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Abstract We propose a method for unsupervised group matching, which is the task
of finding correspondence between groups across different domains without cross-
domain similarity measurements or paired data. For example, the proposed method
can find matching of topic categories in different languages without alignment infor-
mation. The proposed method interprets a group as a probability distribution, which
enables us to handle uncertainty in a limited amount of data, and to incorporate the
high order information on groups. Groups are matched by maximizing the depen-
dence between distributions, in which we use the Hilbert Schmidt independence cri-
terion for measuring the dependence. By using kernel embedding which maps dis-
tributions into a reproducing kernel Hilbert space, we can calculate the dependence
between distributions without density estimation. In the experiments, we demonstrate
the effectiveness of the proposed method using synthetic and real data sets including
an application to cross-lingual topic matching.
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1 Introduction

Object matching is an important task in natural language processing, machine learn-
ing, data mining, image processing, bioinformatics, and so on. Examples of object
matching include matching an image with a caption (Socher and Fei-Fei, 2010), an
English word with a German word (Tripathi et al, 2010), concepts in different ontolo-
gies (Shvaiko and Euzenat, 2013), and user identification in different databases (Li
et al, 2009). Most object matching methods require similarity measurements between
objects in different domains, or paired data across domains that contain correspon-
dence information. However, similarity measurements and paired data are unavailable
in some applications because obtaining those information would incur a cost and re-
quire time, or invade privacy. For such situations, a number of methods for unsuper-
vised object matching have been proposed, such as kernelized sorting (Quadrianto
et al, 2010) and matching canonical correlation analysis (Haghighi et al, 2008).

In this paper, we consider a related but different task, which we call unsupervised
group matching. Here, a group consists of a set of objects. In many data sets, ob-
jects form a group; documents are categorized according to their topics, users form
communities, movies are associated with genres, and images are grouped by con-
tents. Unsupervised group matching is the task of finding correspondence between
groups given two sets of groups in different domains without cross-domain similarity
measurements or paired data. The task appears in a wide variety of applications for
data with groups. For instance, group matching can be used for matching topic cat-
egories in different languages given a multilingual corpora without dictionaries and
parallel corpora, which is important especially for resource poor languages. Other
examples include matching groups of images and documents according to their top-
ics (Barnard et al, 2003), matching user communities and movie genres by their pref-
erences (Kamahara et al, 2005), discovering companies in the same position across
different countries by representing the companies with their products, and finding
correspondence between groups of genes in protein-protein interaction networks of
different species (Terada and Sese, 2012).

This paper proposes a kernel-based sorting method for unsupervised group match-
ing. The main idea of the proposed method is to interpret a group as a probability
distribution, and consider each object in a group as a sample from the underlying
distribution. Then, our problem is transformed to finding a matching between sets of
probability distributions in different domains. Our method consists of two-steps (Fig-
ure 1). First, we map each distribution (group) into a reproducing kernel Hilbert space
(RKHS) defined on a distinct domain, based on the framework of kernel embedding
of distributions (Smola et al, 2007). The kernel representation of distributions enables
us to maintain and handle necessary information of groups such as their covariance
or higher-order moments. Then we find a matching between the sets of elements in
the different RKHSs that maximizes the dependency between them. As a dependence
measure, we employ the Hilbert-Schmidt independence criterion (HSIC) (Gretton
et al, 2005), which can be used for unsupervised matching tasks once appropriate
kernels are defined for each domain. To apply HSIC, we define second-level kernels
on each RKHS, for which we conduct necessary theoretical analysis in the paper. Our
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Fig. 1 Framework of the proposed method. The input is two sets of grouped objects, where an object is
represented by a point and the group is represented by its color in the observation space. The distribution
for each group is mapped into a reproducing kernel Hilbert space (RKHS) for each domain, where the
mapped distributions are represented by points in the RKHS. The groups in different domains are matched
based on the Hilbert Schmidt independence criterion of the mapped distributions.

approach only requires similarity between objects within a distinct domain, and thus
does not need a similarity measure between objects across domains.

