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ABSTRACT

Imposing the coherence of the spatial context on local features is be-

coming a necessity for object retrieval and recognition. Motivated

by the success of proximity graphs in topological decomposition,

clustering, and gradient estimation, we introduce a variation on and

a generalization of Delaunay Triangulation, called a Relaxed Gabriel

Graph (RGG), as the apex of spatial neighborhood association and

design a Centrality-Sensitive Pyramid (CSP) model for hierarchi-

cal spatial context modeling. RGG is parameterized, and so allows

the tuning of various applications and datasets. CSP achieves better

neighborhood association and is more robust as regards feature de-

scription error than other related work. Our method is evaluated on

Flickr Logos 32, Holiday, and Oxford Buildings benchmarks. Ex-

perimental results and comparisons demonstrate the superiority of

our method in an image retrieval scenario.

Index Terms Image retrieval, spatial context, proximity graph

1. INTRODUCTION

The Bag-Of-Words (BOW) model based on local features has been

shown to be successful in object retrieval and recognition along with

its extensions [1, 2, 3, 4, 5, 6]. The standard BOW model suffers

from limited discriminative power because of its ignorance of the

spatial coherence between images. Many posterior spatial context

models [1, 7, 8, 9] have been proposed that impose a spatial coher-

ence on local features matched beforehand. For example, RANdom

SAmple Consensus (RANSAC) [1] extracts matched local features

at the retrieval stage and approximates the homography between im-

ages based on matched features at the ranking stage. Despite their

high discriminative power, posterior spatial context models are usu-

ally computationally expensive.

To address this issue, some prior spatial context models [10, 11,

12, 13] have been proposed to express the spatial context of local fea-

tures in the inverted index before matching. A Spatial Co-occurrence

Kernel [12] uses Fixed-Radius Near Neighbors (FRNN) to compute

a local feature co-occurrence matrix and then uses it for image repre-

sentation and classification. Liu et al. [13] explore the two-order spa-

tial structure of local features with k-Nearest Neighbor (k-NN), and

embed the scale and orientation differential between local features

in the inverted index to achieve a much lower time complexity. Al-

though these methods successfully reduce the time cost for retrieval

and classification, the FRNN and k-NN used for neighborhood as-

sociation impose a high computational burden as regards indexing.

Kalantidis et al. [11] propose the use of a Multi-Scale Delaunay Tri-

angulation (MSDT) model, which is far faster than FRNN and k-NN,

to model the elastic spatial context of images. However, MSDT is

sensitive to feature description error and unconsciously ignores use-

ful local features with different scales.

In this paper, we employ the promising direction of prior spatial

context modeling and propose a novel hierarchical proximity graph

model for the construction, representation and matching of image

geometry. The main contributions include: 1. the use of a parame-

terized proximity graph called a Relaxed Gabriel Graph (RGG) that

allows the tuning of various applications and datasets; 2. the pro-

posal of a Centrality-Sensitive Pyramid (CSP) model that achieves

better neighborhood association and is more robust as regards feature

description error than MSDT; 3. the use of RGG-CSP that imposes a

lighter computational burden than greedy algorithms, e.g. k-NN and

β -skeleton.

In this study, we regard an image as a bag of local feature

doublets that are spatially adjacent to each other and are obtained

by RGG-CSP. After quantizing local features into visual words,

we quantize local feature doublets into visual phrases by com-

bining their visual words and geometric features related to Liu’s

method [13]. In consequence, an image is represented by a set of

visual phrases for indexing and matching. The rest of the paper

is organized as follows. After developing our main contribution

to spatial context modeling by RGG-CSP in Sect. 2, we describe

our adaptation of the method to content-based image indexing and

retrieval in Sect. 3. We then report our experiments and results in

Sect. 4 and discuss future directions in Sect. 5.

2. SPATIAL CONTEXT MODELING

2.1. Relaxed Gabriel Graph

Proximity graphs, e.g. Delaunay Triangulation (DT) [14], Gabriel

Graph (GG) [15], and β -skeleton [16], have been shown to be

successful for neighborhood association in topological decomposi-

tion [17], clustering [18], and gradient estimation [17]. DT is one of

the most widely used proximity graphs. Figure 1b shows an example

of DT built from the local features detected in the image in Fig. 1a.

Each edge in this graph corresponds to a pair of neighboring points.

