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Abstract
This paper describes a method for creating an evaluation

measure for discourse understanding in spoken dialogue sys-
tems. Discourse understanding means utterance understanding
taking the context into account. Since the measure needs to be
determined based on its correlation with the system’s perfor-
mance, conventional measures, such as the concept error rate,
cannot be easily applied. Using the multiple linear regression
analysis, we have previously shown that the weighted sum of
various metrics concerning dialogue states can be used for the
evaluation of discourse understanding in a single domain. This
paper reports the progress of our work: verification of our ap-
proach by additional experiments in another domain. The sup-
port vector regression method performs better than the multi-
ple linear regression method in creating the measure, indicat-
ing non-linearity in mapping the metrics to the system’s perfor-
mance. The results give strong support for our approach and
hint at its suitability as a universal evaluation measure for dis-
course understanding.

1. Introduction
Due to advances in speech recognition and speech synthesis
technologies, spoken dialogue systems have been attracting a lot
of attention. There are two types of spoken dialogue systems:
those that understand a single user utterance and respond to it
without taking context into account, and those that deal with
multiple exchanges of utterances by understanding user utter-
ances in the context of dialogues. The latter, which is discussed
in this paper, has to be able to appropriately update the dialogue
state each time a user utterance is made [1]. Here, a dialogue
state means all the information that the system possesses con-
cerning the dialogue. For example, a dialogue state includes
intention recognition results after each user utterance, the user
utterance history, the system utterance history, and so forth.

Although the concept error rate (CER) or the keyword er-
ror rate has been widely used as an evaluation measure in single
utterance understanding, it may not be appropriate for the evalu-
ation of discourse understanding, since it is not certain whether
the CER correlates closely with the system’s performance. In
our previous work [2], we have shown that, in a meeting room
reservation domain, the weighted sum of various metrics con-
cerning dialogue states can evaluate discourse understanding.
We defined dialogue performance by task completion time, and
performed a multiple linear regression analysis using task com-
pletion time as the explained variable and the metrics as ex-
plaining variables. The obtained multiple regression model fits
comparatively well and has shown its validity as an evaluation
measure. However, some issues still remained. For example,
currently it is not clear whether the same approach can succeed
in other domains, and it is not known whether a model obtained
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e domain can be applied to another. In this work, we per-
d additional experiments in another domain (the weather
ation service domain) and re-collected dialogues in the

ng room reservation domain to resolve the remaining is-
We aim at establishing a domain-independent universal

ation measure of discourse understanding. If we have such
sure, we will be able to build spoken dialogue systems

g good discourse understanding, use it for the automatic
vement of discourse understanding components, and test
components using simulations without performing costly
ue data collection.
he next section describes the issues in detail. After that,
iments using two systems that are different in their do-

are described, followed by the results. The last section
arizes and mentions future work.

2. Issues
y, although we showed that discourse understanding can
aluated by the weighted sum of the metrics concerning the
ue states in the meeting room reservation domain, it is not

whether the same approach can succeed in other domains.
has to be checked whether measures obtained from sev-

ifferent systems in the same domain can keep consistency.
d, even if our approach is proven successful in other do-
, it still would not be clear whether an evaluation measure
d from one domain is usable in the other. If it is indeed

e, the obtained measure could be considered a universal
ation measure of discourse understanding. Thirdly, in the
regression equation in our previous report, several coef-

ts did not match human intuition. For example, it seems
he overall task completion time decreases with increasing
e insertion error. Dependencies between the metrics may
in this; however, further investigation into the obtained re-
ion model is needed. Fourthly, we previously used a step-
multiple linear regression analysis. Since it may be dif-
to linearly estimate the task completion time, it may be
sary to take into consideration other regression models to
ce this aspect. Finally, we used ten metrics to express the
ompletion time. However, there is no assurance that these
cs suffice. It may be necessary to introduce some other
cs concerning the dialogue states.