To our knowledge, this is the first study for unsupervised group matching. One
might think that a naive extension of unsupervised object matching methods could
be used for matching groups, where each group is represented by its typical value,
such as mean and mode. However, in the process of transforming a group to a feature,
information loss is inevitable in general. For example, when a group is represented
by its mean, variance and skewness of the group cannot be considered in matching.
On the other hand, because the proposed method represents a group by its distribu-
tion using kernel embedding, it can preserve necessary information of distributions.
Another naive method for group matching is that objects are first aligned using an
object matching method, and then groups are matched using the object alignment in-
formation. This method, however, requires much more computational time than the
proposed one: the time complexity of the naive method is cubic to the number of ob-
jects, while that of the proposed method is cubic to the number of groups. Since the
number of groups is much smaller than the number of objects, the proposed method
can efficiently find group matching. By handling a set of objects as a group instead
of as individual objects, we can reduce the computational time.

The remainder of this paper is organized as follows. In Section 2, we briefly re-
view related work on unsupervised group matching. In Section 3, we formulate the
proposed method, which calculates the dependency between distributions using the
HSIC and kernel embedding. In Section 4, we give theoretical results on the proposed
method. In Section 5, we demonstrate the effectiveness of the proposed method by
using synthetic and real data, which include multilingual categorized documents for
an application of category matching in different languages. Finally, we present con-
cluding remarks and a discussion of future work in Section 6.
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2 Related Work

There have been proposed a number of unsupervised object matching methods, such
as kernelized sorting (Quadrianto et al, 2010), convex kernelized sorting (Djuric
et al, 2012), matching canonical correlation analysis (Haghighi et al, 2008), least-
squares object matching (Yamada and Sugiyama, 2011), variational Bayesian match-
ing (Klami, 2012), and many-to-many matching latent variable models (Iwata et al,
2013). Their applications include aligning multilingual documents, visualizing data
in a particular structure, and matching images. These methods find correspondence by
maximizing the dependency between matched pairs. Intuitively, they match objects
that have similar neighborhood relationships. For example, kernelized sorting uses
the HSIC for measuring the dependency that is calculated based on kernel matrices
for objects within each domain. These methods, however, are designed for object
matching, and thus cannot used for the group matching problem straightforwardly.

Kernel embedding has been used for extending kernel methods to grouped data.
For example, the support measure machine (Muandet et al, 2012) is a method for ker-
nel based discriminative learning on distributions, which generalizes the support vec-
tor machine by kernel embedding. The one-class support measure machine (Muandet
and Schölkopf, 2013) is a group anomaly detection method that finds anomalous ag-
gregated behaviors of objects. The support measure machine and the one-class sup-
port measure machine achieved high performance with classification and anomaly
detection tasks, respectively, by assuming that a group is modeled as a distribution.
The proposed method is a generalization of kernelized sorting for grouped data.

Group matching is related to ontology matching (Doan et al, 2004). Given two
taxonomies, ontology matching methods find the most similar concept node in the
other taxonomy. Although there have been proposed a number of methods for ontol-
ogy matching (Shvaiko and Euzenat, 2013), they are not unsupervised methods. For
example, they require that there are objects that appear in both domains, features are
shared across different domains which enables us to calculate similarities, or graph
structures of the given ontologies are used for matching.

3 Proposed Method

3.1 Group matching

Suppose that we are given two grouped data sets from different domains {X1, · · · ,XN}
and {Y1, · · · ,YN} with equal size N of groups. Here, Xn = {xn1, · · · , xnIn} is a
set of objects in the nth group in the first domain, xni ∈ X is the ith object in the nth
group in the first domain, Yn = {yn1, · · · , ynJn} is a set of objects in the nth group
in the second domain, and ynj ∈ Y is the jth object in the nth group in the second do-
main. The task is to find correspondence between groups across the first and second
domains. We assume that similarity, or kernel, can be calculated within a domain, but
similarity across different domains is not given. The correspondence between groups,
or between objects, over different domains are unavailable. The number of objects in
a group can be different over groups.
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We represent each group, or set of objects, by a probability distribution assum-
ing that observed objects are generated from an unknown distribution. Let Pn is a
distribution of the nth group in the first domain, Xn ∼ Pn, and Qn is a distribution
of the nth group in the second domain, Yn ∼ Qn. Then, the task of group match-
ing is considered as the task of matching two sets of distributions, {P1, · · · ,PN}
and {Q1, · · · ,QN}. The cross-domain matching is encoded in a permutation matrix
π ∈ ΠN , where

