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Abstract – Local features offer high repeatability, which sup-
ports efficient matching between images, but they do not provide
sufficient discriminative power. Imposing a geometric coherence
constraint on local features improves the discriminative power
but makes the matching sensitive to anisotropic transformations.
We propose a novel feature representation approach to solve
the latter problem. Each image is abstracted by a set of tuples
of local features. We revisit affine shape adaptation and extend
its conclusion to characterize the geometrically stable feature of
each tuple. The representation thus provides higher repeatability
with anisotropic scaling and shearing than previous research. We
develop a simple matching model by voting in the geometrically
stable feature space, where votes arise from tuple correspon-
dences. To make the required index space linear as regards
the number of features, we propose a second approach called
a Centrality-Sensitive Pyramid to select potentially meaningful
tuples of local features on the basis of their spatial neighborhood
information. It achieves faster neighborhood association and has
a greater robustness to errors in interest point detection and
description. We comprehensively evaluated our approach using
Flickr Logos 32, Holiday, Oxford Buildings and Flickr 100K
benchmarks. Extensive experiments and comparisons with ad-
vanced approaches demonstrate the superiority of our approach
in image retrieval tasks.

Index Terms – Feature Extraction, Geometry, Graph Theory,
Image Retrieval.

I. INTRODUCTION

THE bag-of-visual-words (BOVW) representation of local
features [1] has been shown to be successful in image

retrieval. When an image is represented using BOVW it can be
treated as a document. BOVW includes several steps for defin-
ing visual words in this document: interest point detection,
local feature description, and visual vocabulary generation.
After interest point detection, each image is abstracted by a set
of local patches. Feature representation methods, e.g. scale-
invariant feature transform (SIFT) [2], represent the patches
as numerical vectors called local feature descriptors. The final
step is clustering, e.g. approximated k-means [3], over all the
vectors to produce a visual vocabulary. After the clustering, a
classification approach such as 1-nearest neighbor (1-NN) is
performed to associate each patch with a visual word, and the
image can be represented by a histogram of the visual words.

Current local features offer high repeatability but do not
provide enough discriminative power. The direct matching
of these descriptors results in massive mismatches [4]. As
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(a) Conventional approaches failed to find the correspondence.

(b) Responses obtained using our approach.

Fig. 1. Images with significant anisotropic transformations that are hard to
deal with using conventional geometric models.

a result, spatial coherence models have been used to help
BOVW filter out the mismatches. Kalantidis et al. [5] and
Yang et al. [6] demonstrated that matching the intra-image
co-occurrence of local features could achieve a higher dis-
criminative power than matching BOVW histograms. Another
group of researchers [4], [7]–[10] demonstrated that imposing
a geometric constraint on co-occurrence could further improve
the ability of the matching algorithm to reject mismatches.
These approaches introduced a new problem called affine
invariance: they make the matching sensitive to anisotropic
transformations. Fig. 1 shows an example in which conven-
tional approaches failed to find the correspondence due to the
large viewpoint difference. This constitutes one of the main
problems that we tackle in this paper.

Spatial coherence models can also be categorized in terms
of prior configuration [5], [6], [8], [10] and posterior filtering
[3], [4], [7], [9]: the former determines a spatial configuration
of local features before matching; the latter rejects mismatches
online. Approaches based on posterior filtering place an added
computational burden on the online phase, which is undesir-
able in real applications. In contrast, prior configuration moves
this burden to the feature representation phase thus making it
unrelated to retrieval. The matching of local features, which
reduces the redundancy of interest points, is not available here,
and so the burden of image indexing is much larger than that
in the posterior case. Another main objective of this paper is to
improve the efficiency of image indexing to make the required
indexing space linear as regards the number of features.
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Fig. 2. Sequential diagram of geometrically stable feature representation.

In this paper, feature representation indicates the method
used for describing the visual features of a certain entity
related to the image. It corresponds to local feature description
if the entity is an interest point, and corresponds to spatial
configuration explained later if the entity is a tuple of interest
points. Image representation indicates the method used for
describing the visual features of the image, which can be a
BOVW representation if only local features are taken into
account. In the proposed approach, image representation is
based on a spatial configuration of local features. A spatial
configuration or geometric configuration is a particular layout
of interest points in the image space, which contains the co-
occurrence information of local features and/or the geometric
relationship between interest points. Spatial neighborhood
association is the problem of finding neighboring interest
points that are close to one another in the image space.

In this paper, we develop a feature representation and image
matching approach based on a second-order configuration of
local features for geometrically stable retrieval. The approach
follows the standard prior configuration-based spatial coher-
ence models as shown in Fig. 2. After interest point detection,
interest points that appear spatially close to one another are
detected, and each image is abstracted by a set of tuples of
neighboring interest points. We keep track of the semi-local
geometric information of each tuple in a normalized space
and develop our geometrically stable feature. The descriptors
capturing both the co-occurrence and geometric characteristics
of local features are embedded in an inverted index. A visual
vocabulary and a Hough transform are used to enable fast
searching. We develop a simple matching model by voting in
the geometrically stable feature space, where votes arise from
tuple correspondences. Compared with existing researches, our
approach contributes the following to the state of the art:
• We revisit affine shape adaptation and extend its conclu-

sion to characterize the second-order geometric coherence
of local features. The feature representation thus provides
higher repeatability with anisotropic scaling and shearing

than previous research focusing simply on translation, ro-
tation, and isotropic scaling. The matching model tailored
to the geometrically stable feature significantly mitigates
the risk of generating mismatch errors.

• We propose a novel Centrality-Sensitive Pyramid (CSP)
model based on Delaunay triangulation for the faster
association of spatially neighboring interest points. Given
the same time for indexing, the retrieval achieves a higher
sensitivity to true responses and a higher robustness to
errors in interest point detection and description.

The remainder of the paper is organized as follows. After
describing related studies in Section II, we review affine shape
adaptation in Section III. In Section IV-A, we describe one of
our main contributions, namely the second-order configuration
of local features, and explain how the conclusion of affine
shape adaptation can be extended to make the configuration
invariant to anisotropic transformations. The application of our
approach to image retrieval is circumstantially explained in
Sections IV-B and IV-C. Section V describes our proposed
CSP model. We then present our experiments in Sections VI
and VII, and discuss future directions in Section VIII.

II. LITERATURE REVIEW

BOVW has been improved in several ways in recent years.
These improvements include query expansion [11], [12], spa-
tial coherence models [3], Hamming embedding [13], [14],
soft assignment [15], query adaptation [16], [17], and database
augmentation [18], [19]. All these topics concern the field of
image retrieval, but we focus on the state of the art in the
context of spatial coherence models because the other topics
are not related to the main objective of this research.

