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Abstract—Imposing a spatial coherence constraint on image
matching is becoming a necessity for local feature based object
retrieval. We tackle the affine invariance problem of the prior
spatial coherence model and propose a novel approach for geo-
metrically stable image retrieval. Compared with related studies
focusing simply on translation, rotation, and isotropic scaling,
our approach can deal with more significant transformations
including anisotropic scaling and shearing. Our contribution
consists of revisiting the first-order affine adaptation approach
and extending its application to represent the geometric coher-
ence of a second-order local feature structure. We comprehen-
sively evaluated our approach using Flickr Logos 32, Holiday,
and Oxford Buildings benchmarks. Extensive experimentation
and comparisons with state-of-the-art spatial coherence models
demonstrate the superiority of our approach in image retrieval
tasks.
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I. INTRODUCTION

The Bag-Of-Words (BOW) model based on local features

has been shown to be successful in object retrieval. Many

approaches have been proposed for imposing a spatial co-

herence constraint on images to enhance the discriminative

power of BOW. For example, the Locally Optimized RAN-

dom SAmple Consensus (LO-RANSAC) [1] repeatedly and

randomly selects the inter-image correspondences of local

features and computes the parameters of a geometric model

fitting the sample. It subsequently finds all inliers to the model

and evaluates the quality of the parameters as a barometer

of spatial coherence. LO-RANSAC achieves state-of-the-art

discriminative power, but is computationally expensive due to

the iterative affine adaptation.

Among non-iterative solutions, Kalantidis et al. [2] and

Yang et al. [3] explored the higher-order intra-image co-

occurrence of local features. Both approaches are faster but

less discriminative than LO-RANSAC due to the exclusion of

a geometric coherence constraint. Zhang et al. [4] describe

the long-range spatial layout of local features by computing

a Hough transform in the Euclidean space. It is invariant to

translation but achieves limited robustness as regards rotation

and scaling. Wu et al. [5] measured the spatial conherence

by projecting the local features inside each maximally stable

extremal region along Cartesian coordinate axes. The approach

achieves scale invariance but remains sensitive to rotation. Liu

et al. [6] explored the second-order spatial structure of local

features by using the k-nearest neighbor and embedded the

relative distance and the relative principal angle between them

into an image representation to obey a larger variety of affine

invariance. The same level of invariance was also achieved in

earlier studies of image recognition [7], [8].

Liu’s approach [6] and its related studies [7], [8] are

invariant to translation, rotation, and isotropic scaling. The

images constituting the input to a computer vision system

are however subject to perspective distortions. Of the above

geometry-based approaches, LO-RANSAC is the only one

that is invariant to the full 6-degree of freedom (DOF) affine

transformations. In this paper, we propose a novel approach for

geometrically stable image retrieval. The main contributions

include: 1. the proposal of a geometric coherence constraint

based on Hessian-based affine adaptation that is fully invariant

to the 6-DOF transformations; 2. the design of a prior spatial

coherence model that adapts the proposed geometric coherence

constraint, achieves a higher efficiency than RANSAC, and

achieves a higher retrieval discernment than other related

studies. The rest of the paper is organized as follows. We revisit

Hessian-based affine adaptation and develop our proposal of

a geometric coherence constraint in Sect. II. Section III de-

scribes the adaptation of our approach to content-based image

indexing and matching. We then present our experiments in

Sect. IV and discuss future work in Sect. V.

II. GEOMETRIC COHERENCE CONSTRAINT

A. Hessian-Based Affine Adaptation

Lindeberg [9] has proposed a methodology for iteratively

adapting the shape of a smoothing kernel to the region near

an image point. Provided that this iteration converges, the

consequent fixed point will be invariant affine transformations.