3. Data Collection
Systems

eated three systems and performed an experiment to study
ove issues. One is in a weather information service do-

(WI), and the other two are in a meeting room reservation
in (MR-1, MR-2). WI provides Japan-wide weather infor-
n. Users specify a prefecture or a city, a date, and an infor-



mation type (weather, temperature, precipitation) to obtain the
desired information. It has a vocabulary of 853. The language
model is a trigram trained from the randomly generated texts
of acceptable phrases. MR-1 and MR-2 provide meeting room
reservation service. Users specify a date, a room, and start and
end times for the reservation. It has a vocabulary of 243. The
language model is a trigram trained from the transcription ob-
tained in the experiment of our previous report. The difference
between MR-1 and MR-2 lies in their discourse understanding
components. Both systems create multiple dialogue state candi-
dates ordered by priority after each user utterance, and choose
the highest ranked one as the best dialogue state. When deciding
the best dialogue state, MR-1 preserves lower ranked dialogue
states, whereas MR-2 discards them totally.

All three systems were developed using the spoken dia-
logue system toolkit WIT [3]. Their speech recognition en-
gine is Julius [4] used with its attached acoustic model, and the
speech synthesis engine is FinalFluet [5]. Each system has two
switchable dialogue strategies. One is to keep accepting user
utterances until it has enough information to fulfill a task or the
user explicitly requests a system response. The other is to con-
firm each user utterance.

3.2. Experiment

Using the three systems, we collected dialogue data for analysis.
The dialogue data were collected using naive users in acousti-
cally insulated booths. Twelve subjects used WI. Each subject
was given a task sheet listing what should be asked for. They
were instructed to complete the tasks one by one. We prepared
eight task patterns. Together with the two dialogue strategies,
each subject performed 16 dialogues, for a total 192 dialogues
collected. Twenty eight subjects used MR-1 and MR-2. Us-
ing four task patterns, two dialogue strategies and two systems,
each performed 16 dialogues, and 448 dialogues were collected.
We recorded system’s utterances, start and end times of user’s
utterances, and dialogue states before and after the user utter-
ance. The user’s voice and system’s voice were also recorded,
and all user utterances were transcribed.

3.3. Metrics and System Performance

To express the dialogue states of an entire dialogue, we used ten
metrics calculated by comparing the hypothesis dialogue states
and the reference dialogue states as reported in [2]. We assume
that a dialogue state is expressed as a frame expression, which
is common in many systems [6]. A frame is a bundle of slots
that consist of attribute-value pairs concerning a certain domain.
Reference dialogue states are all hand-labelled. Table 1 lists the
ten metrics. For example, the slot accuracy is the rate at which
the slots have correct values and update precision the rate of
having correct updates in slot changes. Sometimes the aim of a
task is not to fill every slot but to fill some of them. To reflect
such cases, we employ an additional three metrics, focusing on
only the slots that have values. Table 2 lists the additional three
metrics. They correspond to the slot accuracy, deletion error
rate, and substitution error rate for the filled slots.

As in the previous report, we use the task completion time
to express system performance. Since we are dealing with task-
oriented spoken dialogue systems, this is appropriate. Task
completion times are normalized using both the task pattern
and the dialogue strategy, because the task completion times
are severely affected by them.
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Table 1: Conventional ten metrics.

slot accuracy 6. update precision
insertion error rate 7. update insertion error rate
deletion error rate 8. update deletion error rate
substitution error rate 9. update substitution error rate
slot error rate 10. speech understanding rate

Table 2: Additional three metrics.

11. slot accuracy for filled slots
12. deletion error rate for filled slots
13. substitution error rate for filled slots

4. Data Analysis
Recognition Accuracy and Task Completion Rate

3 shows the metrics concerning speech recognition in WI
R-1 + MR-2. MR-1 + MR-2 stands for the combined

f MR-1 and MR-2. When dialogues that took more than
minutes to complete the task are treated as failures, task
letion rates for WI, MR-1 and MR-2 are 95.8% (184/192),

(190/224), and 79.0% (177/224), respectively.

