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Abstract Unsupervised cluster matching is a task to find matching between clusters
of objects in different domains. Examples include matching word clusters in different
languages without dictionaries or parallel sentences and matching user communities
across different friendship networks. Existing methods assume that every object is
assigned into a cluster. However, in real-world applications, some objects would not
form clusters. These irrelevant objects deteriorate the cluster matching performance
since mistakenly estimated matching affect on estimation of matching of other ob-
jects. In this paper, we propose a probabilistic model for robust unsupervised cluster
matching that discovers relevance of objects and matching of object clusters, simul-
taneously, given multiple networks. The proposed method finds correspondence only
for relevant objects, and keeps irrelevant objects unmatched, which enables us to im-
prove the matching performance since the adverse impact of irrelevant objects is elim-
inated. With the proposed method, relevant objects in different networks are clustered
into a shared set of clusters by assuming that different networks are generated from
a common network probabilistic model, which is an extension of stochastic block
models. Objects assigned into the same clusters are considered as matched. Edges for
irrelevant objects are assumed to be generated from a noise distribution irrespective
of cluster assignments. We present an efficient Bayesian inference procedure of the
proposed model based on collapsed Gibbs sampling. In our experiments, we demon-
strate the effectiveness of the proposed method using synthetic and real-world data
sets, including multilingual corpora and movie ratings.
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1 Introduction

Network analysis has become an important tool for a wide variety of fields, such as
sociology, biology and information engineering (Albert and Barabási, 2002). Many
networks from different fields exhibit common characteristics. For example, we can
find heavy-tailed degree distributions, or scale-free properties, in collaboration net-
works, World Wide Web, power grid and protein-protein interaction networks (Barabási
and Albert, 1999). Other examples of commonly found structures include the small
world property (Watts and Strogatz, 1998), community structure (Girvan and New-
man, 2002) and hierarchical structure (Clauset et al, 2008).

We consider situations in which different networks contain common latent clus-
ters, where each cluster exhibits a particular interaction pattern to other clusters. For
example, lexical networks from different languages would have similar synonym
groups that have characteristic dependencies between the groups, social networks
from different research labs would share similar relationship patterns among faculty,
post-docs and students, and biological networks from different species would have
some common components.

Our task is to discover common latent clusters of objects, or to find matching
between clusters, in different networks without correspondence information, which
we call unsupervised cluster matching. An example is to find common word clus-
ters from document-word networks in English and German without dictionaries or
parallel sentences. Other examples include matching user communities across dif-
ferent friendship networks, and matching genes groups in gene regulatory networks
from different species. Some unsupervised cluster matching methods, such as Re-
Match (Iwata et al, 2016), have been proposed, where every object is assumed to
be assigned into a cluster. However, in real-world applications, some objects would
not form clusters. We call these objects that do not form clusters with other objects
as irrelevant objects, and objects that form clusters as relevant objects. The irrele-
vant objects deteriorate the cluster matching performance since mistakenly estimated
matching affect on estimation of matching of other objects.

We propose a probabilistic model for robust unsupervised cluster matching that
discovers relevance of objects and matching of object clusters, simultaneously, given
multiple networks. The proposed method finds correspondence only for relevant ob-
jects, and keeps irrelevant objects unmatched, which enables us to improve the match-
ing performance since the adverse impact of irrelevant objects is eliminated. With the
proposed method, relevant objects in different networks are clustered into a shared set
of clusters by assuming that different networks are generated from a common network
probabilistic model, where interaction patterns between clusters are shared among
different networks. We use infinite relational models (Kemp et al, 2006), which is an
extension of stochastic block models (Wang and Wong, 1987; Nowicki and Snijders,
2001) with Bayesian nonparametrics, as a basic component for modeling relevant ob-
jects in a single network. Objects assigned into the same clusters are considered as
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matched. Edges for irrelevant objects are assumed to be generated from a noise dis-
tribution irrespective of cluster assignments. We name the proposed method as subset
ReMatch (subset relational matching).