A. Matching Based on Spatial Configuration of Local Features

Ma et al. [20] represented images with a subspace learning
method that preserves spatial correlations of image pixels at
the expense of losing affine invariance. In the field of spatial
coherence models, a spatial configuration is a particular layout
of interest points in the image space. Approaches based on spa-
tial configurations extract the appropriate information from the
spatial distribution of the interest points for image representa-
tion. Poullot et al. [21] and Kalantidis et al. [5] demonstrated
that the third-order intra-image co-occurrence of neighboring
local features provided a higher discriminative power than a
non-spatial configuration. Poullot et al. [21] proposed grouping
interest points into triangles using a nearest neighbor search
(NNS) and compressing the co-occurrence information into a
compact binary signature. Multi-scale Delaunay triangulation
[5] replaces NNS with a graph model and treats each image
as a bag of triplets of visual words. Third-order neighborhood
co-occurrence is more discriminating than its second-order
counterpart, but has difficulty taking full advantage of the
strengths because of the large cost of computation and memory
usage. In contrast, a spatial co-occurrence kernel [6] with NNS
abstracts each image by using a second-order co-occurrence
matrix. Zhang et al. [22] adopted the graph model [5] but used
a representation based on pairs of local features.
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Another group of studies [3], [4], [7]–[10], [13], [14]
demonstrated that imposing a geometric constraint on co-
occurrence can further improve the ability of the matching
algorithm to reject mismatches but introduces the affine in-
variance problem (Section I). Zhang et al. [9] defined the co-
herence of the Euclidean distances in the image space between
inter-image feature correspondences as geometric coherence.
It is robust to translation but varies with rotation and scaling
[9]. Wu et al. [8] presented a descriptor based on the geometric
order of intra-image neighboring interest points sorted on
Cartesian coordinate axes. It achieves scale invariance but still
varies with rotation [8]. Weak geometrical consistency (WGC)
[13], [14] defines the coherence of the distances, in scale
and orientation spaces, between inter-image correspondences.
It is robust to translation, rotation, and isotropic scaling but
is less discriminating because it ignores the neighborhood
constraint. Carneiro et al. [4] proposed a similar second-
order configuration approach imposing both the neighborhood
and geometric constraints on matching. It still varies with
anisotropic transformations but achieves higher tolerance than
WGC [13], [14]. The same idea has been adapted to different
vision tasks by Gao et al. [7] and Liu et al. [10].

Among posterior filtering-based methods, Shen et al. [23]
incorporated the spatial configuration of local features into
an inter-image similarity measure by affine transformation
simulation. Specifically, each image is transformed by rotation
and isotropic scaling for a finite number of scale factors
and angles, and a voting map is generated according to the
relative positions of feature correspondences in the simulated
image space. Instead of considering a regularized simulation,
Tolias et al. [24] proposed transforming matched interest
points by local transformations estimated from single feature
correspondences. The same authors also proposed a novel
feature selection approach based on database augmentation
to make the index space linear in the number of features.
Avrithis and Tolias [25] disregarded the simulation of affine
transformation and focused on a transformation space spanned
by the parameters of translation, rotation and isotropic scaling.
Local transformations between matched features are projected
onto this space, and a voting map is generated, where votes
arise from feature correspondences. These approaches are
efficient and robust as regards isotropic transformations, but
are still sensitive to anisotropic scaling and shearing in theory.

To the best of our knowledge, the locally optimized ran-
dom sample consensus (LO-RANSAC) [3] later improved by
Lebeda et al. [26] is the only geometric model that does not
vary with full 6 degree of freedom (6DOF) affine transforma-
tions. It repeatedly and randomly selects the inter-image corre-
spondences and computes the parameters of a geometric model
that fits the sample. It then finds all inliers to the model and
defines the quality of the parameters as the spatial coherence.
LO-RANSAC is much more computationally expensive than
the other approaches because of the iterative model adaptation
[10]. It is also known to perform poorly when the percentage
of true inliers falls much below 50% [2].

B. Spatial Neighborhood Association

In the field of spatial coherence models, spatial neighbor-
hood association is the problem of finding neighboring interest
points that are close to one another in the image space. In
consequence, the image is abstracted by a set of n-tuples of
neighborhoods. This abstraction is usually called an n-th-order
representation [7], [27]. Ascribing the spatial configuration to
the n-tuples imposes a neighborhood constraint on the measure
of inter-image coherence, and at the same time, significantly
reduces the computation cost and memory usage.

A solution based on a nearest neighbor search (NNS) [4],
[6], [8], [10], [21] is the most popular choice for this purpose.
k-nearest neighbor (k-NN) [4], [10], [21] identifies the top k
closest neighbors to each interest point. Spatial co-occurrence
kernel [6] uses an alternative technique called fixed-radius near
neighbors (FRNN), which finds all the neighbors within a
given radius from each interest point. Wu et al. [8] presented
a solution similar to FRNN but made the radius adaptive
to the characteristic scale of each interest point. Given m
as the number of interest points and k as the number of
neighbors, the complexity of NNS-based solutions is close to
O(km2). Approximate NNS based on a tree structure is much
less complex and uses O(m logm) for building the tree and
O(km logm) for searching.

Since the interest points are given in a 2D Euclidean space,
neighborhood association can also be formulated as a problem
of computational geometry. Kalantidis et al. [5] proposed
the use of Delaunay triangulation (DT) for this purpose. To
tolerate the planarity problem that leads to sensitivity to errors
in interest point detection, a multi-scale Delaunay triangulation
(MSDT) scheme is proposed, which divides the set of interest
points into overlapped partitions according to the characteristic
scale and constructs a DT from each partition. Zhang et al. [22]
adapted the same model to posterior filtering in an instance
search scenario. The complexity of MSDT with a divide and
conquer implementation is also linearithmic as regards m, but
the speed is faster than NNS because each single operation
for distance computation in NNS is less efficient than the
comparison operation in DT. However, MSDT achieves less
complete neighborhood association because it unconsciously
ignores useful neighborhoods with different scales.

III. BACKGROUND

The computer vision community has made many attempts
to improve the robustness of local features to affine transfor-
mations. One solution is called affine shape adaptation [28],
[29]. It iteratively adapts the shape of a smoothing kernel to
the region near an image point such that, provided that this
iteration converges, the fixed point will be invariant to affine
transformations. For an image IL, let xL = (xL, yL)T be an
image point in IL. Introducing an affine transformation

ξR = AξL (1)

where A is a 2×2 matrix, we define a transformed image IR:

IL(xL + ξL) = IR(xR + ξR) (2)
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TABLE I
EXPLANATION OF NOTATIONS USED IN SECTIONS III AND IV.