For an image IL, let xL = (xL, yL)
T be an image point in

IL. Introducing an affine transformation

ξR = AξL (1)

where A is a 2×2 matrix, we can define a transformed image

IR as

IL(xL + ξL) = IR(xR + ξR) (2)

Equation 2 indicates the correspondence between each pixel

xL+ξL in IL and each pixel xR+ξR in IR. Given two arbitrary

images that are related as regards an unknown transformation



A due to a certain viewpoint change, if we can estimate A,

then the two images can be successfully matched regardless of

the viewpoint change. Lindeberg [9] demonstrated that given a

correspondence between two image points xL and xR, A can

be estimated from measurements of the affine-adapted second-

moment matrices ML and MR. Mikolajczyk and Schmid [10]

continued with this formulation and showed that M
1/2 can

transform the original anisotropic regions around xL and xR

into two isotropic regions that are related through a rotation

matrix R. The eigenvalues and eigenvectors of M characterize

the curvature and shape of the ellipsoid known as an affine

region (AR). The isotropic regions can be thought of as a

normalized reference (NR). A can then be estimated by:

A = A−1
R AL (3)

A(·) = R(·)M
1/2

(·) (4)

Mikolajczyk et al. [10] also proposed an iterative algorithm for

estimating M and subsequently A. R can be recovered using

gradient methods.

(a) Initial images I(ξ). (b) Normalized images.

Figure 1. Affine normalization.

Figure 1 shows an example of affine normalization. Fig-

ure 1a corresponds to the initial images IL and IR and Fig. 1b

corresponds to the normalized images I
(L)
ϕ and I

(R)
ϕ . The ARs

and their corresponding NRs are highlighted in blue. Although

the viewpoints of the initial images vary significantly, the NRs

are almost identical. Any feature computed from the NRs,

usually known as a local feature, becomes invariant to the

transformation A. Given u(x) as such a feature descriptor and

x as the image point, we denote the correspondence as

u(xL) = u(xR) (5)

Motivated by the analogy to the 1-gram model, we may call

this equality a first-order local feature coherence. In Sect. II-B,

we extend the application of this first-order coherence to model

the images’ second-order geometric coherence.

B. Second-Order Geometric Coherence

Given a local feature coherence between the image points

xL and xR detected from two images satisfying Eq. 5, Eq. 2

holds provided that the position vectors ξL and ξR are related

according to Eq. 1. We subsequently consider whether another

local feature coherence exists, given that Eq. 5 and Eq. 1 are

satisfied, between the image points yL = xL + ξL and yR =
xR + ξR such that

u(yL) = u(yR) (6)

Equation 6 naturally holds if the ARs of yL and yR are

inside those of xL and xR. Otherwise, the equality depends

on certain circumstances. Provided that 1. we can temporarily

ignore non-affine transformations, e.g. illumination changes,

2. both x and y are inside the same object, and 3. we can

confine our attention to near-planar and rigid objects, then

Eq. 6 should hold and there should be coherence between yL

and yR. Needless to say, we assume that IL and IR include

the same object.

We now invert the problem and assume that we have two

pairs of image points (xL,yL) and (xR,yR) that satisfy Eqs.

5 and 6. Let ξL = yL − xL and ξR = yR − xR be the

position vectors heading from x to y. The normalized position

vectors ξϕ can be computed by projecting ξL and ξR onto the

normalized space:

ξ(·)ϕ = R(·)M
1/2

(·) ξ(·) (7)

where (·) denotes L or R. If it is observed that

ξLϕ = ξRϕ (8)

then (xL,yL) and (xR,yR) provide evidence for the belief

that IL and IR include the same object under a certain trans-

formation. Given the collection of all such evidence detected

across IL and IR, a similarity can be formulated by measuring

the global geometric coherence between the two images.

This similarity is naturally more discriminative than the local

feature coherence alone because a co-occurrence constraint is

imposed by Eqs. 5 and 6 and a geometric constraint is imposed

by Eq. 8. It is also highly robust as regards viewpoint changes

because the constraint is invariant to the transformation A as

discussed above.

Figure 1 shows an example where the central point x is

highlighed in blue and the satellite point y in pink. The posi-

tion vectors heading from x to y show a noticable declination

in the initial images, but become almost identical after being

projected onto the normalized space. We adapt this constraint

to image representation and matching in Sect. III.