Given a number of points n, the complexity of DT is O(n logn). DT

is highly efficient but in some cases extracts spurious connections

between distant points, e.g. the long edges located on the left in

Fig. 1b, leading to false matches of unrelated coherence. Since DT

is unique, it is naturally hard to tune it to adapt optimally to various

applications and datasets. Here, we propose the use of a variation

of DT, called a Relaxed Gabriel Graph (RGG), which is defined as

follows:

Definition 1. (Relaxed Gabriel Graph) Given a set S of points in

general position and a real number α ∈ [0,π], the Relaxed Gabriel



(a) Initial image. (b) α = 0 (DT).

(c) α = π/3 (RGG). (d) α = 2π/3 (RGG).

Fig. 1. RGGs with various α .

Graph RGG(S,α) of S is a graph that has an edge between two

vertices x and y if and only if there exists a closed disk D with center

c such that:

1. x and y are on the boundary of D;

2. D∩S\{x,y}=∅;

3. The absolute angle ∠xcy ∈ [0,π] is at least α .
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Fig. 2. Definition of RGG.

Figure 2 shows this definition. The center figure corresponds to

the generalized definition with α ∈ (0,π). x and y have an edge be-

tween them if and only if there exists no point z ∈ S \ {x,y} inside

the intersection of the two disks. RGG imposes the additional Con-

dition 3 in Definition 1 on DT such that spurious connections can

be avoided. Figure 1c and 1d serve as two examples of RGG that

extract fewer connections of distant points than the DT in Fig. 1b.

Choosing α = 0 corresponds to removing Condition 3 from Defi-

nition 1, and RGG becomes DT. In contrast, RGG equals GG for

α = π . For any α ∈ [0,π], RGG equals the intersection between DT

and β -skeleton for β = sin(π −α/2). RGG can be found in linear

time O(n) if DT is given. The total complexity is dominated by that

of DT, i.e. O(n logn), and allows us to obtain an efficient algorithm

for spatial neighborhood association.

2.2. Centrality-Sensitive Pyramid

RGG is a planar graph, i.e. no edges cross each other. This planarity

is inherited from DT and limits its capacity for neighborhood asso-

ciation when the spatial context is complicated. Multi-Scale Delau-

nay Triangulation (MSDT) [11] tolerates this problem by employing

range partitioning, which regards the local feature scale as the parti-

tioning key. MSDT ignores different-scaled local features, and so is

more sensitive to scale variations between images.

(a) One partition at level 2. (b) One partition at level 4.

(c) One partition at level 8. (d) One partition at level 16.

Fig. 3. RGGs with α = 2π/3 at various pyramid levels. Colors indi-

cate various centralities, e.g. red points show the highest centralities.

In this paper, we propose a hierarchical systematic sampling

method to address the planarity issue. We construct a hierarchical

partition B = {B1, . . . ,BL} that divides the point set S in L different

ways. Each Bl ∈ B divides S into l partitions with l ∈ [1,L]. The l

partitions are obtained by systematic sampling, in which we sort the

points in S in a pre-defined order as explained below and the sam-

pling starts by selecting a point from the ordered set at the ith position

with i ∈ [1, l]. Every lth point after the ith point in the set is selected

individually, i.e. the sampling interval equals l. B1 is at the densest

level and has a single partition equaling S; BL is at the most widely

distributed level. The total number of partitions is L(L+ 1)/2. All

we do then is to build a proximity graph from the points in each parti-

tion and combine all associated neighborhoods for further indexing.

Figure 3 shows the RGGs in a multi-level space for the local features

detected from the image in Fig. 1a.

So far we have not defined the pre-defined order for sorting.

Suppose we have extracted the connections between each point x ∈ S

and its neighboring points N(x) at the lth level. At the (l+1)th level,

we want to avoid the extraction of duplicate connections {x,y} with

y ∈ N(x) for each x. One solution is known as graph coloring, where

each point is colored such that no two neighboring points at the lth

level share the same color, but is NP-hard. An alternative is to let

the points in each partition in Bl+1 be very widely distributed in the

Euclidean space such that {x,N(x)} can be separated into different

partitions. This can be achieved in a way that is counter to cluster-

ing by maximizing the intra-partition distance and minimizing the

inter-partition distance. It corresponds to minimizing the distance

between the centroids of each partition, and the minimum becomes

zero when all centroids converge with the centroid of S.