Notation Explanation

I Image
L, R Indexes of images
x, y Interest points
x, y Cartesian coordinates of interest points
ξ Position vector heading from one point to another
A Affine transformation matrix
M Second-moment matrix
M

1/2 Anisotropic normalization matrix
P Rotation matrix
Iϕ Affine-normalized image
u(·) Local feature descriptor

ξϕ Affine-normalized position vector
a, b, c, d Coefficients of anisotropic normalization matrix
θ Characteristic orientation of interest point

t Tuple of interest points
h(·) Raw descriptor of interest point tuple
û(·) Visual word
ρϕ, αϕ Log-polar coordinates of ξϕ
ερ Threshold of Hough transform for ρϕ
f̂(·) Visual phrase
ρ̂ϕ, α̂ϕ Geometric words
ĥ(·) Refined descriptor of interest point tuple
N (·) Nearest neighbors of interest point
N Set of tuples of interest points in image

C·,· Set of tuple correspondences between images
κ(·, ·) Kernel function
S(·, ·) Similarity between images
σ Parameter of RBF kernel
Π Penalty function

Equation (2) indicates the correspondence between each pixel
xL + ξL in IL and each pixel xR + ξR in IR. Given two
images that are related as regards an unknown transformation
A due to a viewpoint change, if we can estimate A, then we
can successfully match the images regardless of the view-
point change. Lindeberg [28], [29] demonstrated that given
a correspondence between two image points xL and xR, A
can be estimated from measurements of the affine-adapted
second-moment matrices ML and MR. Mikolajczyk et al. [30]
continued with this formulation and showed that M

1/2 can
transform the original anisotropic regions around xL and xR
into isotropic regions that are related through a rotation matrix
P . The eigenvalues and eigenvectors of M characterize the
curvature and shape of the ellipsoid known as an affine region
(AR). The isotropic regions can be thought of as a normalized
reference (NR). A can then be estimated by:

A = A−1R AL (3)

A(·) = P(·)M
1/2
(·) (4)

Mikolajczyk et al. [30] proposed an iterative algorithm for
estimating M . P can be recovered using gradient methods.

Fig. 3 shows an example of affine normalization. Fig. 3a cor-
responds to the images IL and IR, and Fig. 3b corresponds to
the normalized images I(L)ϕ and I(R)

ϕ . ARs and corresponding
NRs are highlighted in blue. Although the viewpoints of the

(a) Initial images IL and IR. (b) Normalized images.

Fig. 3. Affine normalization. Blue ellipsoids are ARs and blue circles NRs.
Blue lines heading from each center show the orientation with the largest
gradient. Pink lines are position vectors heading from the center of each blue
point to that of a neighboring point. ARs and NRs of each neighboring point
are not shown here for better viewability.

initial images vary significantly, the NRs are almost identical.
Any feature computed from the NRs, usually known as a local
feature, becomes invariant to the transformation A. Given u(x)
as such a feature descriptor and x as the image point, we
denote the correspondence as

u(xL) = u(xR) (5)

This equality indicates first-order feature coherence. In Sec-
tion IV-A, we explain how we can model the images’ second-
order geometric coherence, given that (5) is satisfied, by
extending the conclusion of affine shape adaptation.

IV. GEOMETRICALLY STABLE FEATURE REPRESENTATION

A. Second-Order Geometric Coherence

Given feature coherence between the image points xL
and xR detected from two images satisfying (5), Equation
(2) holds provided that the position vectors ξL and ξR are
related according to (1). Given that (5) and (1) are satisfied,
consider the image points at the positions yL = xL + ξL and
yR = xR + ξR. It is reasonable to expect that

u(yL) = u(yR) (6)

Equation (6) naturally holds if the ARs of yL and yR are
inside those of xL and xR. Otherwise, the equality depends
on a few assumptions: 1. we can temporarily ignore non-affine
transformations, e.g. illumination changes, 2. both x and y are
inside the same object, and 3. we can confine our attention to
near-planar and rigid objects. Note that these assumptions are
common in the field of particular object retrieval based on local
features. With this configuration, Equation (6) should hold and
there should be coherence between yL and yR. Needless to
say, we assume that IL and IR include the same object.
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Note that in practice, our approach does not rely heavily
on the above assumptions except for the rigidity. Illumination
changes are dealt with by a local normalization of intensities
before the SIFT description. Some non-planar objects such as
buildings are polyhedrons, while the others such as jars are
curved objects. The latter can be approximated by a polygon
mesh, i.e. a collection of small planar faces. Our approach may
fail if the curvilinear surface is too complex, otherwise it can
successfully deal with this issue. Note that these assumptions
are common in the field of particular object retrieval.

We now invert the problem and assume that we have two
pairs of image points (xL,yL) and (xR,yR) that satisfy (5)
and (6). Let ξL = yL−xL and ξR = yR−xR be the position
vectors heading from x to y. The normalized position vectors
ξϕ can be computed by projecting ξL and ξR such that:

ξ(·)ϕ = P(·)M
1/2
(·) ξ(·) (7)

where (·) denotes L or R. If it is observed that

ξLϕ = ξRϕ (8)

then (xL,yL) and (xR,yR) provide evidence for the belief
that IL and IR include the same object under a certain
transformation. Given the collection of all such evidence
detected across IL and IR, a similarity can be formulated by
aggregating the semi-local geometric coherence into a global
coherence between the images. This similarity is naturally
more discriminative than the feature coherence alone because
a co-occurrence constraint is imposed by (5) and (6) and a
geometric constraint is imposed by (8). It is also robust as
regards viewpoint changes because the constraint does not vary
with the transformation A as discussed above.

Fig. 3 shows an example where the central point x is
highlighed in blue and the pink lines are position vectors
heading from x to a satellite point y. The ARs and NRs
of y are not shown here for better viewability. The position
vectors show a noticeable declination in the initial images,
but become almost identical after being projected onto the
normalized space. We adapt this constraint to image matching
in Section IV-C.

The affine transformation A(·) in (4) has a unique decom-
position P(·)M

1/2
(·) . M

1/2 transforms the anisotropic ARs into
isotropic NRs, and is described by a 2× 2 real matrix

M
1/2 =

[
a b
c d

]
(9)

M
1/2 expresses an isotropic scaling if and only if a = d and it

is anisotropic otherwise. It also expresses a shear parallel to the
horizontal axis if b 6= 0 and a shear parallel to the vertical axis
if c 6= 0. In consequence, the geometric constraint proposed
in this section can deal with more significant affine trans-
formations than those proposed in previous studies [4], [7]–
[10], which focus simply on translation, rotation, and isotropic
scaling. We use Mikolajczyk’s method [30] to estimate M . In
contrast, the rotation matrix P has the following form

P =

[
cos θ − sin θ
sin θ cos θ

]
(10)

Input: t = (x,y), M(x), P (x), u(x), u(y)
1: ξ(t)← y − x
2: ξϕ(t)← P (x)sqrt(M(x))ξ(t)
3: û(x)← assign(u(x)) . visual word assignment
4: û(y)← assign(u(y)) . visual word assignment
5: (xϕ, yϕ)T ← ξϕ(t) . Cartesian coordinates
6: ρϕ ← log(sqrt(x2ϕ + y2ϕ))
7: ερ ← log(sqrt(det(M(x))))
8: if ρϕ < ερ then
9: ρ̂ϕ ← 0

10: else
11: ρ̂ϕ ← 1
12: end if
13: αϕ ← atan2(yϕ, xϕ)
14: α̂ϕ ← floor(2αϕ/π)
15: f̂(t)← û(x)||û(y)||ρ̂ϕ(t)||α̂ϕ(t) . concatenation operation
16: ĥ(t)← {f̂(t), ξϕ(t)} . pair
Output: ĥ(t) . descriptor of tuple t

Fig. 4. Pseudo-code of interest point tuple description. x is the central point
and y is the satellite point in this case. assign(·) is a function that assigns
a word to each point using a vocabulary generated beforehand.

where the orientation θ of a point x can be obtained as the
maximum value in a histogram of oriented gradients within
the NR around x. We compare our geometric constraint with
previous reports in more detail in Section VI.