Figure 1 shows an example of the output result with the proposed method when
two bipartite networks are given as input. Each plot represents the adjacency ma-
trix, where a dot at (i, j) indicates existence of an edge between the ith Type1 object
and the jth Type2 object. Here, Type1 and Type2 objects are e.g. documents and
words, respectively, in a document-word bipartite network. Note that input networks
is not restricted to bipartite networks; they can be networks with a single type such as
person-person networks, those with multiple types such as user-item-tag networks,
or those with multiple relations such as ‘like’ and ‘hate’ relations. In addition, the
proposed method can handle more than two networks. The number of objects can be
different across different networks; the adjacency matrix size of Networks 1 and 2
is (120 × 140) and (90 × 110), respectively, in this example. The proposed method
outputs relevance for each object and cluster assignments for relevant objects. In Fig-
ure 1(b), objects are sorted by their relevance and cluster assignments. The red lines
indicates the border of clusters, and the lower right region that is not surrounded by
red lines represents edges of irrelevant objects. The cluster assignments indicate their
correspondence; for instance, with Type2, objects 1–20 in Network1 and objects 1–20
in Network2 are matched since they are assigned into cluster ‘a’, and objects 21–60
in Network1 and objects 21–40 in Network2 are matched since they are assigned
into cluster ‘b’. Clusters in different networks have similar connectivities; The first
Type2 cluster ‘a’ has a high link probability to the first Type1 cluster ‘A’, but has a
low link probability to the second Type1 cluster ‘B’, in both networks. Some clusters
can appear only in a network; the fourth Type1 cluster ‘D’ does not appear in Net-
work1, but appears in Network2. With the proposed method, the number of clusters
is automatically inferred using Dirichlet processes. Irrelevant objects are connected
irrespective of their partners’ cluster assignments. The number of irrelevant objects
can be different among networks; there are no irrelevant Type1 objects in Network2.

The paper is organized as follows: In Section 2, related work is briefly outlined. In
Section 3, we propose a probabilistic model for robust unsupervised cluster matching
that discovers relevance and cluster matching from multiple networks without corre-
spondence. In Section 4, an efficient Bayesian inference procedure of the proposed
model based on collapsed Gibbs sampling is presented. In Section 5, we describe
connection between the proposed model and a closely related existing model. In Sec-
tion 6, we experimentally demonstrate the effectiveness of the proposed model by us-
ing synthetic and real data sets, which include multilingual word clustering without
dictionaries/aligned-texts. Finally, we present concluding remarks and a discussion
of future work in Section 7.

2 Related work

Object matching is the task of finding correspondence between objects in different
domains, such as images and annotations (Socher and Fei-Fei, 2010), user identifiers
in different databases (Li et al, 2009), sentences written in different languages (Gale
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Fig. 1 Example of the input and output for the proposed method.

and Church, 1991; Rapp, 1999). Most object matching methods involve similarity or
correspondence information. However, the information is unavailable in some appli-
cations because of its high cost or privacy protection.

For this situation, a number of unsupervised object matching methods, e.g. match-
ing canonical correlation analysis (Haghighi et al, 2008), kernelized sorting (Quadrianto
et al, 2010), convex kernelized sorting (Djuric et al, 2012), least square object match-
ing (Yamada and Sugiyama, 2011) and Bayesian object matching (Klami, 2013,
2012), and unsupervised cluster matching methods, e.g. many-to-many matching la-
tent variable models (Iwata et al, 2013) and ReMatch (Iwata et al, 2016), have been
proposed. Intuitively, they find matching using relationship of objects within a do-
main, since distance between objects in different domains cannot be calculated with
unsupervised setting, but distance between objects in the same domain can be cal-
culated. When irrelevant objects exist, the relationship is distorted, and the perfor-
mance of these methods would be deteriorated. On the other hand, with the proposed
method, the relationship within a domain is maintained by introducing relevance.
Another advantage of the proposed method over existing unsupervised object match-
ing methods is the proposed method can handle different numbers of objects. The



Robust Unsupervised Cluster Matching for Network Data 5

Table 1 Notation.

Symbol Description
D number of networks
Ndt number of Type-t objects in network d
Kt number of realized clusters for Type-t
xdnm edge existence between the nth Type1 object and the mth Type2 object in network d,

xdnm ∈ {0, 1}
zdtn cluster assignment of the nth Type-t object in network d, zdtn ∈ {0, 1, · · · ,∞}
rdtn relevance of the nth Type-t object in network d, rdtn ∈ {0, 1}

proposed method is an extension of the ReMatch (Iwata et al, 2016), which is an
unsupervised cluster matching method for network data, for noisy data. By cluster-
ing only relevant objects, the proposed method can obtain intuitive cluster matching
results compared with the ReMatch.

There have been proposed many methods for discovering latent clusters from a
single network, such as the stochastic block model (Wang and Wong, 1987; Now-
icki and Snijders, 2001), mixed membership stochastic block model (Airoldi et al,
2008), infinite relational model (IRM) (Kemp et al, 2006), and subset IRM (Ishiguro
et al, 2012). However, these methods cannot discover shared groups from multiple
networks. The proposed method corresponds to applying the subset IRM to a sin-
gle large network that is constructed by combining all the networks, where edges
between different networks are assumed to be missing.

3 Proposed model

Suppose that we are given D bipartite networks X = {Xd}Dd=1, where Xd =

{{xdnm}Nd1
n=1}

Nd2
m=1 is the dth network, and xdnm ∈ {0, 1} indicates existence of

an edge between the nth Type1 object and the mth Type2 object. Our notation is
summarized in Table 1. Although we assume that given data are bipartite networks
for simplicity, the proposed model is applicable to networks with a single type, those
with more than two types, and those with multiple relations.