ΠN :=
{
π|π ∈ {0, 1}N×N , π1N = 1N , π⊤1N = 1N

}
, (1)

and 1N is the N dimensional vector of all ones. We find correspondence by maxi-
mizing the pairwise dependency as follows,

arg max
π∈ΠN

D
(
{(Pn,Qπ(n))}Nn=1

)
, (2)

where D(·) is a measurement for the dependency.

3.2 Dependency between distributions

For the dependency measure between distributions, we use the Hilbert-Schmidt in-
formation criterion (HSIC) (Gretton et al, 2005). The HSIC is successfully used for
unsupervised object matching methods, such as kernelized sorting (Quadrianto et al,
2010; Djuric et al, 2012). However, these methods use HSIC for dependency between
objects. In our task, the HSIC for dependency between distributions is required. For
obtaining the HSIC for distributions, we map distributions into the reproducing ker-
nel Hilbert space (RKHS) using the kernel embedding (Smola et al, 2007). The kernel
embedding allows us to calculate the HSIC without density estimation while preserv-
ing necessary information of distributions.

3.2.1 Representation of distributions using kernel embeddings

Let k : X×X → R be a reproducing kernel on X . Then it is known that there exists a
reproducing kernel Hilbert space (RKHS) Hk uniquely associated with k. The RKHS
Hk consists of functions on X , e.g. the function k(·, x), which is called the feature
vector of x ∈ X , is included in HX .

Then we represent any distribution P on X by its expectation of the feature vector
(Smola et al, 2007):

µP := Ex∼P[k(·, x)] =
∫
X
k(·, x)dP(x) ∈ Hk, (3)

which is an element in the RKHS, and called the kernel embedding of P .
Then by interpreting each group Xn = {xni}Ini=1 as an empirical distribution

Pn :=
1

In

In∑
i=1

δxni(·), (4)
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where δx is the Dirac delta function at point x ∈ X , the representation of the nth
group is given by

µPn =
1

In

In∑
i=1

k(·, xni) ∈ Hk. (5)

When samples Xn are generated i.i.d. from a distribution P∗
n, the convergence rate

of the empirical mean µPn to the expectation µP∗
n

(Smola et al, 2007) is

∥µP∗
n
− µPn∥Hk

= Op(I
− 1

2
n ). (6)

Let us consider two groups of samples generated from distributions P∗
n and P∗

m.
The distance between the empirical mean of the two groups ∥µPn − µPm∥Hk

con-
verges to that of the true distributions ∥µP∗

n
−µP∗

m
∥Hk

with the rate of Op(min(In, Im)−
1
2 )

(Gretton et al, 2012b). In other words, we can detect the difference between groups
with this rate.

Similarly, we represent the groups on Y using the kernel embedding. Let ℓ :
Y × Y → R be a reproducing kernel on Y , and Hℓ be the associated RKHS. Then
the nth group Yn = {ynj}Jn

j=1 is represented as the embedding of the empirical
distribution Qn := 1

Jn

∑Jn

i=1 δynj (·):

µQn =
1

Jn

Jn∑
j=1

ℓ(·, ynj) ∈ Hℓ. (7)

If the samples are i.i.d., its convergence rate is Op(J
− 1

2
n ) as in (6).

Advantages of using the kernel embedding for the representation of groups are
that 1) we do not need to prespecify the number of members in each group, 2) we can
measure the distance, or similarity in terms of level-2 kernels introduced below, be-
tween groups, 3) we can deal with any domain of objects once we define a kernel, e.g.
documents or images, and 4) we can capture the properties of each group described
as a probability distribution, such as covariance structure of the group.

The property 4) is of special importance: for example, consider the case where
there are different groups Xn and Xm which share the same point as a mean, but
have different covariance structures. Then we cannot distinguish these groups if we
naively represent them with their shared mean value. Thus it is important that we can
distinguish the groups by their higher order moments.