B. Image Representation

Given an image I , a 2-tuple t = (x,y) is a pair of points
x ∈ I and y ∈ I . Given a position vector heading from x to
y of ξ(t) = y−x, a normalized position vector ξϕ(t) can be
computed by projecting ξ(t):

ξϕ(t) = P (x)M(x)
1/2ξ(t) (11)

The appearance and geometric characteristics of t are thus:

h(t) = 〈u(x), u(y), ξϕ(t)〉 (12)

where u(·) is a feature descriptor. Given two images IL and
IR, every geometrically stable correspondence can be found
by thresholding the similarity between each h(tL) and each
h(tR). Inspired by the success of descriptor quantization,
we consider a visual vocabulary and a Hough transform to
assign certain visual and geometric words to a tuple. Hough
transform is also helpful for rejecting mismatched feature
correspondences. We quantize u(·) into a visual word û(·)
using a visual vocabulary with 1M visual words constructed
with an approximated k-means. We also transform ξϕ from
Cartesian coordinates to log-polar coordinates (ρϕ, αϕ) with
ρϕ being the log radius and αϕ being the log-polar angle.
ρϕ is further transformed into two bins by a threshold ερ =
log
√

detM(x), which is the AR scale of x. αϕ is transformed
into four bins by an equal division of [0, 2π). We have tried a
number of configurations and the performance stabilized with
the above setting. We thus have an asymmetric visual phrase

f̂(t) = 〈û(x), û(y), ρ̂ϕ(t), α̂ϕ(t)〉 (13)

describing the co-occurrence and geometric characteristics of
the tuple. Depending on the parameterization, quantization
such as a Hough transform usually incurs information loss
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Input: κ(·, ·), Π
1: F ← ∅ . inverted index
2: for all I do
3: for t ∈ I do
4: F (f̂(t))← F (f̂(t)) ∪ {I, ξϕ(t)}
5: end for
6: end for
7: S← ∅ . set of ranking lists
8: for all IQ do . query
9: for all I do

10: S(IQ, I)← 0
11: end for
12: for tQ ∈ IQ do
13: for {I, ξϕ(t)} ∈ F (f̂(tQ)) do
14: S(IQ, I)← S(IQ, I) + κ(ξϕ(tQ), ξϕ(t))
15: end for
16: end for
17: S(IQ)← ∅ . ranking list
18: for all I do
19: S(IQ, I)← S(IQ, I)/Π
20: S(IQ)← S(IQ) ∪ {I, S(IQ, I)}
21: end for
22: S← S ∪ S(IQ)
23: end for
Output: S

Fig. 5. Pseudo-code of image indexing and retrieval. The output is a set
of ranking lists, each of which corresponds to a query. Π is actually image-
specific but here we denote it as a constant for simplicity.

[31]. Since ξϕ has only two dimensions, we tap into its
descriptor space by preserving ξϕ in the tuple’s representation:

ĥ(t) = 〈f̂(t), ξϕ(t)〉 (14)

Given two tuples tL and tR, the correspondence can be deter-
mined by imposing f̂(tL) = f̂(tR) on them and thresholding
the similarity between ξϕ(tL) and ξϕ(tR). This enables us to
perform an efficient search with an inverted index in which
each key is a visual phrase f̂(t) and each mapped value is a
pair consisting of image ID I and ξϕ(t). Fig. 4 summarizes
the scheme for describing a tuple of interest points.

An image is regarded as a document of tuples. In theory,
the total number of tuples is quadratic, but in practice, we can
restrict the tuples to the nearest neighbors of each interest point
in the image space. In this paper, we propose a Centrality-
Sensitive Pyramid approach based on Delaunay triangulation
for this purpose, which is described in Section V. Given an
interest point x, let its nearest neighbors be N (x). The set of
tuples in I contains all pairs of x ∈ I with their neighbors:

N = {t ∈ I2, t = (x,y) : y ∈ N (x)} (15)

C. Image Matching

Given two images IL and IR, a set of candidate correspon-
dences is obtained based on the visual phrase:

CL,R = {(tL, tR) ∈ NL ×NR : f̂(tL) = f̂(tR)} (16)

It follows that each correspondence should contribute to
the similarity score according to how far apart ξϕ(tL) and
ξϕ(tR) are. We define this contribution using a kernel function

κ(ξϕ(tL), ξϕ(tR)), which gives rise to the image similarity:

S(IL, IR) =

∑
(tL,tR)∈CL,R

κ(ξϕ(tL), ξϕ(tR))

Π
(17)

where Π is a penalty function. It is more reasonable to choose
a kernel related to Euclidean distance since ξϕ is basically a
position vector. We define κ as a radial basis function (RBF)
kernel with a parameter σ. Π penalizes images with very many
features that cause confusion between unrelated images. We
compare various functions handling Π in Section VI-C. The
choice of Π is inspired by the similarity functions defined
in information retrieval [32]. Fig. 5 summarizes the proposal
we describe in this section. Lines 1 to 6 correspond to image
indexing, and Lines 7 to 23 correspond to retrieval.

Note that the high discriminative power of spatial coherence
models [5], [6], [10] usually leads to low robustness such
that no responses can be found between related images in
certain cases. As a consequence this leads to zero similarities.
A simple but effective solution is to first rank the retrieved
images according to (17) and then rank the images with zero
similarities according to the cosine similarity between the term
frequency-inverse document frequency (TF-IDF) histograms
of visual words. The latter criterion is exactly the same as
that used in standard BOVW, i.e. we fuse the ranking list of
BOVW and that of spatial coherence models. This solution
leads to additional computation but makes the retrieval more
reliable. In Section VI, all the previous studies [5], [6], [10]
used for comparison are implemented in the same manner.

Note that (17) does not take the inverse document frequency
(IDF) into account. This indirectly avoids the computation and
storage costs, but the actual motivation lies in the fact that IDF
is less helpful for spatial coherence models. IDF was designed
to reduce the negative effect of confusing local features, e.g.
those deriving from finely-textured patterns. In our approach,
the visual phrase describes both the co-occurrence and the
geometric characteristics of semi-local regions and so is highly
discriminative and rarely creates confusion. We have con-
ducted a preliminary experiment using an Oxford Buildings
dataset for testing and mean average precision (MAP) for
evaluation. We found that (17) even slightly exceeded the
cosine similarity between the TF-IDF histograms of visual
phrases (0.5% MAP improvement). Further details regarding
the dataset and the configuration of our experiments can be
found in Section VI-A.

V. GRAPH-BASED NEIGHBORHOOD ASSOCIATION

A. Proximity Graph

Proximity graphs including Delaunay triangulations (DT)
[33], Gabriel Graphs (GG) [34], and β-skeletons [35] have
been shown to be successful for neighborhood association in
topological decomposition [36], clustering [37], and gradient
estimation [36]. DT [33], which is one of the most widely
used, is defined as follows:

Definition 1. (Delaunay Triangulation) Given a set S of
points in a general position, the Delaunay triangulation
DT (S) of S is a graph that has an edge between two vertices
x and y if and only if there exists a closed disk D such that:
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TABLE II
EXPLANATION OF NOTATIONS USED IN SECTION V.

