2002.

13. Seiichiro Tani, Toshiaki Miyazaki, Noriyuki Takahashi, and Shin ichi Mi-
nato. Flexcast: Self-organizing multicast technology (in Japanese). NTT
R&D, 52(3):213–222, 2003.

14. Takeru Inoue, Seiichiro Tani, Shin’ichi Minato, Hirokazu Takahashi,
Satoshi Kotabe, and Toshiaki Miyazaki. An approach to inter-multicasting
using Flexcast and report of inter-pacific experiments (in Japanese). Tech-
nical Report NS2003-37, IEICE, 2003.

15. Seiichiro Tani, Takeru Inoue, Hirokazu Takahashi Shin’ichi Minato, Satoru
Kotabe, and Toshiaki Miyazaki. Global multi-point streaming experiments
based on the Flexcast protocol. NTT Technical Review, 1(5):24–30, 2003.

16. Seiichiro Tani and Yasuhito Kawano. A quantum distributed algorithm for
the leader election problem with prior shared cat-states. Technical Report
QIT2003-60, IEICE, 2003.

17. Seiichiro Tani, Masaki Nakanishi, and Shigeru Yamashita. A quantum
protocol for the list-nonequality function. Technical Report QIT2004-51,
IEICE, 2005.

18. Takeru Inoue, Seiichiro Tani, Hirokazu Takahashi, Shin-ichi Minato, Toshi-
aki Miyazaki, and Kan Toyoshima. On design and development of multi-
cast system based on Flexcast (in Japanese). Technical Report NS2004-50,
IEICE, 2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.280 841.890]
>> setpagedevice