The model proposed for this task is a probabilistic generative model of multiple
networks. We assume that there are two classes of objects: 1) relevant objects that
have hidden common structure and are connected depending on their latent cluster
assignments, and 2) irrelevant objects that are noisy and are randomly connected to
other objects. A latent relevancy variable rdtn ∈ {0, 1} is associated with each object,
where rdtn = 1 if it is relevant and rdtn = 0 otherwise. For modeling networks for
relevant objects, the proposed model is based on an IRM (Kemp et al, 2006), but
is extended for multiple networks by sharing clusters and connectivity parameters.
The proposed model assumes that there are potentially a countably infinite number
of clusters for each type, and clusters are shared across different networks. Each
relevant object is assigned into a cluster zdtn ∈ {1, · · · ,∞}. An edge between two
relevant objects is generated depending on their cluster assignments. In particular, the
probability of connecting objects assigned into clusters k and ℓ is assumed to be θkℓ,
which is common across all networks. An edge for irrelevant objects are generated
randomly with probability ϕ, which does not depend on the cluster assignment of
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Fig. 2 Generative process of two bipartite networks with the proposed model.

the opponent object. Figure 2 shows an illustration of the generative process of two
bipartite networks with the proposed model.

The proposed model generates multiple bipartite networks X according to the
following process:

1. Draw connectivity for irrelevant objects ϕ ∼ Beta(a, b)
2. For each cluster for Type1: k = 1, · · · ,∞

(a) For each cluster for Type2: ℓ = 1, · · · ,∞
i. Draw connectivity for relevant objects θkℓ ∼ Beta(c, d)

3. For each type: t = 1, 2
(a) Draw relevance probability λt ∼ Beta(e, f)
(b) For each network: d = 1, · · · , D

i. For each object: n = 1, · · · , Ndt

A. Draw relevance
rdtn ∼ Bernoulli(λt)

B. Draw cluster assignment
zdtn ∼ CRP(αt) if rdtn = 1
zdtn = 0 otherwise

1. For each network: d = 1, · · · , D
(a) For each object of Type1: n = 1, · · · , Nd1

i. For each object of Type2: m = 1, · · · , Nd2

A. Draw relation
xdnm ∼ Bernoulli(θrd1nrd2mzd1nzd2m

ϕ1−rd1nrd2m)
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Fig. 3 Graphical model representation of the proposed model for bipartite networks.

Here, CRP(α) indicates the Chinese restaurant process (Blackwell and MacQueen,
1973) with concentration parameter α, which is a representation of Dirichlet pro-
cesses, and I(A) = 1 if A is true, I(A) = 0 otherwise. By using the CRP, the number
of clusters can be automatically estimated from a given data. We use beta distributions
for priors of Bernoulli parameters, ϕ, θ = {θkℓ}, λ = {λt}, since the beta distribu-
tion is the conjugate prior of the Bernoulli distribution, which enables us to develop
an efficient Bayesian inference algorithm as describe in Section 4. At the last line of
the generative process, an edge is generated using the Bernoulli distribution, where
the probability is θzd1nzd2m when both objects are relevant because rd1nrd2m = 1,
and it is ϕ when either object is irrelevant. Figure 3 shows graphical model represen-
tation of the proposed model, where shaded and unshaded nodes indicate observed
and latent variables, respectively.

The joint distribution of networks X, cluster assignments Z = {zdtn} and rele-
vance R = {rdtn} given hyperparameters α = {α1, α2}, a, b, c, d, e, f is described
as follows:

p(X,Z,R|α, a, b, c, d, e, f) = p(R|e, f)p(Z|R,α)p(X|Z,R, a, b, c, d). (1)

The first factor on the right hand side of (1) is calculated by

p(R|e, f) =
2∏

t=1

∫ D∏
d=1

Ndt∏
n=1

p(rdtn|λt)p(λt|e, f)dλt

=

2∏
t=1

B(e+ Lt1, f + Lt0)

B(e, f)
(2)

where

Ltr =
D∑

d=1

Ndt∑
n=1

rdtn, (3)

is the number of Type-t objects with relevance r, and B(e, f) = Γ (e)Γ (f)
Γ (e+f) is the

beta function. The Bernoulli parameters λt are analytically integrated out by using
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conjugate Beta distribution priors p(λt|e, f) = Beta(e, f). The second factor of (1)
is given by

p(Z|R,α) =
2∏

t=1

αKt
∏Kt

k=1(Mtk − 1)!