Notation Explanation

S Set of interest points
DT (·) Delaunay triangulation (DT)
x, y, c Points in Euclidean space
D Closed disk used for DT
α Parameter of relaxed Gabriel graph (RGG)
RGG(·, ·) RGG

B Hierarchy of sets of partitions in CSP
Bl Set of partitions at l-th level
L Number of levels
Nl(·) Nearest neighbors of interest point at l-th level
cS Centroid of interest points in S

(a) Initial image. (b) α = 0 (DT).

(c) α = π/2 (RGG). (d) α = π (GG).

Fig. 6. RGGs with various α values.

1) x and y are on the boundary of D;
2) D ∩ S \ {x,y} = ∅.

We choose DT as the base for neighborhood association to
generate the set of tuples N defined in (15) because of its
higher completeness and higher efficiency. We also compare
DT to a generation of DT and its subcomplexes, called a
relaxed Gabriel graph (RGG) [38], proposed in computational
geometry. RGG is parameterized and so allows optimal adap-
tation to various applications and datasets. It is defined as:

Definition 2. (Relaxed Gabriel Graph) Given a set S of
points in a general position and a real number α ∈ [0, π],
the Relaxed Gabriel Graph RGG(S, α) of S is a graph that
has an edge between two vertices x and y if and only if there
exists a closed disk D with center c such that:

1) x and y are on the boundary of D;
2) D ∩ S \ {x,y} = ∅;
3) The absolute angle ∠xcy ∈ [0, π] is at least α.

RGG imposes the additional Condition 3 in Definition 2
on DT such that connections between distant points can be
avoided. Fig. 6c serves as an example of RGG. Choosing α =
0 corresponds to removing Condition 3 from Definition 2, and
RGG becomes DT (Fig. 6b). In contrast, RGG equals GG

(a) A partition at level 2. (b) A partition at level 4.

(c) A partition at level 8. (d) A partition at level 16.

Fig. 7. DTs at various pyramid levels. Colors indicate various centralities,
e.g. red points show the highest centralities.

for α = π (Fig. 6d). For any α ∈ [0, π], RGG equals the
intersection between DT and β-skeleton for β = sin(π−α/2).

B. Centrality-Sensitive Pyramid

DT is a planar graph, i.e. no edges cross each other. This
planarity limits its capacity for neighborhood association when
the interest point context is complicated. Multi-scale Delaunay
triangulation (MSDT) [5] tolerates this problem by employing
range partitioning, which regards the scale of each interest
point as a partitioning key. MSDT ignores different-scaled
interest points, and so is more sensitive to scale variations.

We propose a hierarchical systematic sampling scheme
to address the planarity issue. We construct a hierarchical
partition B = {B1, . . . , BL} that divides the point set S in
L different ways. Each Bl ∈ B divides S into l partitions
with l ∈ [1, L]. The l partitions are obtained by systematic
sampling, in which we sort the points in S in a pre-defined
order as explained below and the sampling starts by selecting
a point from the ordered set at the i-th position with i ∈ [1, l].
Every l-th point after the i-th point in the set is selected
individually, i.e. the sampling interval equals l. B1 is at the
densest level and has a single partition equaling S. BL is at the
most uniformly distributed level. The total number of partitions
is L(L + 1)/2. All we do then is to build a proximity graph
from the points in each partition and combine all associated
neighborhoods for further spatial configuration. Fig. 7 shows
the DTs in a multi-level space for the interest points detected
from the image in Fig. 6a.

So far we have not mentioned the pre-defined order for
sorting. Suppose we have extracted the connections between
each point x ∈ S and its neighbors Nl(x) at the l-th level.
At level l + 1, we want to avoid the extraction of duplicate
connections {x,y} with y ∈ Nl(x) for each x. One solution
is known as graph coloring, where each point is colored such
that no two neighborhoods at level l+ 1 share the same color,
but the problem is NP-hard. An alternative is for the points
in each partition in Bl+1 to be very uniformly distributed in
the Euclidean space such that {x,Nl(x)} can be separated
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Input:
1: cS ← mean(S)
2: ∆← ∅ . list of points with centralities
3: for x ∈ S do
4: c(x)← 1/deviation(x, cS) . centrality
5: ∆← ∆ ∪ {x, c(x)}
6: end for
7: ∆← sort(∆) . sorted in descending order
8: N ← ∅ . set of neighborhoods
9: for l ∈ [1, L] do

10: Nl ← ∅ . set of neighborhoods at l-th level
11: for i ∈ [1, l] do
12: Λ(i)← ∅ . i-th partition at l-th level
13: end for
14: n← |S|
15: for j ∈ [1, n] do
16: {x, c(x)} ← ∆(j)
17: i← j mod l
18: Λ(i)← Λ(i) ∪ x
19: end for
20: for i ∈ [1, l] do
21: Nl ← Nl ∪ DT(Λ(i)) . Delaunay triangulation
22: end for
23: N ← N ∪Nl
24: end for
Output: N

Fig. 8. Pseudo-code of DT-CSP. The output is a set of interest point tuples.

into different partitions at level l+ 1. This can be achieved in
a way that is the opposite of clustering, namely maximizing
the intra-partition distance and minimizing the inter-partition
distance. This corresponds to minimizing the distance between
the centroids of each partition, and the minimum becomes zero
when all centroids converge with the centroid of S.

Motivated by this idea, we propose the Centrality-Sensitive
Pyramid (CSP) model. This model computes the centroid cS of
S and defines the inverse of the Euclidean distance between cS
and each x ∈ S as the centrality of x. All points in S are sorted
in descending order of centrality and systematic sampling is
conducted such that the intra-partition distance is maximized.
The computation of this Euclidean centrality is much more
efficient than that of other centralities, e.g. closeness centrality
and eigenvector centrality. CSP is sensitive to the distribution
of interest points in the Euclidean space, and so achieves better
neighborhood association than MSDT. From Fig. 7, we can
see how CSP allows the points in a certain partition at various
levels to be the most uniformly distributed. Fig. 8 summarizes
the scheme of DT-CSP. Lines 1 to 7 correspond to centrality
computation and sorting, and Lines 8 to 24 correspond to
hierarchical neighborhood association.

VI. EXPERIMENTATION

A. Setting

For our evaluation, we use the following datasets: Flickr
Logos 32 (FL32) [39], Holiday (HD) [13], and Oxford Build-
ings (OB) [3], which are compared in Table III. Note that these
datasets contain very different types of images. FL32 is a logo
dataset, and images of the same class share very small visually
similar regions. HD is not an object dataset but a scenery
dataset. OB is a building dataset, and the mean object size is
much larger than that of FL32 but still smaller than 40%. We

TABLE III
DATASET COMPARISON.

Dataset FL32 [39] HD [13] OB [3]

Category Logo Scenery Building

#Probe 960 500 55
#Gallery 4.3K 1.5K 5.1K
#Feature 12.7M 4.5M 17.9M
#Cluster 1M 0.2M 1M

Descriptor Root SIFT SIFT Root SIFT

Quantization Self Stand-Alone Self

Object Size (Mean) 9% 38%
Object Size (Median) 5% 28%

employ the same detector [30] based on affine shape adaptation
[28], [29] for all datasets to extract interest points. We measure
the performance using mean average precision (MAP) [3],
[13], [39], [40] and mean precision at top-4 (MP@4) [40].