Obtained Evaluation Measure

eate the discourse evaluation measure, we used only suc-
l dialogues whose task completion times were available.

sed two regression methods. One is the multiple linear
ssion that we used in the previous report, and the other
port vector regression (SVR). This time, for the multiple
regression, the m5′ method [7, 8] was used for attribute

ion instead of the greedy method. SVR is an optimization-
approach for solving machine learning regression prob-

based on support vector machines [9, 10, 11]. We used
ynomial kernel K(x,y) = (x · y + 1)d where d = 2.
eated regression models for each regression method using
ompletion time normalized by the task pattern and the di-
e strategy as the explained variable and the 13 metrics as
ining variables. Table 4 shows squared correlation coef-
ts (R2) and the root mean square error (RMSE) for the
egression methods. These are the results of ten-fold cross
tion. Most of the obtained regression models fit compara-
well and show validity as evaluation measures. According
table, it is clear that SVR performs better than multiple
regression. Although the R2 of SVR is worse than that
ltiple linear regression for WI, RMSE is significantly

. Therefore, from here, we only deal with models derived
R. Figure 1 shows the distribution of actual and predicted
ompletion times for the acquired models using WI + MR-
R-2. The grouping of data, which seems like a horizontal

ust above -1.0 in the y-axis, means that tasks with dif-
t task completion times were mapped to the same value,
ting possible differences of speaking timings among the

cts.

Commonality in Regression Models

eck whether a regression model trained from the data of
omain/system has commonality with that of the other, we
lated R2 and RMSE for every combination of models.
5 shows the results. Most of the R2 values are between

nd 0.5, suggesting that the model of one domain can be
applied to that of the other. Since the performance of the

l trained from WI + MR-1 + MR-2 exceeds all others, this



Table 3: Speech recognition

Sent Corr Acc Sub

WI 1073 70.59% 66.08% 19.22%
MR-1 + MR-2 3613 78.71% 69.17% 17.07%

Table 4: R2 and RMSE for multiple linear regression and
support vector regression (SVR).

multiple linear
regression

SVR

WI 0.488 (0.549) 0.471 (0.323)
MR-1 0.291 (0.649) 0.370 (0.367)
MR-2 0.478 (0.557) 0.494 (0.326)

MR-1 + MR-2 0.432 (0.572) 0.442 (0.335)
WI + MR-1 + MR-2 0.415 (0.583) 0.456 (0.325)
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Figure 1: Distribution of actual and predicted task completion
times by the regression model trained from WI + MR-1 + MR-2.

model could possibly be used as a universal discourse evalua-
tion measure.

4.4. Analysis of Regression Models

Analyzing the obtained SVR models allows us to list up the
possible major metrics for the prediction of the task completion
time. First, the objective function of SVR is defined as

f(x) =
∑

i;xi∈SV s

αiK(xi,x) + b

=
∑

i;xi∈SV s

αiφ(xi) · φ(x) + b

= w · φ(x) + b (1)

where SV s is the set of support vectors, and φ(x) an explicit
representation of new feature vectors x that are mapped in the
new feature space by the kernel. In the case of the 13 dimen-
sions (features) in our original space and using second-degree
polynomial kernel, the dimensions of the new feature space be-
come 105, and w is written as

w =
( ∑

i;xi∈SV s

αix
2
i1, . . . ,

∑

i;xi∈SV s

αix
2
i13,

√
2

∑

i;xi∈SV s

αixi1xi2, . . . ,
√

2
∑

i;xi∈SV s

αixi12xi13,

where
and 2
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10.19% 4.51% 33.92% 34.02%
4.22% 9.54% 30.83% 38.47%

√
2

∑

i;xi∈SV s

αixi1, . . . ,
√

2
∑

i;xi∈SV s

αixi13, 1
)

(2)

xi1 · · · xi13 are the values of the 13 metrics (Tables 1
) of the ith support vector. By gathering up the weighting
s by the metrics and the combination of the metrics, we
the following weights:

W (x1) =
∑

i;xi∈SV s

αix
2
i1 +

√
2

∑

i;xi∈SV s

αixi1

...