It is known that the order of moments to which the kernel embedding representa-
tion can distinguish is determined by the kernel k (Fukumizu et al, 2004; Smola et al,
2007; Sriperumbudur et al, 2010). For example, if we use a polynomial kernel

k(x, x′) = (⟨x, x′⟩+ c)d, (8)

of degree d ∈ N, we can represent distributions up to their d-th moments using
the kernel embedding. On the other hand, there exists a family of kernels that can
distinguish any pair of distributions, such as the Gaussian kernel

k(x, x′) = exp
(
−γ

2
∥x− x′∥2

)
, (9)
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with γ > 0. Such kernels are called characteristic 1 (Fukumizu et al, 2008; Sripe-
rumbudur et al, 2010).

3.2.2 HSIC on embedded distributions

Given the representation of the groups (5, 7), the maximization problem (2) now turns
to be

arg max
π∈ΠN

D
(
{(µPn , µQπ(n)

)}Nn=1

)
. (10)

Let P and Q be the sets of all probability distributions on X and Y , respectively. Let
FP := {µP : P ∈ P} ⊂ Hk and FQ := {µQ : Q ∈ Q} ⊂ Hℓ be the sets of all the
embedded distributions. Then what we next do is to define the dependency measure
D on (FP ,FQ). To this end, we apply HSIC to the sets of kernel embeddings.

Without loss of generality, assume that we would like to quantify the amount of
dependency of the matching {(µPn , µQn)}Nn=1. HSIC measures the dependency of
the set of pairs {(µPn , µQn)}Nn=1 by 1) first assuming that they are samples from
some joint distribution Pr(µP, µQ) on FP × FQ and 2) then estimating the distance
between the joint distribution Pr(µP, µQ) and the product of their marginal distribu-
tions Pr(µP) and Pr(µQ) using the samples {(µPn , µQn)}Nn=1.

HSIC also represents the distributions on FP ×FQ using the kernel embedding.
Thus, we need to additionally define kernels on FP and FQ. We denote these kernels
in capitals; let K and L be reproducing kernels on FP and FQ, respectively. We will
call these kernels level-2, in contrast to the kernels k and ℓ used for the representation
of groups in the first level. We will show concrete examples of the level-2 kernels
later in Section 3.4.

Let HK and HL be the RKHSs associated with the kernels K and L, respectively.
Then we can define an RKHS on FP ×FQ by their tensor product HK ⊗HL, which
is equivalent to the RKHS associated with the joint kernel K⊗L on FP×FQ defined
by

K ⊗ L((µP, µ
′
P), (µQ, µ

′
Q)) := K(µP, µ

′
P)L(µQ, µ

′
Q). (11)

Using the joint kernel, we represent the joint distribution Pr(µP, µQ) as the ker-
nel embedding EµP,µQ [K(·, µP) ⊗ L(·, µQ)] into HK ⊗ HL. Likewise, the product
of the marginal distributions Pr(µP) and Pr(µQ) is embedded as EµP [K(·, µP)] ⊗
EµQ [L(·, µQ)]. Then HSIC (in population) is defined as the distance between these
embeddings (Smola et al, 2007):

∥EµP [K(·, µP)]⊗EµQ [L(·, µQ)]−EµP,µQ [K(·, µP)⊗ L(·, µQ)]∥2HK⊗HL
≥ 0,

(12)

where ∥ · ∥HK⊗HL
denotes the norm of HK ⊗HL.

1 More precisely, kernel k is called characteristic if the map P → Hk : P → µP :=
∫
k(·, x)dP(x) is

injective. Thus, if we use a characteristic kernel, then the embedding µP uniquely identifies the underling
distribution P.
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It immediately follows that when the joint kernel K ⊗ L is characteristic, i.e. the
embedding of distributions into HK ⊗ HL is injective, then HSIC (12) is equal to
zero if and only if µP and µQ are independent. In other words, a large value of HSIC
indicates that there is a strong dependency between µP and µQ. In Section 4.2, we
will show that the joint kernel is characteristic when the level-2 kernels K and L are
given as Gaussian kernels.