B. Advanced Approaches for Comparison

We compare our approach in an image retrieval scenario
with the BOVW and other spatial coherence models including
multi-scale Delaunay triangulation (MSDT) [5], the spatial co-
occurrence kernel (SCK) [6], and Liu’s approach [10]. MSDT
[5] is chosen because it is the only one that uses a graph-based
neighborhood association scheme, and also, it is representative
of the few studies that have considered a third-order co-
occurrence constraint. SCK [6] is chosen as a representative of
second-order co-occurrence models that do not consider intra-
feature geometric characteristics. Liu’s approach [10] is chosen
because it obeys the most types of affine invariance among
the geometric models introduced in Section II-A. The others,
including query expansion [11], [12], Hamming embedding
[13], [14], soft assignment [15], query-adaptive similarity
measure [16], [17] and database augmentation [18], [19], are
not tested but are compatible with our approach.

Table IV qualitatively compares the approaches imple-
mented in our experiments where ASA2 denotes our geometric
model, which extends affine shape adaptation to model the
second-order geometric coherence. To demonstrate the supe-
riority of the CSP model proposed in Section V, we also
combined traditional neighborhood association models with
ASA2 for comparison.

Because Liu’s approach [10] is the most closely related to
our approach, we provide more detail here on the geometric
descriptors it adopts. Given a 2-tuple t = (x,y) where x is
the central point and y is the satellite point, the geometric
descriptors are defined as

ρ =
||y − x||2
s(x)

(18)

α = ∆θ(arctan(y − x)− θ(x)) (19)

where s(·) and θ(·) denote the scale and orientation of an
interest point and ∆θ(·) ∈ [−π, π] calculates the principal
angle. A Hough transform is applied to these descriptors, and
the image is abstracted by a bag of visual phrases similar to
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TABLE IV
APPROACH COMPARISON1 .

Approach BOVW MSDT [5] SCK [6] Liu et al. [10] MSDT-ASA2 kNN-ASA2 CSP-ASA2

Co-occurrence ×
√ √ √ √ √ √

Geometric Characteristics × × ×
√ √ √ √

Order2 1 3 2 2 2 2 2

Neighborhood Association MSDT FRNN k-NN MSDT k-NN DT-CSP

Translation
√ √ √ √

Rotation
√ √ √ √

Isotropic Scaling
√ √ √ √

Anisotropic Scaling ×
√ √ √

Shearing ×
√ √ √

1 √ indicates that co-occurrence or geometric characteristics are taken into account or the approach is invariant to the corresponding transformations, and × the reverse.
2 The order indicates the number of elements in each tuple.

(13). A TF-IDF histogram of visual phrases is used for image
representation. Taking the scale and orientation of the central
point into account makes the descriptors robust to isotropic
transformations. However, because both s(x) and θ(x) are
variant under anisotropic scaling and shearing, the approach
achieves limited invariance to anisotropic transformations.

C. Parameter Examination

In our approach, the following parameters influence the
retrieval performance: the L used in CSP, the parameter σ of
the RBF kernel, and the penalty function Π in (17). We vary L
from 10 to 100, and the results are compared in Section VI-D.
We tested the MAP with various σ2 values. A larger value
corresponds to greater robustness as regards noise but less
discriminative power and vice versa. The best MAP stabilized
within σ2 ∈ [4, 6] for all datasets, but the retrieval performance
is very insensitive to this parameter. We hence chose σ2 = 5
for all subsequent experiments. We also compared various
functions handling Π shown in Table V where N is defined in
(15). These choices were inspired by the similarity functions
defined in information retrieval [32]. Since our approach is
based on a second-order structure, it is seemingly reasonable
to choose quadratic functions, e.g. Function 4 or Function 5.
However, the best MAP was stabilized with linear functions,
e.g. Function 2 or Function 3. Quadratic functions tend to be
too rigid because of the high discernment of the visual phrase
defined in (13). We therefore chose ||NL||+||NR|| for all later
experiments. The parameters of the compared approaches are
examined as follows. The partition size for MSDT [5] is varied
from 0.1 to 1 and the overlap ratio is varied from 0 to 0.9; the
parameter k used in k-NN is varied from 10 to 100 for SCK
[6] and Liu’s approach [10].

D. Comparison

Table VI compares the best performance of various runs.
In general, spatial coherence models are superior to BOVW
with the exception being MSDT [5]. The malfunction of
MSDT is because the graph model has a lower capacity for
neighborhood association than k-NN and CSP and the third-
order co-occurrence constraint is too sensitive to errors in
feature description. In contrast, SCK, Liu’s approach, and

TABLE V
PENALTY FUNCTION COMPARISON (%)1 .

ID Function FL32 HD OB

1 1 67.0 65.1 76.3

2
√
||NL||||NR|| 67.4 65.9 76.2

3 ||NL||+ ||NR|| 67.5 67.4 76.1

4 ||NL||||NR|| 66.8 56.2 75.5
5 ||NL||2 + ||NR||2 67.0 66.6 75.0
1 kNN-ASA2 with k = 100 and σ2 = 5 is used in this experiment.

TABLE VI
BEST PERFORMANCE COMPARISON (%)1 .

FL32 HD2 OB

MAP MP@4 MAP MAP MP@4

BOVW 54.3 79.8 54.7 70.9 94.1

MSDT [5] 54.8 81.1 49.5 70.1 94.1
MSDT-ASA2 61.9 87.2 55.9 70.6 94.1

SCK [6] 63.4 87.5 63.0 72.8 95.5
Liu et al. [10] 65.3 89.5 66.2 73.6 95.9
kNN-ASA2 67.5 90.9 67.4 76.1 96.4

CSP-ASA2 68.0 91.2 66.9 76.9 96.4
1 The highest performance was obtained with k = 100 for SCK [6], Liu’s approach
[10], and kNN-ASA2 and with L = 100 for CSP-ASA2.
2 MP@4 is not evaluated here because there are fewer than four ground truth images.

our approaches based on ASA2 exhibited greatly improved
performance compared with BOVW.

To the best of our knowledge, CSP-ASA2’s MAP of 68.0%
for FL32 is the highest yet reported for the retrieval protocol
of this dataset, and is more than 8% higher than the second
highest reported value [40]. Romberg et al. [40] have reported
the MAPs of LO-RANSAC [15] obtained using FL32 and OB
under the same setting as ours. The best reported MAPs are
56.8% for FL32 and 72.9% for OB, both of which are inferior
to those obtained with approaches based on ASA2. RANSAC
is known to perform poorly when the percentage of true
inliers falls much below 50% [2]. This situation commonly
occurs with datasets shown in Table III, in which the object
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(a) Responses obtained using BOVW.

(b) Responses obtained using kNN-ASA2 with k = 100.

Fig. 9. Comparison of standard BOVW and kNN-ASA2.

size is very small, and so may explain the surprisingly poor
performance of LO-RANSAC.