III. IMAGE RETRIEVAL

A. Indexing

Given an image I , a 2-tuple t = (x,y) is a pair of points

x ∈ I and y ∈ I . Given a position vector heading from x to



y of ξ(t) = y−x, a normalized position vector ξϕ(t) can be

computed by projecting ξ(t):

ξϕ(t) = R(x)M(x)
1/2ξ(t) (9)

The appearance and geometric characteristics of t can be

represented by

h(t) = 〈u(x), u(y), ξϕ(t)〉 (10)

where u(·) is a feature descriptor. Given two images IL and

IR, every geometrically coherent correspondence can be found

by thresholding the similarity between each h(tL) and h(tR).
Inspired by the success of descriptor quantization, we consider

the simplest visual vocabulary and Hough transform to assign

certain visual and geometric terms to a tuple. We quantize u(·)
into a visual term û(·) using a visual vocabulary constructed

with an approximated k-means. We also transform ξϕ from

Cartesian coordinates to log-polar coordinates (ρϕ, αϕ) with

ρϕ being the log radius and αϕ being the log-polar angle.

ρϕ is further transformed into two bins by a threshold ǫρ =
log

√

detM(x), which is the AR scale of x. αϕ is transformed

into four bins by an equal division of [0, 2π). We thus have

an asymmetric visual phrase

f̂(t) = 〈û(x), û(y), ρ̂ϕ(t), α̂ϕ(t)〉 (11)

describing the co-occurrence and geometry of the tuple. De-

pending on the parameterization, quantization usually incurs

significant information loss [11]. Since ξϕ has only two

dimensions, we tap into its descriptor space by preserving ξϕ
in the tuple’s representation:

ĥ(t) = 〈f̂(t), ξϕ(t)〉 (12)

Given two tuples tL and tR, the correspondence can be deter-

mined by imposing f̂(tL) = f̂(tR) on them and thresholding

the similarity between ξϕ(tL) and ξϕ(tR). This enables an

efficient search with an inverted index in which each key

corresponds to a visual phrase f̂(t) and each mapped value

corresponds to a pair consisting of image ID I and ξϕ(t).
An image is regarded as a set of tuples. In theory, the total

number of tuples is quadratic. In practice, we can restrict the

set of tuples to that of the nearest neighbors of each local

feature in the image space [6], [3]. Given a local feature x,

let its k-nearest neighbors be Nk(x). The set of tuples in the

image I thus contains all pairs of x ∈ I with their neighbors:

N = {t ∈ I2, t = (x,y) : y ∈ Nk(x)} (13)

B. Matching

Given two images IL and IR, a set of candidate correspon-

dences is obtained based on the visual phrase:

CL,R = {(tL, tR) ∈ NL ×NR : f̂(tL) = f̂(tR)} (14)

It follows that each correspondence should contribute to

the similarity score according to how far apart ξϕ(tL) and

ξϕ(tR) are. We define this contribution using a kernel function

κ(ξϕ(tL), ξϕ(tR)), which gives rise to a similarity between IL
and IR:

S(IL, IR) =

∑

(tL,tR)∈CL,R
κ(ξϕ(tL), ξϕ(tR))

Π
(15)

where Π =‖ NL ‖ + ‖ NR ‖ is a penalty function. It

is more reasonable to choose a kernel related to Euclidean

distance since ξϕ is basically a position vector. We define κ as

a radial basis function (RBF) kernel with a free parameter σ.

Π penalizes the images with a very large number of features

that cause confusion between unrelated images.

Note that Eq. 15 does not take the inverse document

frequency (IDF) into account. This indirectly avoids the com-

putation and storage cost, but the actual motivation lies in

the fact that IDF is less helpful for geometry-based matching.

IDF was designed to reduce the negative effect of confusing

local features, e.g. those deriving from finely-textured patterns.

In our approach, the visual phrase describes both the co-

occurrence and the geometry of semi-local regions and so is

highly discriminative and rarely creates confusion. We show

evidence of this insight in Sect. IV-C.

IV. EXPERIMENTATION

A. Setting

For our evaluation, we use three datasets: Flickr Logos

32 (FL32) [12], Holiday (HD) [13], and Oxford Buildings

(OB) [14], which are compared in Table I. We employ the same

Hessian-based region detector [10] for all datasets to extract

local features. We compare our approach in an image retrieval

scenario with the BOW and other spatial coherence models

including multi-scale Delaunay triangulation (MSDT) [2], spa-

tial co-occurrence kernel (SCK) [3], and Liu’s approach [6].

