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Abstract

We propose a probabilistic latent variable model for un-
supervised cluster matching, which is the task of finding
correspondences between clusters of objects in different
domains. Existing object matching methods find one-
to-one matching. The proposed model finds many-to-
many matching, and can handle multiple domains with
different numbers of objects. The proposed model as-
sumes that there are an infinite number of latent vec-
tors that are shared by all domains, and that each ob-
ject is generated using one of the latent vectors and a
domain-specific linear projection. By inferring a latent
vector to be used for generating each object, objects in
different domains are clustered in shared groups, and
thus we can find matching between clusters in an unsu-
pervised manner. We present efficient inference proce-
dures for the proposed model based on a stochastic EM
algorithm. The effectiveness of the proposed model is
demonstrated with experiments using synthetic and real
data sets.

1 Introduction
Object matching is an important task for finding correspon-
dences between objects in different domains. Examples of
object matching include matching an image with an anno-
tation (Socher and Fei-Fei 2010), an English word with a
French word (Tripathi, Klami, and Virpioja 2010), and a
user identification with a user identification in a different
database for recommendation (Li, Yang, and Xue 2009).
Most object matching methods require similarity measures
between objects in different domains, or paired data that
contain correspondence information.

Similarity measures and correspondences might not be
available. Defining similarities and generating correspon-
dences incur a cost and require time, and they are sometimes
unobtainable because of the need to preserve privacy. For
this situation, unsupervised object matching methods have
been proposed, such as kernelized sorting (Quadrianto et al.
2010), least squares object matching (Yamada and Sugiyama
2011), matching canonical correlation analysis (Haghighi et
al. 2008), and variational Bayesian matching (Klami 2012).
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These methods find one-to-one matching. However, match-
ing is not necessarily one-to-one in some applications. For
example, in image annotation, an annotation could be at-
tached to multiple images that show the same thing, and an
image that shows multiple things could have multiple an-
notations. When matching English and French vocabularies,
multiple English words with the same meaning could cor-
respond to multiple French words with the same meaning.
Other limitations of these methods are that the number of do-
mains needs to be two, and the numbers of objects in differ-
ent domains must be the same. There can be more than two
domains in some applications, for example matching mul-
tilingual vocabularies such as English, French and German,
and the vocabulary size of the languages is usually different.

In this paper, we propose a probabilistic latent variable
model for unsupervised cluster matching, which is a task
that involves the many-to-many matching of objects in mul-
tiple domains. The proposed model can handle more than
two domains with different numbers of objects. The pro-
posed model is called the many-to-many matching latent
variable model (MMLVM), and assumes that there are an in-
finite number of latent vectors that are shared by all domains.
Each object is generated using one of the latent vectors and
a domain-specific linear projection. The latent vector to be
used for generating an object is unknown. By assigning a la-
tent vector for each object, we can cluster objects in different
domains, and find matching between clusters. The number
of clusters is automatically inferred from the given data by
using a Dirichlet process prior. Because the proposed model
is a probabilistic generative model, we can extend it in a
probabilistically principled manner, and use it, for example,
for handling missing data, integration with other probabilis-
tic models, and generalization to exponential family distri-
butions. The inference of the proposed model is based on
a stochastic EM algorithm, in which the Gibbs sampling of
cluster assignments and the maximum joint likelihood esti-
mation of projection matrices are alternately iterated while
marginalizing out latent vectors.

The remainder of this paper is organized as follows. We
formulate the proposed model in Section 2, and describe ef-
ficient inference procedures for the proposed model in Sec-
tion 3. In Section 4, we briefly review related work. In Sec-
tion 5, we demonstrate the effectiveness of the proposed
model with experiments using synthetic and real data sets.



Table 1: Notation.
Symbol Description
D number of domains
Nd number of objects in the dth domain
Md dimensionality of the dth domain
K dimensionality of a latent vector

Finally, we present concluding remarks and a discussion of
future work in Section 6.

2 Proposed model
Suppose that we are given objects in D domains X =
{Xd}D

d=1, where Xd = {xdn}Nd
n=1 is a set of objects in the

dth domain, and xdn ∈ RMd is the feature vector of the
nth object in the dth domain. Our notation is summarized in
Table 1. Note that we are unaware of any correspondences
between objects in different domains. The number of ob-
jects Nd and the dimensionality Md for each domain can be
different from those of other domains. The task is to match
clusters of objects across multiple domains in an unsuper-
vised manner.