1) BOVW: Fig. 9 shows examples of the features matched
by BOVW and the tuples matched by kNN-ASA2. Both
approaches extracted true responses corresponding to the logos
in the two examples at the top. BOVW also provided many
false responses. In contrast, kNN-ASA2 precisely matched
the objects and rejected every false response. Please note
the small size of the logos and the coherent shapes of the
matches in Fig. 9b. The example at the bottom shows the false
responses detected between confusing unrelated images. We
can see that BOVW is very sensitive to finely-textured patterns,
e.g. foliage. Although kNN-ASA2 also detected a few false
responses, most false responses were successfully rejected.
The second-order configuration of interest points enables us

Fig. 10. False responses obtained using SCK [6] with k = 100. All these
responses were rejected successfully by kNN-ASA2 with the same k.

to impose additional co-occurrence and geometric constraints
on the matching such that the massive mismatches obtained
by BOVW can be effectively avoided.

2) MSDT [5]: By comparing MSDT [5] and MSDT-ASA2
(Table VI), we can see that given the same set of neighbor-
hoods associated by MSDT, the second-order geometric model
greatly outperforms the third-order co-occurrence model. This
is mainly because in MSDT, all three visual words must
be identical in order to match a single 3-tuple. This leads
to rejections of true responses, especially when the visual
vocabulary is large. Although the second-order occurrence
model may be less discriminating than MSDT, imposing a
geometric constraint on it reinforces this potential shortcom-
ing. On the other hand, MSDT-ASA2 did not perform as
well as kNN-ASA2 and CSP-ASA2. It supports our claim in
Section V-B: MSDT [5] tolerates the planarity problem of DT
to some extent but still achieves less complete neighborhood
association and unconsciously ignores useful neighborhoods
with different scales. As a result, MSDT is more sensitive to
errors in interest point detection and description. Kalantidis
et al. [5] used a small vocabulary with only 5K words and
reported a 10% MAP improvement over BOVW. We believe
that this improvement is because of the small vocabulary size.

3) SCK [6]: Fig. 10 shows the false responses detected
by SCK [6]. It is known that local features such as SIFT
are indiscriminating as regards pictures containing dense char-
acters, e.g. the newspaper in the second example. Although
SCK took the local feature co-occurrence into consideration,
it still detected some false responses. In contrast, our approach
rejected all false responses because we enforced an additional
geometric constraint over the confusing interest points.

4) Liu’s Approach [10]: Fig. 11 compares Liu’s approach
[10] and kNN-ASA2. kNN-ASA2 successfully extracted true
responses in Fig. 11a even when the viewpoints varied sig-
nificantly. Liu’s approach obtained zero responses from these
image pairs. Fig. 1 serves as another example, in which Fig. 1a
corresponds to Liu’s approach and Fig. 1b to kNN-ASA2. Our
approach is not only more robust but also achieves higher
discernment than Liu’s approach. Liu’s approach provided
many false responses in Fig. 11b, and all the false responses
were rejected by kNN-ASA2.
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(a) Responses obtained using kNN-ASA2.

(b) False responses obtained using Liu’s approach [10].

Fig. 11. Comparison of Liu’s approach [10] and kNN-ASA2 (k = 100).

Fig. 12 shows the relationship between the MAP and the k
used in k-NN. In all cases kNN-ASA2 obtains a higher MAP
than SCK [6] and Liu’s approach [10] for the same k. This
provides further evidence that, given the same set of neigh-
borhoods associated by k-NN, our geometric model achieves
superior effectiveness to the second-order co-occurrence con-
straint alone and the geometric descriptors defined in (18) and
(19) by Liu et al [10]. A larger number k leads to a higher
MAP for all these approaches. A larger k allows the model to
capture the spatial characteristics of larger objects, but may
also cause more confusion between unrelated objects. The
degradation of robustness has a negative impact on retrieval
when the visual vocabulary is small, as reported by Liu et al.
[10]. In contrast, we used a vocabulary with 1M visual words
and so avoided the impact of false responses. Hence the curves
in Fig. 12 became monotonic.

5) CSP: We examined the relationship between the retrieval
performance and the parameter α of RGG [38]. RGG with
α = π/6 achieved the best MAP and increased MAP by
about 0.05% compared with DT [33] (α = 0), which is a
very trivial improvement. It can be concluded that although
the parameterized RGG allows optimal adaptation to various
applications and datasets, at least for neighborhood association
in a spatial coherence model, it is not superior to DT in
effectiveness. On the other hand, with GG [34] (α = π)
there was a MAP decrease of around 1% compared with DT.
Although the subcomplexes of DT may outperform DT in the
other tasks, DT is still the most stable choice for our model.

Fig. 13 shows the relationship between the MAP and the
time for neighborhood association. We can see that CSP-ASA2
almost always obtains a higher MAP than MSDT-ASA2 and
kNN-ASA2 for the same time, which demonstrates the higher
efficiency of CSP. Fig. 13 also shows that a larger number of
levels L results in a longer processing time. Given the number
n of points in an image, the complexity of DT is O(n log n).

Given the number L of levels in a CSP, our approach takes
O(nL log n − n logL!) time for neighborhood association. If
we fix L, O(nL log n − n logL!) becomes linearithmic. We
can see that CSP-ASA2 is much less complex than greedy
algorithms, e.g. O(n2) for original k-NN and approximated β-
skeleton. It is comparable to O(n log n) for the approximated
k-NN used in kNN-ASA2, but the speed is usually faster
because the single operation of distance computation in k-NN
is less efficient than the comparison operation in DT. MSDT-
ASA2 is much faster than both kNN-ASA2 and CSP-ASA2,
but the MAP could not come up to the others.

A larger L also results in better neighborhood association,
and so results in a higher MAP, especially for FL32 and
OB. For HD, CSP-ASA2 outperforms kNN-ASA2 with a
large MAP gain when L and k are small, but the differential
degrades when we enlarge the number of local feature tuples.
This is because HD is a scenery dataset and in certain cases,
two images may correspond to the same concept but do not
contain the same object. If the object is small or two images
have no object in common, CSP-ASA2 tends to obtain more
false matches than kNN-ASA2. Basically, CSP-ASA2 with a
large L is more suitable for dealing with large objects.

Fig. 14 shows the true responses obtained by CSP-ASA2 but
wrongly rejected by kNN-ASA2. We can see that compared
with Fig. 9b and Fig. 11a, the images in Fig. 14 have
greater scale variation. kNN-ASA2 achieves the same level of
scale invariance as CSP-ASA2 because they adopt the same
geometric constraint. However, kNN-ASA2 may fail to detect
distant interest points inside the same object as neighbors if
the object is too large. In other words, for the same period
of neighborhood association, the neighborhood constraint of
kNN-ASA2 is too strict to cover these distant but useful inter-
est points. Spatial neighborhood association may be sensitive
to the error or, more precisely, the inconsistency of interest
point detection. This inconsistency is usually because of the
severe scale variation between images. Our approach may fail
if the variation is too severe, otherwise it can successfully
deal with this issue if a sufficient number of neighborhoods
are taken into account. The first two examples in Fig. 14 are
good examples, in which the object in the left image is much
larger than the same object in the right image. CSP-ASA2 may
lead to more false responses, e.g. the long edge in the third
example, than kNN-ASA2, but the discriminating geometric
constraint successfully tolerated this problem.