3.3 Group kernelized sorting

Given the matching {(µPn , µQn)}Nn=1, which can be seen as samples from Pr(µP, µQ),
the empirical estimate of HSIC (12) is then given by (Gretton et al, 2005)

D({(µPn , µQn)}Nn=1) :=
1

N2
trHKHL =

1

N2
trK̄L̄, (13)

where H = I − 1N1⊤N/N is a centering matrix, and K,L ∈ RN×N are the ker-
nel matrices for the kernel embeddings, i.e. Kn,m = K(µPn

, µPm
) and Ln,m =

L(µQn , µQm), and K̄ = HKH and L̄ = HLH denote the centered versions of K
and L, respectively.

Then, we solve the task of unsupervised group matching based on the framework
of (2) using the HSIC (13) for the dependency between distributions as follows,

arg max
π∈ΠN

tr(K̄π⊤L̄π). (14)

We refer to the proposed method as group kernelized sorting.
We find group matching by solving a convex relaxation of (14) as described

in (Djuric et al, 2012). The convex version achieved better matching performance
than the original kernelized sorting. Equation (14) is rewritten by the following equiv-
alent problem,

arg min
π∈ΠN

∥ K̄π⊤ − (L̄π)⊤ ∥2, (15)

where ∥ · ∥ denotes the Frobenius norm. We relax the constraint that π is a permuta-
tion matrix, and then obtain the following convex problem,

argmin
π∗

∥ K̄π∗⊤ − (L̄π∗)⊤ ∥2

subject to π∗
ij ≥ 0, π∗1 = 1, π∗⊤1 = 1, (16)

where the permutation matrix binary constraint πij ∈ {0, 1} is replaced by the inter-
val constraint π∗

ij ∈ [0, 1], and π∗ is a doubly-stochastic matrix. This convex problem
can be solved by a numerical optimization method, such as the trust-region-reflective
algorithm (Coleman and Li, 1996), which is used for our experiments. The time com-
plexity for each iteration is O(N2).

After doubly-stochastic matrix π∗ is obtained by (16), we find hard assignments
by solving the following linear assignment problem defined by π∗,

arg min
π∈ΠN

∑
i,j

πijπ
∗
ij , (17)



Unsupervised Group Matching 9

Algorithm 1 Procedures of the proposed method.
Require: two grouped data sets {Xn}, {Yn}, level-1 and level-2 kernels
Ensure: assignments π
1: calculate kernel values between groups K, L
2: centerize the kernel values K̄, L̄
3: obtain a doubly-stochastic matrix π∗ by (16)
4: obtain hard assignments π by (17)

where the Hungarian algorithm (Kuhn, 1955) is used. Algorithm 1 shows the proce-
dures of the proposed method. The time complexity for solving (17) by the Hungarian
algorithm is cubic to the number of groups, O(N3).

The doubly-stochastic matrix π∗ contains soft assignments. Therefore, we can
rank matched groups with the ith group using probabilities π∗

i1, · · · , π∗
iN .

3.4 Level-2 kernels

We show here examples of level-2 kernel K on the set of embedded distributions FP ,
as well as their empirical estimates (Muandet et al, 2012). We will omit those for L
on FQ, as they are similar to the case of K. Recall that we represent each group Xn

as an empirical embedding µPn = 1
In

∑In
i=1 k(·, xni) using kernel k on the original

space X .
Linear kernel. Linear kernel KLIN on FP ⊂ Hk is defined as KLIN(µP, µP′) :=

⟨µP, µP′⟩Hk
, ∀µP, µ

′
P ∈ FP . Thus, the kernel value for group Xn and group Xm is

given by

KLIN(µPn , µPm) =

⟨
1

In

In∑
i=1

k(·, xni),
1

Im

Im∑
j=1

k(·, xmj)

⟩
Hk

=
1

InIm

In∑
i=1

Im∑
j=1

k(xni, xmj). (18)

Polynomial kernels. Nonlinear kernels can also be defined on FP . For example,
a polynomial kernel on FP is given by

KPOLY(µPn , µPm) = (⟨µPn , µPm⟩Hk
+ c)d, (19)

where d ∈ N is the order of polynomial and c > 0 is a constant.
Gaussian kernels. We can define a Gaussian kernel Kγ on FP with parameter

γ > 0 by

Kγ(µPn , µPm) = exp
(
−γ

2
||µPn − µPm ||2Hk

)
= exp

(
−γ

2
(⟨µPn , µPn⟩Hk

− 2⟨µPn , µPm⟩Hk
+ ⟨µPm , µPm⟩Hk

)
)
.