Motivated by this idea, we propose the Centrality-Sensitive

Pyramid (CSP) model. It computes the centroid cS of S and defines



the inverse of the Euclidean distance between cS and each x ∈ S

as the centrality of x. All points in S are sorted in descending or-

der of centrality and systematic sampling is performed such that

the intra-partition distance is maximized. The compuation of this

Euclidean centrality is much more efficient than that of other cen-

tralities, e.g. closeness centrality and eigenvector centrality. CSP is

sensitive to the distribution of local features in the Euclidean space,

and so achieves better neighborhood association than MSDT. From

Fig. 3, we can see how CSP allows the points in a certain partition

at various levels to be the most widely distributed.

2.3. Complexity

RGG-CSP can be built in two phases: the construction of DT-CSP

and the extraction of RGG. Given the number n of points in S and the

number L of levels in CSP, the former takes O(nL logn− n logL!)
time and the latter takes O(nL). Given a fixed L, O(nL logn −
n logL!) becomes linearithmic and O(nL) becomes linear. We can

see that RGG-CSP is much less complex than greedy algorithms,

e.g. O(n2) for k-Nearest Neighbor (k-NN) and approximated β -

skeleton. It is comparable to O(n logn) for approximated k-NN. In

Sect. 4.2, we compare the performance of approximated k-NN with

that of RGG-CSP.

3. INDEXING

In this study, an image is regarded as a bag of local feature doublets

associated by RGG-CSP. We adapt the geometric model proposed

by Liu et al. [13] to describe each doublet. Given two local features

x and y from the same image, we use~·, s, and θ to denote their

Euclidean coordinate, scale, and orientation. Suppose that x is a

central feature and y is a satellite feature. Two geometric features

are defined as follows:

Dx,y =
‖~y−~x‖2

sx
(1)

Hx,y = ∆(arctan(~y−~x),θx) (2)

where ∆(·, ·) ∈ [0,2π) computes the principal angle. Dx,y indicates

the relative distance between x and y; Hx,y indicates the heading from

x to y. Combining them with the visual word w assigned to each fea-

ture, we have an asymmetric vector (wx,wy,Dx,y,Hx,y) describing

the co-occurrence and geometry of the doublet. A Hough transform

is used to cluster reliable hypotheses and thus enable efficient search-

ing with an inverted index. Dx,y is transformed into two bins by a

threshold 1; Hx,y is transformed into four bins by an equal division

of [0,2π).
Here, we add two modifications: 1. we use the same large-scale

visual vocabulary to quantize the central and satellite features; 2. we

propose using the Ochiai index instead of the TF-IDF cosine similar-

ity for image matching. The first modification is designed to improve

the discriminative power of the method, and the second modification

makes it possible to avoid the computation and storage of the less

helpful TF-IDF. IDF was designed to reduce the negative effect of

confusing visual words. In our case, the visual phrase describes the

co-occurrence and geometry in addition to the appearance and so is

highly discriminative and rarely creates confusion. In our experi-

ments, we found that the Ochiai index even slightly outperformed

the TF-IDF cosine similarity. Given two bags (A and B) of visual

phrases and n(·) denoting the number of elements, the Ochiai index

is defined as follows.

K =
n(A∩B)

√

n(A)n(B)
(3)

4. EXPERIMENTATION

4.1. Setting

For our evaluation, we use 3 datasets: Flickr Logos 32 (FL32) [19],

Holiday (HD) [2], and Oxford Buildings (OB) [1], which are com-

pared in Table 1. We compare our method in an image retrieval

scenario with the BOW and the other spatial context models includ-

ing MSDT [11] and approximated k-NN [13]. The other methods,

e.g. query expansion [4], Hamming embedding [2], and soft assign-

ment [3], are not tested here, but are compatible with our method.

We measure the retrieval performance by using Mean Average Pre-

cision (MAP) [1, 2, 19]. For MSDT, the partition size is varied from

10% to 100% and the overlap ratio is varied from 0% to 90%; for

approximated k-NN, the parameter k is varied from 10 to 100; for

CSP, the number of levels L is varied from 10 to 100. To achieve a

comprehensive comparison, we use the same geometric model de-

scribed in Sect. 3 for all methods. In the reference [11], a triangle-

based co-occurrence model without geometric constraints is used for

MSDT. The modifications of Liu’s method [13] have been discussed

in Sect. 3.