VII. LARGER-SCALE EXPERIMENTATION

A. Setting

For a larger-scale evaluation, the common practice [12],
[15], [19] is to employ a large database as distractors and to
include it in a smaller database containing the ground truth. We
follow the same scheme and use an unlabeled dataset known
as Flickr 100K (F100K) [3] containing 100K images that are
assumed not to contain the buildings in Oxford Buildings
(OB) [3]. Although the assumption has not been validated,
the configuration using F100K as distractors has been widely
adopted in previous research [3], [9], [12]–[15], [19]. We
put OB and F100K together for testing and use the visual
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Fig. 12. Relationship between MAP and k used in k-NN.
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Fig. 13. Relationship between MAP and time for neighborhood association.
Numbers above CSP-ASA2 curves are numbers of levels L.

vocabulary with 1M clusters built from OB, which is the same
as that used in Section VI. We also test Liu’s approach [10]
in addition to BOVW for comparison because it is the most
closely related to our proposal. k is set at 100 for both Liu’s
approach and our approach. 21 different sizes ranging from
5K to 105K are tested, in which 5K is the size of OB without
distractors. The result is shown in Fig. 15.

Fig. 14. Responses obtained using CSP-ASA2 with L = 100. kNN-ASA2
with k = 100 detected none of these true responses.
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Fig. 15. MAP on OB dataset with various sizes of images as distractors from
the ground truth. k = 100 in all cases.

B. Comparison

The performance degrades gradually as we increase the
number of distractors, but it is obvious that the MAP of kNN-
ASA2 degrades more smoothly than the others. When 100K
images are included, we obtain a 11% MAP improvement
of about 11% compared with BOVW and of 5% compared
with Liu’s approach [10]. We have discussed the low discrim-
inative power of BOVW as regards confusing local features
in Section VI-D1. As shown in Fig. 11b, kNN-ASA2 is
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TABLE VII
MAP COMPARISON WITH STATE-OF-ART METHODOLOGIES. (%)

Approach OB OB+F100K

Our Approach 76.9 67.5

Avrithis and Tolias [25] 78.9 73.0
Shen et al. [23] 75.2 72.9
Qin et al. [42] 73.9 67.8
Avrithis [41] 71.6 65.7
Zhang et al. [9] 71.3 60.4

not only more robust but also achieves higher discriminative
power than Liu’s approach. That means kNN-ASA2 leads to
fewer false responses when we employ a large database as
distractors. This explains why kNN-ASA2 derived a smoother
MAP degradation than the others in Fig. 15.

C. Comparison with State-of-Art Methodologies

For a more comprehensive evaluation, we compare the
experimental results obtained with our approach with those
reported in previous publications [9], [23], [25], [41], [42]. In
all approaches, a specific vocabulary with 1M visual words is
learned on all the images of OB and used for indexing and
retrieval on the OB and OB+100K datasets. Some approaches
[23], [25], [41] used a modified version [43] of the Hessian-
affine region detector [30], where a gravity vector assumption
is used to estimate the dominant orientation of features for
descriptor extraction. This detector has a great advantage over
general detectors if the dataset (e.g. OB and OB+F100K)
includes no rotated images. Some authors [23], [25] also
incorporated the orientation prior into their spatial models
for higher MAP. In our approach, the orientation prior is not
considered because it does not hold in general scenarios, e.g.
in a logo search task.

Table VII presents the MAP of these approaches on OB
and OB+F100K. Our approach achieves state-of-the-art MAP
on OB, in fact it outperforms all approaches except for
Avrithis and Tolias’s approach [25]. In the experiment using
OB+F100K, our approach is outperformed by Avrithis and
Tolias’s approach [25] and Shen’s approach [23]. In both
studies, the authors take the orientation prior into consideration
by using the gravity vector assumption and switching off
rotation for spatial matching. As a result, these approaches
impose an additional constraint on matching such that matched
features are disregarded if they differ significantly from each
other in terms of orientation. This strategy greatly improves the
performance especially when there are a very large number of
distractor images. This explains why our approach outperforms
Shen’s approach [23] on the OB dataset but is inferior to the
same approach on OB+F100K. Apart from that, our approach
is very competitive and performs reasonably well even without
using data-dependent prior knowledge. Note that Avrithis and
Tolias’s [25] and Shen’s methods [23] are robust to uniform
transformations but sensitive to anisotropic ones, which is in
common with Liu’s method [10].

The main limitation of spatial coherence models based
on the higher-order structure of local features is their high

TABLE VIII
SCALABILITY COMPARISON ON OXFORD BUILDINGS.

Approach Time1 Memory #Distinct2 #Tuple

kNN-ASA2 321 14G 845M 1G

Liu et al. [10] 329 11G 714M 1G
SCK [6] 318 11G 697M 1G
MSDT [5] 62 1G 83M 85M

BOVW 34 231M 14M 18M
1 Unit: millisecond per query.
2 #Distinct indicates the total number of entries that must be inserted in the inverted
index, and it is never more than #Tuple.

memory usage, as shown in Table VIII. This problem is
common to MSDT [5], SCK [6], Liu’s approach [10] and our
approach. In our experiments, the times were measured on a
2.93GHz QuadCore processor (single-threaded). Given n as
the number of interest points and k as the number of nearest
neighbors, SCK, Liu’s approach, and our approach require
O(nk/2) memory usage. This is around k/2 times larger than
the O(n) memory usage of BOVW. Selecting k = 100 as
we did in our experiments means that the spatial coherence
models consume 50 times more memory than BOVW. This is
a crucial issue if we consider a real application. We shall deal
with this issue in our future research.

VIII. CONCLUSION

We have proposed a feature representation approach based
on a second-order configuration of local features by extending
the conclusion of affine shape adaptation. Image matching
based on this approach is highly discriminative and more
robust to 6DOF affine transformations. In a test using an
FL32 dataset [39], we searched for images containing the same
logo in the query with a MAP of 68.0%. This is the highest
value yet reported for the retrieval protocols of this dataset,
and is more than 8% higher than the second highest reported
MAP [40]. The approach proposed for spatial neighborhood
association is based on a Centrality-Sensitive Pyramid model.
It is more robust as regards errors in interest point detection
and description and achieves a higher speed than traditional
solutions. Testing using datasets ranging from 1.5K to 105K in
size demonstrated the reliability of our approach in the large-
scale retrieval of various types of objects. Spatial coherence
models such as SCK [6], Liu’s approach [10], and our ap-
proach require a much larger memory than standard BOVW,
which is a crucial issue for real applications. Possible solutions
include feature selection and database augmentation. Boosting
can be adapted for feature selection if we formulate the
retrieval into a classification problem. Database augmentation
can also be adapted because useless features likely exist in one
image, while useful features are likely to be found in multiple
images of the same object. Because we assume rigid objects, it
is difficult to extend our method to video tasks such as action
recognition where the target is deformable and prone to self-
occlusion. However, it will be interesting to extend our method
to the task of searching particular objects from videos, usually
known as instance search [44], because a video is basically a
series of images. These topics constitute our future direction.
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