The model proposed for this task is a probabilistic latent
variable model. The proposed model assumes that there are
potentially a countably infinite number of clusters, and each
cluster j has a latent vector zj ∈ RK in a K-dimensional
latent space. Each object xdn in the dth domain is generated
depending on a domain-specific projection matrix Wd ∈
RMd×K and a latent vector zsdn

that is selected from a set
of latent vectors Z = {zj}∞j=1. Here, sdn ∈ {1, · · · ,∞}
is the latent cluster assignment of object xdn. Objects that
use the same latent vector, or that have the same cluster as-
signment sdn, are considered to match. Figure 1 shows the
relationship between latent vectors and objects in two do-
mains, where arrows that indicate the corresponding latent
vectors for each object are hidden.

Specifically, the proposed model is an infinite mixture
model, where the probability of object xdn is given by

p(xdn|Z, W , θ) =
∞∑

j=1

θjN (xdn|Wdzj , α
−1I), (1)

where W = {Wd}D
d=1 is a set of projection matrices,

θ = (θj)∞j=1 is mixture weights, θj represents the probabil-
ity that the jth cluster is chosen, and N (µ,Σ) denotes the
normal distribution with mean µ and covariance matrix Σ.
In the proposed model, a set of latent vectors Z are shared
among multiple domains, but projection matrix Wd depends
on the domain. By sharing the latent vectors, we can assign
objects in different domains to common clusters, and find
matching between clusters. By employing domain-specific
projection matrices, we can handle multiple domains with
different dimensionalities and different properties. Given la-
tent vectors, an arbitrary number of objects can be generated
for each domain independently. Therefore, we can handle
domains with different numbers of objects.

In summary, the proposed model generates objects in mul-
tiple domains X according to the following process,
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Figure 1: Relationship between latent vectors and objects in
two domains.
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Figure 2: Graphical model representations of the proposed
model.

1. Draw cluster proportions
θ ∼ GEM(γ)

2. Draw a precision parameter
α ∼ Gamma(a, b)

3. For each cluster: j = 1, . . . ,∞
(a) Draw a latent vector

zj ∼ N (0, (αr)−1I)

4. For each domain: d = 1, . . . , D

(a) For each object: n = 1, . . . , Nd

i. Draw a cluster assignment
sdn ∼ Discrete(θ)

ii. Draw an observation vector
xdn ∼ N (Wdzsdn

, α−1I)

Here, GEM(γ) is the stick-breaking process (Sethuraman
1994) that generates mixture weights for a Dirichlet process
with concentration parameter γ. By using a Dirichlet pro-
cess, we can automatically find the number of clusters from
the given data. Figure 2 shows graphical model representa-
tions of the proposed model.

The joint probability of the data X and the cluster assign-
ments S = {{sdn}Nd

n=1}D
d=1 is given by

p(X, S|W , a, b, r, γ) = p(S|γ)p(X|S, W , a, b, r). (2)



By marginalizing out mixture weights θ, the first factor is
calculated by

p(S|γ) =
γJ

∏J
j=1(N·j − 1)!

γ(γ + 1) · · · (γ + N − 1)
, (3)

where N =
∑D

d=1 Nd is the total number of objects, N·j
represents the number of objects assigned to cluster j, and J
is the number of clusters for which N·j > 0. By marginal-
izing out latent vectors Z and precision parameter α, the
second factor of (2) is calculated by

p(X|S, W , a, b, r)

= (2π)−
P

d MdNd
2 r

KJ
2

ba

b′a′

Γ(a′)
Γ(a)

J∏
j=1

|Cj |
1
2 . (4)

Here,

a′ = a +
∑D

d=1 MdNd

2
, (5)

b′ = b +
1
2

D∑
d=1

Nd∑
n=1

x>
dnxdn − 1

2

J∑
j=1

µ>
j C−1

j µj , (6)

µj = Cj

D∑
d=1

W>
d

∑
n:sdn=j

xdn, (7)

C−1
j =

D∑
d=1

NdjW
>
d Wd + rI, (8)

where Ndj is the number of objects assigned to cluster j
in domain d. The posterior for the precision parameter α is
given by

p(α|X, S, W , a, b) = Gamma(a′, b′), (9)

and the posterior for the latent vector zj is given by

p(zj |X, S, W , r) = N (µj , α
−1Cj). (10)

3 Inference
We describe the inference procedures for the proposed
model based on a stochastic EM algorithm, in which col-
lapsed Gibbs sampling of cluster assignments S and the
maximum joint likelihood estimation of projection matrices
W are alternately iterated while marginalizing out the latent
vectors Z and the precision parameter α.