αt(αt + 1) · · · (αt +Mt − 1)
, (4)

since cluster assignments are drawn from the Chinese restaurant process for relevant
objects and deterministic functions for irrelevant objects. Here,

Mtk =
D∑

d=1

Ndt∑
n=1

rdtnI(zdtn = k), (5)

is the number of Type-t relevant objects assigned to cluster k, Mt =
∑Kt

k=1 Mtk is
the total number of Type-t relevant objects, and Kt is the current number of realized
clusters for Type-t. The third factor of (1) is given by

p(X|Z,R, a, b, c, d) =

∫ D∏
d=1

Nd1∏
n=1

Nd2∏
m=1

(1− rd1nrd2m)p(xdnm|ϕ)p(ϕ|a, b)dϕ

×
∫ D∏

d=1

Nd1∏
n=1

Nd2∏
m=1

rd1nrd2mp(xdnm|θzd1nzd2m)p(θ|c, d)dθ

=
B(a+Q, b+ Q̄)

B(a, b)

K1∏
k=1

K2∏
ℓ=1

B(c+Nkℓ, d+ N̄kℓ)

B(c, d)
, (6)

where relations between relevant objects, {(d1n, d2m)|rd1nrd2m = 1}, are drawn
from a cluster-dependent distribution Bernoulli(θzd1nzd2m), and the other relations,
{(d1n, d2m)|rd1nrd2m = 0}, are drawn from Bernoulli(ϕ). The Bernoulli parame-
ters, θ = {θkℓ}, ϕ, are analytically integrated out due to their conjugate priors. Here,

Q =

D∑
d=1

Nd1∑
n=1

Nd2∑
m=1

(1− rd1nrd2m)xdnm, (7)

is the number of edges for irrelevant objects,

Q̄ =
D∑

d=1

Nd1∑
n=1

Nd2∑
m=1

(1− rd1nrd2m)(1− xdnm), (8)

is the number of non-edges for irrelevant objects,

Nkℓ =
D∑

d=1

Nd1∑
n=1

Nd2∑
m=1

rd1nrd2mI(zd1n = k)I(zd2m = ℓ)xdnm, (9)

is the number of edges between clusters k and ℓ for relevant objects, and

N̄kℓ =
D∑

d=1

Nd1∑
n=1

Nd2∑
m=1

rd1nrd2mI(zd1n = k)I(zd2m = ℓ)(1− xdnm), (10)

is the number of non-edges between clusters k and ℓ for relevant objects.
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4 Inference

We describe the inference procedures for the proposed model based on collapsed
Gibbs sampling (Kemp et al, 2006). The parameters, ϕ, θ = {θkℓ} and λ = {λt},
can be analytically marginalized out thanks to their conjugacy. The unknown latent
variables to be inferred are cluster assignments Z = {zdtn} and relevance R =
{rdtn}. We sample zdtn and rdtn simultaneously. Given the current state of all but
one latent assignment (zi, ri), where i = (d, t, n), a new value for (zi, ri) is sampled
from the following probability,

p(zi = k, ri|X,Z\i,R\i) ∝ p(zi = k, ri|Z\i,R\i)p(X+i|zi = k, ri,X
\i,Z\i,R\i),

(11)

where the superscript \i denotes the set or value when excluding object i, X+i =

{xdnm}Ndt̄
m=1 is the set of edges for object i, t̄ = 1 if t = 2 and t̄ = 2 if t = 1, and

this is derived from (1). Here, we omit the hyperparameters for simplicity. When the
object is irrelevant ri = 0, its cluster assignment is always zi = 0. When the object is
relevant ri = 1, its cluster assignment is sampled from existing clusters {1, · · · ,Kt}
or a new cluster Kt + 1. Since we sample a cluster assignment for each object, there
is no probability that zi becomes greater than Kt+1. The first factor is calculated by

p(zi = k, ri|Z\i,R\i)

=
p(ri,R

\i)p(zi = k,Z\i|ri,R\i)

p(R\i)p(Z\i|R\i)

∝


f + L

\i
t0 if ri = 0, zi = 0,

(e+ L
\i
t1)

M
\i
tk

αt+
∑Kt

k′=1
M

\i
tk′

if ri = 1, zi = k ∈ {1, · · · ,Kt},

(e+ L
\i
t1)

αt

αt+
∑K

k′=1
M

\i
tk′

if ri = 1, zi = Kt + 1,

(12)

using (2) and (4). The second factor for irrelevant objects is calculated by

p(X+i|zi = 0, ri = 0,X\i,Z\i,R\i)

=
p(X+i,X\i|zi = 0,Z\i, ri = 0,R\i)

p(X\i|Z\i,R\i)

=
B(a+Q\i +Q+i0, b+ Q̄\i + Q̄+i0)

B(a+Q\i, b+ Q̄\i)
, (13)

using (6), where the superscript +i0 denotes that the same statistics are computed on
X+i assuming ri = 0. Similarly, the second factor for relevant objects is calculated
as follows,

p(X+i|zi = k, ri = 1,X\i,Z\i,R\i)

=
B(a+Q\i +Q+i1, b+ Q̄\i + Q̄+i1)

B(a+Q\i, b+ Q̄\i)

×
Kt̄∏
ℓ=1

B(c+N
\i
kℓ +N+ik

kℓ , d+ N̄
\i
kℓ + N̄+ik

kℓ )

B(c+N
\i
kℓ, d+ N̄

\i
kℓ)

, (14)
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Algorithm 1 Inference procedure for the proposed model.
initialize cluster assignments Z, relevance R, and hyperparameters α, a, b, c, d, e, f
repeat

for d = 1 to D do
for t = 1 to 2 do

for n = 1 to Ndt do
sample cluster assignment zdtn and relevance rdtn by (11)

end for
end for

end for
sample hyperparameters α, a, b, c, d, e, f by (15)

until end condition is met

where the superscript +ik denotes that the same statistics are computed on X+i as-
suming ri = 1 and zi = k.