Table 1. Dataset comparison. NOI: Number Of Images.

Dataset FL32 HD OB

Category Logo Scenery Building

Number of Queries 960 500 55

Number of Images 4.3K 1.5K 5.1K

Number of Features 12.7M 4.5M 17.9M

Number of Clusters 1M 0.2M 1M

Detector Hessian Hessian Hessian

Descriptor Root SIFT SIFT Root SIFT

Quantization Self Stand-Alone Self

NOI in Quantization 4.3K 60K 5.1K

4.2. Comparison

Figure 4 compares the relationships between the MAP for retrieval

and the time for spatial neighborhood association obtained using var-

ious datasets. In general, the MAPs of spatial context models are su-

perior to that of BOW. An exception is MSDT. Its poor performance

may be because: 1. we use a geometric model that is different from

that in the reference [11]; 2. the scale-based partitioning ignores

useful different-scaled local features; 3. the range partitioning has

a limited capacity for neighborhood association. MSDT might be

more suitable for dealing with planar objects, e.g. logos, because

it achieved good performance for FL32. Also, MSDT is the fastest

among all spatial context models.

Both approximated k-NN and CSP-based methods exhibited

greatly improved performance gain compared with BOW. To the

best of our knowledge, our method’s MAP of 67.0% for FL32 is the

highest yet reported for the retrieval protocol of this dataset, and

is around 8% higher than the second highest reported value [20].

On the other hand, Romberg et al. [20] have reported the MAPs of

RANSAC [1] obtained using FL32 (56.8%) and OB (72.9%) under

the same setting as ours, both of which are inferior to those obtained

with our approach (Fig. 4). From Fig. 4, we can see that RGG-CSP

almost always obtains a higher MAP than approximated k-NN and

MSDT for the same time, which demonstrates the higher efficiency
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(a) Flickr Logos 32. BOW-MAP: 54.3%.
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(b) Holiday. BOW-MAP: 54.7%.
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(c) Oxford Buildings. BOW-MAP: 71.0%.

Fig. 4. Relationship between MAP and time in seconds per image for spatial neighborhood association. Numbers above curves of RGG-CSP

indicate numbers of levels L.

of our method. Figure 4 also shows that a larger number of levels L

results in a longer processing time because, as discussed in Sect. 2.3,

the complexity of CSP is linear to L given the fixed number of points

n. A larger L also results in better neighborhood association, and

so results in a higher MAP, especially for OB. For FL32 and HD,

RGG-CSP outperforms k-NN with a large MAP gain when L and k

are small, but the differential degrades when we enlarge the number

of local feature doublets. This is because the image resolution,

and in consequence the object scale, of FL32 and HD are lower

than those of OB such that the doublets of distant local features be-

come less useful. Basically, RGG-CSP is more suitable for dealing

with larger images and objects. On the other hand, we also tested

the MAP of RGG-CSP with various α values, but did not find a

comprehensive relationship between them. In our experiments, we

found that a larger number of doublets does not always correspond

to a higher MAP. In the future, we will examine what kind of local

feature doublets are more useful and discriminative to enhance the

selectivity of neighborhood association.

Figure 5 shows some examples of the local feature doublets

matched by RGG-CSP. RGG-CSP successfully extracted true re-

sponses even when the viewpoints varied significantly. Notice the

small size of the object in the first and third examples, the large

scale variation in the second example, the right-angled rotation in

the fourth example, and the different products with the same logo in

the fifth example. Also, we can see that the matched doublets have

coherent shapes from various viewpoints, which also demonstrates

the high discriminative power of our method.

5. CONCLUSION

We have presented a tunable proximity graph (RGG) for spatial

neighborhood association and have proposed a hierarchical system-

atic sampling method (CSP) for sufficient spatial context analysis.

We evaluated our method in an image retrieval scenario on various

types of benchmarks. RGG-CSP achieves far higher effectiveness

than MSDT [11] in neighborhood association. It tends to detect

more true responses than the other algorithms, e.g. k-NN [13],

for image matching. We have not yet tested the scalability of our

method on a large scale. We regard this experiment as future work.

Also, we intend to examine whether we can distinguish useful local

feature doublets from redandunt ones to enhance the selectivity of

spatial neighborhood association.

Fig. 5. Local feature doublets matched by RGG-CSP in cyan.
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