In the E-step, given the current state of all but one latent
assignment sdn, a new value for sdn is sampled from the
following probability,

p(sdn = j|X, S\dn, W , a, b, r, γ)

=
p(sdn = j,S\dn|γ)p(X|sdn = j, S\dn, W , a, b, r)

p(S\dn|γ)p(X\dn|S\dn,W , a, b, r)p(xdn|W , a, b, r)

∝
p(sdn = j,S\dn|γ)

p(S\dn|γ)
·
p(X|sdn = j,S\dn,W , a, b, r)

p(X\dn|S\dn, W , a, b, r)
,

(11)

where \dn represents a value or set excluding the nth
object in the dth domain, and we use the fact that
p(sdn = j|X, S\dn, W , a, b, r, γ) does not depend on
p(xdn|W , a, b, r). The first factor is given by

p(sdn = j,S\dn|γ)
p(S\dn|γ)

=

{
N·j\dn

N−1+γ for existing cluster
γ

N−1+γ for new cluster,
(12)

using (3). By using (4), the second factor is given by

p(X|sdn = j, S\dn, W , a, b, r)
p(X\dn|S\dn,W , a, b, r)

= (2π)−
Md
2

b
′a′

\dn

\dn

b
′a′

sdn=j

sdn=j

Γ(a′
sdn=j)

Γ(a′
\dn)

|Cj,sdn=j |
1
2

|Cj\dn|
1
2

, (13)

where subscript sdn = j indicates the value when object
xdn is assigned to cluster j as follows,

a′
sdn=j = a′, (14)

b′sdn=j = b′\dn +
1
2
x>

dnxdn +
1
2
µ>

j\dnC−1
j\dnµj\dn

− 1
2
µ>

j,sdn=jC
−1
j,sdn=jµj,sdn=j , (15)

µj,sdn=j = Cj,sdn=j(W>
d xdn + C−1

j\dnµj\dn), (16)

C−1
j,sdn=j = W>

d Wd + C−1
j\dn. (17)

In the M-step, the projection matrices W are estimated
by maximizing the logarithm of the joint likelihood (2). We
can maximize it by using a gradient-based numerical op-
timization method such as the quasi-Newton method (No-
cedal 1980). The gradient of the joint log likelihood is cal-
culated by

∂ log p(X, S|W , a, b, r, γ)
∂Wd

= −Wd

J∑
j=1

NdjCj

− a′

b′

J∑
j=1

(
NdjWdµjµ

>
j −

∑
n:sdn=j

xdnµ>
j

)
. (18)

By iterating the E-step that samples the cluster assignment
sdn by employing (11) for all objects n = 1, . . . , Nd in each
domain d = 1, . . . , D, and the M-step that maximizes the
joint likelihood using (18) with respect to the projection ma-
trix Wd for all domains d = 1, . . . , D, we can obtain an
estimate of the cluster assignments and projection matrices.

We can use cross-validation to select an appropriate di-
mensionality for the latent space K. With cross-validation,
we assume that some features are missing in the given data,
and infer the model with different K. Then, we select the K
value that performed the best at predicting missing values.



Missing data
The proposed model can handle missing data. Let hdn =
(hdnm)Md

m=1 be a vector indicating observed indexes, where
hdnm = 1 if xdnm is observed, hdnm = 0 otherwise, and
Mdn is the number of observed values for object xdn. The
posterior parameters are calculated as follows,

a′ = a +
∑D

d=1

∑Nd

n=1 Mdn

2
, (19)

b′ = b +
1
2

D∑
d=1

Nd∑
n=1

(hdn ◦ xdn)>(hdn ◦ xdn)

− 1
2

J∑
j=1

µ>
j C−1

j µj , (20)

µj = Cj

D∑
d=1

W>
d

∑
n:sdn=j

hdn ◦ xdn, (21)

C−1
j =

D∑
d=1

W>
d

( ∑
n:sdn=j

diag(hdn)
)
Wd + rI, (22)

where ◦ represents the Hadamard product, or element-wise
product, and diag(hdn) returns a diagonal matrix whose di-
agonal elements are hdn1, . . . , hdnMd

.