Table II qualitatively compares these approaches. In this table,√
indicates calling into account or being invariant, and ×

the reverse. Order indicates the number of elements in each

tuple. Isotropic and anisotropic indicate the corresponding

types of scaling. Note that MSDT uses a graph model instead

of k-nearest neighbor (k-NN) for neighborhood extraction,

which differs from the other spatial coherence models. The

other approaches, e.g. query expansion [15], Hamming em-

bedding [13], and soft assignment [16], are not tested but are

compatible with our approach. We measure the performance

using mean average precision (MAP) and mean precision at

top-4 (MP@4) [17]. For MSDT, the partition size is varied

from 0.1 to 1 and the overlap ratio is varied from 0 to 0.9; for

SCK, Liu’s approach, and our approach, the parameter k used

in k-NN is varied from 10 to 100.

B. Parameter Examination

In our approach, there are three parameters that influence

the retrieval performance. They are the k used in k-NN, the

free parameter σ of the RBF kernel, and the penalty function

Π. We tune k in Sect. IV-C. We tested the MAP with various σ

values, where a larger value corresponds to greater robustness

as regards noises but less discriminative power and vice versa.

The best MAP stabilized within σ ∈ [4, 6] for all datasets.



Table I
DATASET COMPARISON.

Dataset FL32 HD OB

Category Logo Scenery Building

Num. of Queries 960 500 55
Num. of Images 4.3K 1.5K 5.1K
Num. of Clusters 1M 0.2M 1M

Descriptor Root SIFT SIFT Root SIFT

Table II
APPROACH COMPARISON.

Approach BOW MSDT SCK Liu Ours

Co-occur. ×
√ √ √ √

Order 3 2 2 2

Geometry × × ×
√ √

Translation
√ √

Rotation
√ √

Isotropic
√ √

Anisotropic ×
√

Shearing ×
√

We chose σ = 5 for all subsequent experiments. We also

compared five functions handling Π including a constant 1,

two linear functions, and two quadratic functions related to

‖ NL ‖ and ‖ NR ‖. These choices were inspired by

the similarity functions defined in information retrieval [18].

Since our approach is based on a second-order structure, it is

superficially more reasonable to choose quadratic functions in

theory. However, in practice the best MAP was stabilized with

linear functions. Quadratic functions tend to be overly punitive

because of the high discriminative power of the visual phrase

defined in Eq. 11. We therefore chose ‖ NL ‖ + ‖ NR ‖ for

all subsequent experiments.

C. Comparison

Table III compares the best accuracies of various ap-

proaches. In general, spatial coherence models are superior to

BOW with the exception being MSDT. The poor performance

of MSDT may be because the graph model has a lower capac-

ity for neighborhood association than k-NN and the third-order

co-occurrence constraint is too sensitive to feature description

errors. In contrast, SCK, Liu’s approach, and our approach

exhibited greatly improved performance gain compared with

BOW. Figure 2 compares the relationship between the MAP

and the k used in k-NN. Our approach obtains a higher MAP

than SCK and Liu’s approach for the same k in all cases.

A larger number k usually leads to a higher MAP for all

these approaches. A larger k allows the model to capture the

spatial characteristics of larger objects, but may also cause

more confusion between unrelated objects. The degradation of

robustness has a negative impact on retrieval when the visual

vocabulary is small, as reported by Liu [6]. In contrast, we used

a 1M-cluster vocabulary in our approach and so avoided the

impact of false responses. Hence the curves in Fig. 2 became

monotonic.

Table III
BEST ACCURACY COMPARISON (%).