(20)



10 Tomoharu Iwata et al.

Note that we can calculate the inner-product ⟨·⟩Hk
in the above nonlinear kernels as

for linear kernel KLIN (18).
The time complexity for calculating the kernel matrix K of N kernel embeddings

is O(N2I2), where I is the average number of objects in each group.

3.5 Discussion

We assume that a group is modeled as a distribution. When samples in a group
Xn = {xn1, · · · , xnIn} are generated i.i.d. according to a distribution P∗

n, it is valid
to represent this group by the empirical distribution Pn. In general, the samples are
assumed to have a stationary distribution P∗

n, and the empirical distribution Pn should
be a consistent estimator of that distribution.

The performance of unsupervised group matching depends on kernels. When cor-
respondence information between groups in different domains is available, we would
select the best kernel by evaluating the matching performance. In the case that cor-
respondence information is unavailable, it is impossible to select the best kernel in
terms of the matching performance. However, some heuristics could be used. For
example, the median trick can be used for Gaussian kernels, where the median of
pairwise distances between the kernel embeddings is used for its width. The median
trick has been widely used for kernel embeddings (Quadrianto et al, 2010; Gretton
et al, 2012b; Song et al, 2012; Muandet and Schölkopf, 2013). Another heuristic is
to use kernels that maximize RKHS distance (Sriperumbudur et al, 2009), which is
equivalent to minimizing the error in classifying groups under linear loss.

4 Theoretical Analysis

4.1 Relation between HSIC on the embeddings and the original spaces

Here, we see that HSIC on the kernel embeddings defined in the previous section can
be reduced to HSIC on the original spaces for special situations. Proposition 1 below,
which is similar to the one obtained for the support measure machines (Muandet et al,
2012), shows that if the level-2 kernels are linear and the distributions of the groups
have a specific form, HSIC of the embeddings can be written in terms of HSIC on the
original spaces using specific kernels. The proof is given in the appendix.

Proposition 1 Let k and ℓ be bounded kernels. Let p(x|x′) and q(y|y′) be condi-
tional densities on X and Y , respectively. Assume that we are given distributions
{(Pn,Qn)}Nn=1 whose densities are given by p(x|xn) and q(y|yn), where xn ∈
X , yn ∈ Y are points in the original spaces. Then HSIC (13) on embeddings
{(µPn , µQn)}Nn=1 using linear kernels for FP and FQ is equivalent to HSIC on
{(xn, yn)}Nn=1 using the kernels

kp(x, x
′) :=

∫ ∫
k(x̃, x̃′)dp(x̃|x)dp(x̃′|x′), (21)
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and

ℓq(y, y
′) :=

∫ ∫
ℓ(ỹ, ỹ′)dq(ỹ|y)dq(ỹ′|y′) (22)

for X and Y , respectively.

Let us explain the proposition by some instantiations. For example, if each group
is represented by one point in the original space, i.e. p(·|xn) := δxn(·) and p(·|yn) :=
δyn(·), then we have kp(x, x

′) = k(x, x′) and ℓq(y, y
′) = ℓ(y, y′). Thus, HSIC on

groups subsumes HSIC on the original spaces as a special case.
Consider another case where each distribution is described by a Gaussian dis-

tribution with mean xn and fixed variance σ2
X > 0, i.e. p(x|xn) = N (xn, σ

2
X I).

Assume also that the kernel is Gaussian with bandwidth σ > 0, i.e. k(x, x′) =
kσ2(x, x′) := exp(−∥x − x′∥2/2σ2). Then the convolution theorem of Gaussian
distributions shows that kp(x, x′) = ( σ2

σ2+2σ2
X
)d/2kσ2+2σ2

X
(x, x′). Namely, in this

case HSIC on the kernel embeddings is reduced to HSIC on the original spaces using
Gaussian kernels with larger bandwidth.