W (x13) =
∑

i;xi∈SV s

αix
2
i13 +

√
2

∑

i;xi∈SV s

αixi13

(x1, x2) =
√

2
∑

i;xi∈SV s

αixi1xi2

...

x12, x13) =
√

2
∑

i;xi∈SV s

αixi12xi13

e calculated all 91 weights (13C2+13) from the obtained
ls. Table 6 shows the ten most dominant metrics or the
inations of the metrics for each model with their weights.
igger the weights are, the more significant the metrics or
mbinations of the metrics become. x1 · · · x13 denote the

s of the 13 metrics; e.g., x6 means the update precision,
x1, x6) the combination of the slot accuracy and update
ion. By a simple glance at the table, one can see that the
e precision plays a key role. The speech understanding
denoted by x10 is also a dominant factor. (x1, x6) is also
nant in reducing the task completion time.
y comparing WI with MR-1 + MR-2, one can see that
are some differences caused by the influence of the do-
. For example, x2 (the deletion error rate) has a higher

in WI, indicating that missing slots have a larger effect in
an in MR. MR-1 and MR-2 have more or less the same
s in the lists, suggesting that in the same domain, domi-

factors are not much different. As stated in Section 4.3,
odel obtained from WI + MR-1 + MR-2 could be used
niversal evaluation measure, and we can safely say that

e precision is the most important factor in reducing task
letion time.

5. Summary and Future Work
paper presented a method for creating an evaluation mea-
for discourse understanding in spoken dialogue systems.
paper deals with the remaining issues (Section 2) of our
us work in which we showed that the weighted sum of
s metrics concerning dialogue states can be used for the

ation in a single domain.
e collected dialogue data using three spoken dialogue sys-

in weather information service and meeting room reser-
domains to resolve the issues. Using the multiple lin-

gression method and the support vector regression (SVR)



Table 5: Commonality between the
�����������Training data

Test data
WI MR-1 M

WI − 0.387 (0.410) 0.516
MR-1 0.414 (0.350) − 0.514
MR-2 0.415 (0.348) 0.392 (0.385)

MR-1 + MR-2 0.417 (0.342) 0.401 (0.358) 0.521
WI + MR-1 + MR-2 0.494 (0.304) 0.423 (0.355) 0.555

Table 6: Ten dominating weigh

WI MR-1 MR-2

1 W (x6) -0.456 W (x10) -0.160 W (x6) -
2 W (x1, x6) -0.245 W (x6) -0.157 W (x10) -
3 W (x2) 0.220 W (x6, x10) -0.111 W (x8) 0
4 W (x6, x11) -0.184 W (x1, x10) -0.092 W (x6, x10) -
5 W (x8, x11) 0.172 W (x1, x6) -0.091 W (x1, x6) -
6 W (x12) -0.169 W (x10, x11) -0.090 W (x6, x11) -
7 W (x5, x12) 0.164 W (x6, x11) -0.089 W (x1, x10) -
8 W (x9) 0.162 W (x8) 0.081 W (x10, x11) -
9 W (x3) -0.154 W (x1) -0.067 W (x1) 0

10 W (x2, x11) 0.148 W (x8, x11) 0.061 W (x8, x11) 0

method, we found that discourse understanding can be evalu-
ated by the weighted sum of the metrics and the combinations
of the metrics concerning the dialogue states not just in one do-
main, but in other domains as well, and that measures obtained
from several different systems in the same domain can keep
consistency among themselves. From a commonality test of the
obtained regression models, it became clear that an evaluation
measure derived from one domain is usable in the other, and
that a universal evaluation measure of discourse understanding
can be derived by creating a regression model using data from
multiple domains. SVR performed better than the multiple lin-
ear regression method, suggesting a difficulty in mapping the
metrics to the task completion time linearly. An analysis of the
obtained regression models indicated that update precision to-
gether with slot accuracy plays the dominant role in reducing
the task completion time. It should also be noted that the met-
rics and their effects matched human intuition. The three new
metrics added this time also showed their effectiveness in that
they all appeared in Table 6.

Future work includes smart handling of the horizontal
line that appears in the graph and the incorporation of user-
satisfaction metrics into the models.
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