FL32 HD OB

MAP MP@4 MAP MAP MP@4

BOW 54.3 79.8 54.7 70.9 94.1

MSDT [2] 54.8 81.1 49.5 70.1 94.1
SCK [3] 63.4 87.5 63.0 72.8 95.5

Liu [6] 65.3 89.5 66.2 73.6 95.9
Ours 67.5 90.9 67.4 76.3 95.9

To the best of our knowledge, our approach’s MAP of

67.5% for FL32 is the highest yet reported for the retrieval

protocol of this dataset, and is more than 8% higher than the

second highest reported value [17]. Romberg et al. [17] have

reported the MAPs of LO-RANSAC obtained using FL32 and

OB under the same setting as ours. The best reported MAPs

are 56.8% for FL32 and 72.9% for OB, both of which are

much lower than those obtained with our approach. RANSAC

has been known to perform poorly when the percentage of

true inliers falls much below 50%. This situation commonly

occurs with real datasets, and so may explain the surprisingly

low performance of LO-RANSAC. RANSAC has also been

known to perform poorly when the percentage of true inliers

falls much below 50%.

One may notice that the MAPs on the OB dataset are

inferior to some of those reported in previous studies [15], [13],

[16]. This is because we are not introducing the pre- or post-

processing methods, including query expansion, Hamming

embedding, soft assignment, and database augmentation, into

the retrieval system, as has been done by previous studies.

Because the proposed approach is fully compatible with the

above methods, we believe that a combination of our approach

with these advanced techniques can further improve the per-

formance in the image retrieval tasks.

D. Discussion

Figure 3 shows examples of the features matched by BOW

and the tuples matched by our approach. Both approaches

extracted true responses corresponding to the logos. BOW also

provided a lot of false responses. In contrast, our approach pre-

cisely matched the objects and rejected every false response.

Please note the small size of the logos and the coherent shapes

of the matches in Fig. 3b.

Figure 4 shows the false responses detected by SCK. It is

known that local features such as SIFT are indiscriminating

as regards pictures of dense characters, e.g. the newspaper

in the second example. Although SCK took the local feature

co-occurrence into consideration, it still detected some false

responses. In contrast, our approach rejected all false responses

because we enforced an additional geometric constraint over

the confusing tuples of interest points.
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(a) Flickr Logos 32.
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(b) Holiday.
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(c) Oxford Buildings.

Figure 2. Relationship between MAP and k used in k-NN.

(a) BOW

(b) Our approach.

Figure 3. BOW versus our approach.

Figure 5 compares our approach with Liu’s approach. Our

approach successfully extracted true responses in Fig. 5a

even when the viewpoints varied significantly. Liu’s approach

obtained 0 responses from these image pairs. Our approach

is not only more robust as regards viewpoint changes but

also achieves higher discriminative power than Liu’s approach.

Liu’s approach provided a lot of false responses in Fig. 5b, and

all the false responses were rejected by our approach.

Fig. 6a shows two examples of the false responses mis-

matched by our approach. In the top row, both the sheet in the

left image and the tablecloth in the right image have checkered

patterns. In the bottom row, the dotted curtain in the left image

is very similar to the sphere-shaped object in the right image.

Figure 4. False responses obtained using SCK. All these responses were
rejected successfully by our approach.

The two pairs are both unrelated but the matched responses

make sense. From our experiments, we also found some pairs

of images that contain the same object but that are labled by

human annotators as unrelated. Figure 6b shows two examples.

In the top row, our approach precisely matched the target logo

in the left image and rejected false responses patentially as a

result of the similar wrappings of the different snacks. In the

bottom row, notice the very coherent shapes of the matched

tuples and the clear difference between the viewpoints of the

two images.

V. CONCLUSION

We have proposed an approach for modeling the second-

order geometric coherence between local features by extending

the application of the Hessian-based affine adapatation. We

presented comparisons of the proposed approach and state-

of-the-art related studies. The results show that our approach

is highly discriminative and more robust to 6-DOF affine

transformations. Our experimental results showed that the

Hessian-based affine adaptation became unstable if the view-

point change was too large. We regard this issue as a future

subject for investigation. We also intend to test the extension

of our approach on a large scale and examine the selectivity

of local feature tuples.



(a) True responses obtained using our approach.

(b) False responses obtained using Liu’s approach.

Figure 5. Liu’s approach versus ours.

(a) False responses obtained using our approach.

(b) True responses missed by human being.

Figure 6. Our approach versus human.
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