We fit hyperparameters α, a, b, c, d, e, f by posterior sampling assuming Gamma
priors. In particular, we sample the value of hyperparameter a according to the fol-
lowing posterior probability:

p(a = â|X,Z,R,α, b, c, d, e, f) ∝ p(a = â)p(X,Z,R|α, a = â, b, c, d, e, f),
(15)

In our experiments, we used p(a) = Gamma(5, 5), and ten candidates of â are gen-
erated for each sampling. The other hyperparameters α, b, c, d, e, f are sampled in
the same way.

By iterating sampling of cluster assignments and relevance variables for all ob-
jects and sampling of hyperparameters, we obtain an estimate of posteriors. Algo-
rithm 1 summarizes the inference procedure for the proposed model. We initialize
cluster assignments relevance and hyperparameters randomly. We use the last sam-
ple of the cluster assignments in the inference for matching. When initial assign-
ments are different, different cluster assignments are obtained after the sampling.
The computational complexity for each iteration of the collapsed Gibbs sampling is
O(

∑D
d=1

∑T
t=1 NdtKt) since we calculate probabilities of Kt + 1 clusters for each

object, and there are
∑D

d=1

∑T
t=1 Ndt objects in total.

Although all parameters are marginalized out during the inference, the posteriors
of parameters are calculated using the samples as follows,

p(ϕ|X,Z,R) = Beta(a+Q, b+ Q̄), (16)
p(θkℓ|X,Z,R) = Beta(c+Nkℓ, d+ N̄kℓ), (17)
p(λt|X,Z,R) = Beta(e+ Lt1, f + Lt0). (18)

5 Relationship with ReMatch

The ReMatch (Iwata et al, 2016) is an unsupervised cluster matching method for
network data, which corresponds to the proposed model without relevance variables.
In particular, the ReMatch assumes the following generative process:
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Fig. 4 Graphical model representation of the ReMatch for bipartite networks.

1. For each cluster for Type1: k = 1, · · · ,∞
(a) For each cluster for Type2: ℓ = 1, · · · ,∞

i. Draw connectivity θkℓ ∼ Beta(c, d)
2. For each type: t = 1, 2

(a) For each network: d = 1, · · · , D
i. For each object: n = 1, · · · , Ndt

A. Draw cluster assignment zdtn ∼ CRP(αt)

1. For each network: d = 1, · · · , D
(a) For each object of Type1: n = 1, · · · , Nd1

i. For each object of Type2: m = 1, · · · , Nd2

A. Draw relation
xdnm ∼ Bernoulli(θzd1nzd2m)

Figure 4 shows graphical model representation of the ReMatch.
The ReMatch assigns all objects into shared clusters even if they are irrelevant. In

real-world applications, some objects would not form clusters. These irrelevant ob-
jects deteriorate the cluster matching performance since mistakenly estimated match-
ing affect on estimation of matching of other objects. On the other hand, the proposed
model assigns only relevant objects into shared clusters, which enables us to handle
noisy observation, and improve the performance.

6 Experiments

6.1 Synthetic data

We evaluated the proposed subset ReMatch by using the following three types of
synthetic data sets with two bipartite networks: Noisy-Dirichlet, Noisy-Partial and
Dirichlet. With the Noisy-Dirichlet data, cluster proportions were generated from a
symmetric Dirichlet distribution for each type and for each network, where there were
100 relevant objects, 20 irrelevant objects and five clusters for each type. With the
Noisy-Partial data, some clusters appear in either network. In particular, there were
five clusters, but the first/last cluster does not appear in Network2/Network1. There
were 20 relevant objects for each cluster and 20 irrelevant objects for each type. The
Dirichlet data is the same with the Noisy-Dirichlet data except that there were no
irrelevant objects. With all data sets, the edge probability was generated from a beta
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Fig. 5 Examples of the synthetic data sets. Objects are aligned by their cluster assignments and the red
lines indicate the border of clusters. The lower right region that is not surrounded by red lines represents
edges of irrelevant objects in the Noisy-Dirichlet and Noisy-Partial data.

distribution, Beta( 12 ,
1
2 ), and edges were generated according to a Bernoulli distri-

bution depending on the assigned clusters. Figure 5 shows examples of the synthetic
data sets.