4 Related work
Unsupervised object matching is a task that involves find-
ing correspondences between objects in different domains
without correspondence information. For example, kernel-
ized sorting (Quadrianto et al. 2010) finds correspondences
by permuting a set to maximize the dependence between two
domains. Here, the Hilbert Schmidt Independence Criterion
(HSIC) is used for measuring dependence. Kernelized sort-
ing requires the numbers of objects in different domains to
be the same. Kernelized sorting is extended to convex ker-
nelized sorting (Djuric, Grbovic, and Vucetic 2012), which
is guaranteed to find a globally optimal solution. Match-
ing canonical correlation analysis (MCCA) (Haghighi et
al. 2008) is another unsupervised object matching method,
where bilingual translation lexicons are learned from two
monolingual corpora. MCCA simultaneously finds latent
variables that represent correspondences and latent vectors
so that the latent vectors of corresponding objects exhibit the
maximum correlation. (Tripathi et al. 2011) also proposed
a method for unsupervised object matching that is related
to MCCA. These methods assume the one-to-one matching
of objects in two domains. On the other hand, the proposed
model can find many-to-many matching, and is applicable
to objects in more than two domains.

Manifold alignment is related to the proposed model be-
cause they both find latent vectors of multiple sets in a joint
latent space. The unsupervised manifold alignment method
(Wang and Mahadevan 2009) finds latent vectors of differ-
ent domains in a joint latent space in an unsupervised man-
ner. The method first identifies all the possible matches for

each example leveraging its local geometry, and then finds
an embedding in the latent space. The method requires per-
mutations of the factorial of the number of neighborhoods to
match the local geometry.

There has been some work on improving the learning per-
formance of a classification task by using labeled objects
in different domains without correspondence information.
For example, multiple outlook mapping (MOMAP) (Harel
and Mannor 2011) improves the performance by matching
the moments of the empirical distributions for each class of
two domains. (Shi et al. 2010) proposed a transfer learning
method that improves the learning performance by embed-
ding both source and target domains in a joint latent space
when a limited number of target objects are labeled. These
methods require labeled objects. On the other hand, the pro-
posed method does not require any labeled objects.

The proposed model is an extension of probabilistic
canonical correlation analysis (CCA) (Bach and Jordan
2005), which finds dependences between objects in two do-
mains by projecting objects in a latent space. Probabilistic
CCA requires correspondence information between differ-
ent domains since it takes a set of paired objects as input. On
the other hand, the proposed model can find dependences in
an unsupervised manner without correspondence informa-
tion by taking a set of objects for each domain as input. CCA
is successfully used for a wide variety of applications, such
as multi-label prediction (Rai and Daumé III 2009; Sun, Ji,
and Ye 2011), information retrieval (Hardoon, Szedmak, and
Shawe-Taylor 2004), and image annotation (Kimura et al.
2010). The proposed model can be used for these applica-
tions when supervised data are unavailable.

The proposed model can be seen as a generalization of the
infinite Gaussian mixture model (Rasmussen 2000). When
the dimensionality of the latent space is the same as that of
the observed space D = K and Wd = I for all domains, the
proposed model corresponds to the infinite Gaussian mixture
model. The proposed model is different from the mixture of
PCA (Tipping and Bishop 1999), where latent vectors are
not shared among different objects.