We compared the proposed method with the following four methods: ReMatch,
MMLVM, IRM+KS and KS. The ReMatch is an unsupervised cluster matching method
for network data (Iwata et al, 2016), and it corresponds to the proposed method with-
out irrelevant objects. The MMLVM is the many-to-many matching latent variable
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model (Iwata et al, 2013). It is an unsupervised cluster matching method for real-
valued data, where Gaussian noise is assumed for observation. The KS is the convex
kernelized sorting (Djuric et al, 2012), which is an unsupervised object matching
method that finds one-to-one matching and does not cluster objects. The IRM+KS is
the combination of the IRM and KS, where objects are clustered for each network
individually, and then the obtained clusters are matched by the convex kernelized
sorting.

For the evaluation measurement, we used matching adjusted Rand index (MARI) (Iwata
et al, 2016). The MARI becomes high when pairs of matched/unmatched objects in
different networks were correctly assigned into the same/different clusters, and it be-
comes low when they were incorrectly assigned. It takes the value from -1 to 1, and
gives 0 for random cluster matching. In particular, the MARI for Type-t is calculated
by

MARIt =
ht1 + ht2 − µt

Nt1Nt2 − µt
, (19)

where ht1(ht2) is the number of object pairs in different networks that are correctly
assigned into the same (different) clusters both in the estimated and true assignments,
and µt is the expected value of ht1 + ht2, which is obtained by

µt =
(ht1 + ht3)(ht1 + ht4) + (ht2 + ht3)(ht2 + ht4)

Nt1Nt2
, (20)

where ht3 (ht4) is the number of object pairs in different networks that are incorrectly
assigned into the same (different) clusters in the estimation but assigned into the
different (same) clusters in the true assignments. With the proposed method, the set
of irrelevant objects are considered as a cluster when the MARI was calculated.

Table 2 shows the MARI with the synthetic data sets. In all cases, the proposed
method achieved the best MARI. With the Dirichlet data, which did not contain any
irrelevant objects, the MARI of the proposed method and ReMatch were comparable.
This result indicates that the performance of the proposed method is not deteriorated
even when given networks consist of only relevant objects. The performance of the
MMLVM was low since it assumes Gaussian noise, which is not appropriate for net-
work data. On the other hand, the proposed model assumes Bernoulli noise, which is
a natural assumption for network data. The MARI achieved by KS was low since it
does not cluster objects. By clustering objects using IRM, IRM+KS improved the per-
formance compared with KS. However, it did not outperform the proposed method,
because errors accumulated in clustering by IRM cannot be corrected in the match-
ing process with KS. In contrast, since the proposed method performs clustering and
matching simultaneously, it can find clusters that are appropriate when matched.

6.2 Real-world data

Next, we evaluated the proposed method by using the following four real-world data
sets: 20News, NIPS, Movie and Multilingual. The 20News data consisted of binary
occurrence data for 100 words in documents obtained from 20 Newsgroups data
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Table 2 Matching adjusted Rand indices with the synthetic data sets and their standard errors, which were
averaged over 100 experiments for each data set. The values in bold are not significantly different from the
best performing method in each row according to a paired t-test.

Proposed ReMatch MMLVM IRM+KS KS
Noisy-Dirichlet 0.579± 0.029 0.463± 0.030 0.228± 0.023 0.069± 0.021 0.008± 0.001
Noisy-Partial 0.684± 0.021 0.579± 0.021 0.326± 0.018 0.062± 0.019 0.008± 0.001
Dirichlet 0.454± 0.036 0.438± 0.036 0.148± 0.026 0.124± 0.027 0.002± 0.001

set (Lang, 1995) 1. The documents were categorized into the following four cate-
gories: Computers, Recreation, Science and Talk. We generated two disjoint sets of
documents, where 250 documents were sampled for each category, and created two
document-word networks with size (1000 × 100). The two networks contained the
same set of 100 words although their correspondence were assumed to be unknown.

The NIPS data consist of binary word occurrence data for the NIPS conference
papers from 2001 to 2003 2. There were 593 documents, and vocabulary size was
13,762. We split the documents and words into two disjoint sets, and created two
document-word networks with size (296×6881) and (297×6881). The papers were
categorized in 13 categories, such as Algorithms & Architectures, Applications and
Neuroscience.

The Movie data consist of movie ratings obtained from the Eachmovie data set,
where a movie and a user are linked when the user has rated the movie. We omit the
users that rated less than 50 movies, and split the movies and users into two disjoint
sets, and created two movie-user networks with size (507× 7180). The movies were
categorized into ten genres, such as Action, Comedy and Romance.

The Multilingual data were obtained from Wikipedia articles in English, German,
Italian and Japanese in the following five categories: Nobel laureates in Physics, No-
bel laureates in Chemistry, American basketball players, American composers and
English footballers. We created two document-word networks for each pair of lan-
guages, where 50 documents were sampled for each category that appeared in both
languages. We used 1,000 frequent words after removing stop-words for each lan-
guage. The size of a created document-word network was (150 × 1000). Note that
20News, NIPS and Movie data were not originally multiple networks and therefore
we split objects into two networks randomly, but the Multilingual data were originally
multiple networks.

For comparing methods with real-world data, we used the ReMatch, MMLVM
and IRM+KS. We excluded KS, since they were not effective and took too long com-
putational time with large networks as shown Tables 2 and 4. The average MARI
scores with the real-world data sets are shown in Table 3. The proposed method
achieved the highest MARI with all data sets. This result implies that inferring rele-
vance of objects is effective for find matching in noisy real-world network data. With
the 20News data, there were no significant difference between the proposed method
and ReMatch. It would be because words were completely shared across two different
networks with the 20News data, and noise was small compared with the other data

1 Available at http://www.cs.nyu.edu/˜roweis/data.html
2 Available at http://ai.stanford.edu/˜gal/
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Table 3 Matching adjusted Rand indices with the real-world data sets and their standard errors, which
were averaged over 30 experiments for each data set. The values in bold are not significantly different
from the best performing method in each row according to a paired t-test.

Proposed ReMatch MMLVM IRM+KS
20News 0.178± 0.011 0.153± 0.015 0.030± 0.001 −0.009± 0.010
NIPS 0.221± 0.004 0.174± 0.005 NA 0.005± 0.011
Movie 0.049± 0.001 0.045± 0.000 NA 0.001± 0.001
English-German 0.203± 0.026 0.118± 0.021 0.098± 0.008 −0.004± 0.012
English-Italian 0.263± 0.026 0.160± 0.021 0.102± 0.010 0.011± 0.011
English-Japanese 0.244± 0.022 0.188± 0.014 0.069± 0.012 −0.001± 0.007
German-Italian 0.208± 0.023 0.130± 0.017 0.087± 0.008 −0.007± 0.009
German-Japanese 0.165± 0.019 0.090± 0.017 0.042± 0.009 0.013± 0.012
Italian-Japanese 0.262± 0.024 0.213± 0.017 0.078± 0.010 0.022± 0.011

Table 4 Computational time with the Noisy-Dirichlet data with 500 relevant objects for each type and for
each network.

Proposed ReMatch MMLVM IRM+KS KS
Noisy-Dirichlet 10 minutes 9 minutes 7 hours 4 minutes 13 hours
20News 9 minutes 4 minutes 10 hours 8 minutes NA
NIPS 2 hours 2 hours NA 4 hours NA
Movie 38 hours 4 hours NA 4 hours NA
English-German 1 hour 13 minutes 25 hours 25 minutes NA
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Fig. 6 Averaged training log likelihoods for each iteration in the inference.

sets. The results by the MMLVM with NIPS and Movie data sets were not available
due to its high computational cost.
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Fig. 8 Confusion matrices of the proposed method with the Multilingual data. The horizontal axis is the
cluster index, and the vertical axis is the category index, 1: Nobel laureates in Physics, 2: Nobel laure-
ates in Chemistry, 3: American basketball players, 4: American composers, and 5: English footballers.
The brighter element indicates the larger number of documents in the category is assigned into the clus-
ter. The top row shows the confusion matrix of English, and the bottom-most row shows that of Ger-
man/Italian/Japanese.

Table 4 shows the computational time. The proposed method, ReMatch and IRM+KS
are efficient. The KS requires long computational time since the computational com-
plexity of KS is cubic in the number of objects. The IRM+KS does not take a long
time since KS is applied not to objects but to clusters, where the number of clusters
was much smaller than the number of objects. The MMLVM is inefficient because
it requires matrix inversion for the inference. Figure 6 shows the averaged training
log likelihoods of the proposed method for each iteration in the inference with the
real-world data sets. The log likelihoods became high with about 100 iterations.

Figure 7 shows the sensitivity of the proposed model to different initialization.
With some data sets, the variance is high, which indicates high sensitivity. However,
when we selected a result according to the log likelihood (1), its MARI was high,
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Table 5 Word clusters with the proposed method in the Multilingual data. Each pair of rows corre-
sponds to a cluster, the upper row shows words from English, and the lower row shows words from Ger-
man/Italy/Japanese in each pair of rows. The bottom-most pair of rows shows irrelevant words. Japanese
words are translated in English.