5 Experiments
We evaluated the proposed model quantitatively by using
three synthetic and four real data sets. The statistics of the
seven data sets are shown in Table 2. There are two domains
for all the data sets. Synth3, Synth5 and Synth10 are syn-
thetic data sets with different true dimensionalities of the
latent space K∗ = 3, 5 and 10, respectively. We generated
the synthetic data sets using the following procedure. First,
we sampled latent vectors zj for j = 1, · · · , J∗ from a K∗-
dimensional normal distribution with mean 0 and covariance
I . Then, we generated projection matrices Wd for d = 1, 2,
where each element is drawn from a normal distribution with
mean 0 and variance 1. Finally, we generated N/J∗ objects
for each cluster j using a normal distribution with mean
Wdzj and covariance α−1I , and obtained N objects in to-
tal for each domain d = 1, 2. Iris, Glass, Wine and MNIST
are the real data sets, which were obtained from LIBSVM
multi-class data sets (Chang and Lin 2011), and generated
objects in two domains by randomly splitting the features



Table 2: Statistics of the data sets: the number of objects N ,
the dimensionality of the objects Md, and the true number of
clusters J∗, and the true dimensionality of the latent space
K∗.

N1/N2 M1 M2 J∗ K∗

Synth3 200 50 50 5 3
Synth5 200 50 50 5 5
Synth10 200 50 50 5 10
Iris 150 2 2 3 N/A
Glass 214 4 5 7 N/A
Wine 178 6 7 3 N/A
MNIST 200 392 392 10 N/A

into two parts for each data set as (Quadrianto et al. 2010;
Djuric, Grbovic, and Vucetic 2012) did for their experi-
ments. Because there is no overlapping feature, we cannot
calculate similarities between objects in different domains.

For the evaluation measurement, we used the adjusted
Rand index (Hubert and Arabie 1985), which quantifies the
similarity between inferred clusters and true clusters, and
takes the value from −1 to 1, and gives 0 for random cluster-
ing. For the real data sets, we assume that the category label
of each object is its true cluster assignment. With unsuper-
vised cluster matching, the adjusted Rand index measures
how well objects with the same label in different domains
are assigned to the same cluster as well as measuring the
clustering performance within each domain.

With the proposed method, we used the dimensional-
ity of the latent space K = 5, and set the hyperparame-
ters a = 1, b = 1, r = 1, γ = 1 for all the data sets.
To alleviate the local optimum problem, we ran the infer-
ence five times with different initial conditions, and selected
the result that achieved the highest likelihood. For com-
parison, we used k-means (KM), convex kernelized sort-
ing (CKS) (Djuric, Grbovic, and Vucetic 2012), and their
combinations (KM-CKS and CKS-KM) as described below.
The KM method is widely used for clustering. Although
KM is not a cluster matching method, we included KM as
a baseline method to show the adjusted Rand index when
only objects in the same domain were clustered. The CKS
method is an unsupervised object matching method. It di-
rectly finds correspondence between objects, and does not
cluster objects in the same domain. With KM-CKS, first
we discovered clusters by using KM for each domain indi-
vidually, and then found the correspondence between clus-
ters in two domains by using CKS. We used the mean
vector of each cluster as the input for matching clusters
by CKS. With the CKS-KM, after matching objects us-
ing CKS, we combined matched objects in two domains
into a vector, and estimated clusters using KM. We em-
ployed CKS as comparison methods since it achieved higher
performance than kernelized sorting and matching canoni-
cal correlation analysis (Djuric, Grbovic, and Vucetic 2012;
Jagarlamudi, Juarez, and Daumé III 2010). With KM, KM-
CKS and CKS-KM, we used the number of clusters esti-
mated by the proposed model. For comparison with object
matching based methods (CKS, CKS-KM), we used data
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Figure 3: Adjusted Rand index achieved by the proposed
model with different latent dimensionalities K using the
Synth5 data set whose true latent dimensionality is K∗ = 5.

sets that had the same numbers of objects in the two domains
N1 = N2 for each data set.

Table 3 shows the adjusted Rand index for the seven data
sets, which were averaged over 10 experiments for each data
set. For all the data sets, the proposed model achieved the
highest adjusted Rand index. This result indicates that the
proposed model can infer matching clusters by assuming a
shared latent space. KM-CKS achieved higher performance
than KM by matching clusters as a post-processing step.
With KM-CKS, since clusters are inferred individually for
each domain, the estimated clusters might be different in
different domains. On the other hand, since the proposed
model infers clusters simultaneously for all domains, it suc-
cessfully found shared clusters compared with KM-CKS as
shown by the higher adjusted Rand index than KM-CKS.
The adjusted Rand index obtained with the CKS method
was low, because it does not cluster objects. By clustering
the result of CKS, CKS-KM improved the cluster matching
performance. However, it did not outperform the proposed
model, because errors accumulated in object matching by
CKS cannot be corrected in the clustering process with k-
means.