(a) English-German
EN composers musicians recording recordings songs composer walk concert piano orchestra album
DE music life schrieb my jazz database movie is erschien at diskografie durchbruch komponisten
EN basketball draft nba sportspeople averaged kg lb pick mvp rebounds rookie ncaa
DE vereinigte basketballspieler nba draft basketball
EN match goals cup clubs premier counted footballers friendly app gls fa uefa fifa manchester
DE englischer verein trainer united nationalmannschaft fc league englische tore kader manchester
EN prize laureates nobel
DE preisverleihung nobelstiftung nobelpreis
EN cooper eric felix dudley marcus phillips chairman receiving richardson fowler texas ramsey
DE school leistungen treffer lee high bevor ernannt william anerkennung sonstiges abschluss

(b) English-Italian
EN draft overall pro guard weight sportspeople thompson playoffs kg lb pick teammate assists
IT media game high team basketball rookie scelto finali ala scelta titoli assoluta assist mvp star
EN recording composers composer album piano musicians write recordings instrumental piece
IT compositori compositore musicale tecniche album it me musicali band musicisti visita
EN manchester honours transfer fifa euro correct draw soccer premiership substitute beckham
IT manchester ferdinand presenze gol fifa cup premier neville reti centrocampista campbell ham
EN prize nobel laureates
IT premio premi vincito
EN appointed moore mitchell sir aaron richardson elected marcus todd charge anthony heat gilbert
IT van ottenne nominato wilson jack alan richardson londra membro national award britannici

(c) English-Japanese
EN musicians composers album composer grammy
JP performance piano classic history event instrument orchestra religion violin classic roman
EN squad cup match goals premier clubs manchester counted footballers
JP commentary england soccer club birthday foot relieve united
EN fields alma mater professor institutions chemistry sciences physics faculty physicist scientists
JP physics william scholar strike professor frederick chemical issue richard phd mali max
EN johnson kevin retired jones round barry jordan teams basketball draft jackson thompson overall
JP victory performance enters player basketball name
EN fellow lawrence retirement mitchell glenn howard cooper confirmed anthony donald moore
JP california london in chicago ray born source hertford al smith leave tony bra jack sony black

which is represented by ‘x’ in Figure 7. This result implies that the log likelihood is
a good measurement to select a result from multiple runs.

Figure 8 shows the confusion matrices of the proposed method with the Multilin-
gual data. The documents in the first and second categories, which were the Nobel
laureates in Physics and Chemistry, were assigned into the same clusters, e.g. the first
cluster in English-German. It is reasonable since they are closely related categories.
Although the proposed method could not discriminate the Nobel laureates in Physics
from those in Chemistry, it separated the Nobel laureates in Physics and Chemistry
from the other categories. In addition, documents in the other categories were suc-
cessfully assigned into different clusters. Some documents in the same category were
assigned into different clusters, e.g. documents in the fifth category, which was En-
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Fig. 9 Inferred shared latent clusters and relevance with the Multilingual English-German data (a) by the
proposed method, and (b) by the ReMatch.

glish footballer, were assigned into the third and fourth clusters in English-German.
It would be because the proposed method is an unsupervised method, and documents
in the same category could use different vocabulary.

Table 5 shows word clusters inferred by the proposed method with the Multilin-
gual data. Related words were appropriately assigned into the same clusters across
different languages, e.g. in Table 5(a) the first, second, third and fourth cluster related
to music, basketball, football and Nobel prize, respectively. The words that were not
related to a specific category were inferred as irrelevant, which were shown in the
bottom-most pair of rows in the table, such as common family name, city name,
common noun and verb.

Figure 9(a) shows the inferred shared latent clusters and relevance by the pro-
posed method with the Multilingual English-German data. There were few irrelevant
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Fig. 10 Inferred shared latent clusters and relevance by the proposed method with the Multilingual
English-Italian data.
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Fig. 11 Inferred shared latent clusters and relevance by the proposed method with the Multilingual
English-Japanese data.

documents, but many irrelevant words. It is natural since all documents were sampled
from the specific categories, but some words were not specific to a single category.
The irrelevant words, which were shown in the right region, have edges to documents
in all categories. Figure 9(b) shows the inferred shared latent clusters by the ReMatch.
The size of clusters inferred by the ReMatch was smaller than that by the proposed
method. By considering relevance, the proposed method could discover larger clus-
ters which are easy to interpret. Figures 10 and 11 show the inferred shared latent
clusters and relevance by the proposed method with the Multilingual English-Italian
and English-Japanese data, respectively.
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7 Conclusion

We proposed a probabilistic model for unsupervised cluster matching, which is a task
to find matching between clusters of objects in different domains. Given multiple
networks as inputs, the proposed method infers matching of clusters and relevance
of objects simultaneously, which enables us to improve the matching performance
by handling noisy observation. We have confirmed experimentally that the matching
performance of the proposed method is higher than existing methods with synthetic
and real-world data sets. With the proposed method, the ReMatch was extended by
introducing relevance. This approach, i.e. introducing relevance, can be used for ex-
tending other existing object matching methods. The proposed method is based on
the IRM for clustering. We plan to use other probabilistic models for clustering, such
as dynamic IRM (Ishiguro et al, 2010) and latent feature models (Miller et al, 2009).
The scalability of the inference can be improved by using stochastic variational in-
ference (Hoffman et al, 2013) or parallel inference (Williamson et al, 2013).
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