Figure 3 shows the adjusted Rand index achieved by the
proposed model with different latent dimensionalities using
the Synth5 data set. The value was highest when the latent
dimensionality of the model was the same as the true latent
dimensionality K = K∗ = 5. The proposed model with
K 6= K∗ also performed better than the other methods. This
result indicates that the proposed model is robust to the latent
dimensionality setting because of the Bayesian inference.

Figure 4 shows the adjusted Rand index with different
numbers of domains D using the Synth5 data set. With KM-
CKS, CKS-KM and CKS, we found matching across multi-
ple domains by matching clusters/objects between the Dth
domain and each of the other D−1 domains, and then com-
bined the results. In general, the adjusted Rand index de-
creases as the number of domains increases, since the num-
ber of possible combinations of cluster matching increases.



Table 3: Average adjusted Rand index and its standard deviation. Values in bold typeface are statistically better from those in
normal typeface as indicated by a paired t-test.

Proposed KM KM-CKS CKS CKS-KM
Synth3 0.875 ± 0.101 0.525 ± 0.014 0.589 ± 0.117 0.014 ± 0.005 0.699 ± 0.135
Synth5 0.893 ± 0.126 0.548 ± 0.029 0.583 ± 0.198 0.006 ± 0.007 0.571 ± 0.182
Synth10 0.827 ± 0.145 0.556 ± 0.026 0.553 ± 0.165 0.009 ± 0.006 0.678 ± 0.170
Iris 0.383 ± 0.189 0.224 ± 0.091 0.254 ± 0.154 0.003 ± 0.002 0.207 ± 0.089
Glass 0.160 ± 0.020 0.050 ± 0.008 0.052 ± 0.011 0.001 ± 0.001 0.047 ± 0.010
Wine 0.222 ± 0.111 0.125 ± 0.025 0.142 ± 0.046 0.001 ± 0.001 0.107 ± 0.038
MNIST 0.085 ± 0.016 0.030 ± 0.007 0.037 ± 0.008 0.008 ± 0.005 0.041 ± 0.016
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Figure 4: Adjusted Rand index with different numbers of
domains D using the Synth5 data set.

However, the proposed method consistently achieved the
highest performance for each number of domains.

The computational time for inference of the proposed
model with the Synth5 data set was 18 seconds. The de-
manding part of the inference is E-step. The computational
complexity of each E-step is O(NJK3), where N is the to-
tal number of objects, J is the number of clusters, and K is
the latent dimensionality.

6 Conclusion
We proposed a generative model approach for unsupervised
cluster matching, which we call the many-to-many matching
latent variable model. In experiments, we confirmed that the
proposed model can perform much better than object match-
ing, clustering and their combinations. Advantages of the
proposed model over the existing methods are that it can
find many-to-many matching, and can handle multiple do-
mains with different numbers of objects. Because the pro-
posed model is a probabilistic generative model, we can ex-
tend it in a probabilistically principled manner.

Although our results have been encouraging as a first
step towards unsupervised object clustering, we must ex-
tend our approach in a number of directions. First, we would
like to extend the proposed model to other types of data.
The proposed model assumes real values with Gaussian
noise for features. However, the features can be discrete

values for bag-of-features represented images and annota-
tions for example. We can handle discrete values in the pro-
posed framework by incorporating topic models (Blei, Ng,
and Jordan 2003). The proposed model assumes the lin-
earity of features with respect to their latent vectors. We
can relax this assumption by using nonlinear matrix factor-
ization techniques (Lawrence and Urtasun 2009). Second,
we would like to evaluate the proposed model in a semi-
unsupervised setting (Kimura et al. 2010), where a small
number of object correspondences over different domains
are available. The information can assist the matching by in-
corporating a condition stating that the cluster assignments
of the corresponding objects become the same. Finally, we
would like to use the proposed method for real applications,
which include image annotation (Socher and Fei-Fei 2010),
cross domain recommendation (Li, Yang, and Xue 2009),
multi-lingual corpus analysis (Boyd-Graber and Blei 2009;
Iwata, Mochihashi, and Sawada 2010), machine translation
(Haghighi et al. 2008), and bioinformatics (Wang and Ma-
hadevan 2008).
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