Note that our approach does not assume any model for the distributions, and thus
can be applied to situations where such prior knowledge on the group structures is
not available.

4.2 Characteristic property of the Gaussian kernel on the set of kernel embeddings

As stated in Section 3.2.2, HSIC in population (12) is equal to zero if and only µP and
µQ are independent, when the joint kernel K ⊗ L is characteristic. It can be easily
shown that the joint kernel is characteristic if both of the level-2 kernels K and L
are characteristic. Here, we show that the Gaussian kernel Kγ (20) defined on FP
(and thus the Gaussian kernel on FQ) is characteristic. The proofs are given in the
appendix.

We first show in Lemma 1 below that the set of all the kernel embeddings FP is
compact if the original space X is compact.

Lemma 1 Let (X , dX ) be a compact metric space and P be the set of all Borel
probability measures on X . Let k be a continuous kernel on X , Hk be its RKHS, and

FP := {f ∈ Hk : f =

∫
k(·, x)dP(x), ∃P ∈ P}. (23)

Let γk be a metric on FP defined by

γk(f, g) = ∥f − g∥Hk
, ∀f, g ∈ FP . (24)

Then (FP , γk) is a compact metric space.

It is known that a universal kernel2 on a compact metric space is characteristic. By
showing that Kγ is universal using the result of (Christmann and Steinwart, 2010),
we have the following theorem.

2 A kernel is called universal if its associated RKHS is dense in the space of bounded continuous
functions (Steinwart, 2001).
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(a) Domain 1 (b) Domain 2

Fig. 2 Example of two-domain synthetic data with five groups. Each point represents an object, and its
color shows the assigned group.

Theorem 1 Let (X , dX ) be a compact metric space. Then the Gaussian kernel Kγ

(20) is characteristic to the set of all probability measures on (FP , γk).

Let us intuitively explain the obtained result. Suppose that the joint distribution
Pr(µP, µQ) and the product of their marginals Pr(µP) and Pr(µQ) have the same
“mean” and “covariance” over FP × FQ, but differ in their higher order moments.
If we use polynomial kernels of order 2 as K and L, then HSIC (12) gives the value
zero. This is because in this case the kernel embeddings into HK ⊗HL only distin-
guish the distributions on FP × FQ up to their covariance structures. As seen from
this example, if the level-2 kernels are not characteristic, HSIC may not detect the
dependency between µP and µQ even if there exists dependency in their higher order
moments. On the other hand, we can measure any dependency between µP and µQ
using HSIC if we use characteristic kernels for K and L.

Thus Theorem 1 ensures that if we use the Gaussian kernels for K and L, theo-
retically we can detect any dependency between µP and µQ. Note, however, that we
can also use kernels that are not characteristic in practice, as we use the linear kernel
(18) in Section 5.1 and 5.2. In such cases, HSIC takes a large value if there exists
strong linear dependency between µP and µQ.

5 Experiments

5.1 Synthetic data

To demonstrate the performance of the proposed method, we used synthetic two-
domain data. The data consist of five groups for each domain, and objects in a group
are distributed according to a group-specific two-dimensional Gaussian distribution.
An example of the synthetic data is shown in Figure 2. The five Gaussians in the
second domain are the rotated versions of Gaussians in the first domain. Two pairs of
Gaussians (red-blue and purple-orange) share their means but have different covari-
ance matrices.

We compared the proposed method, group kernelized sorting (GKS), with two
other kernelized sorting based methods: KS-mean and KS-object. With the KS-mean
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Table 1 Average matching accuracies and their standard errors with different level-1 kernels using the
synthetic data. Linear represents the linear kernel. Polynomial represents the polynomial kernel with de-
gree two and constant one. Gaussian (γ = 1) represents the Gaussian kernel with width γ = 1. Gaussian
(median) represents the Gaussian kernel with median trick.

Level-1 kernel Linear Polynomial Gaussian (γ = 1) Gaussian (median)
Accuracy 0.536± 0.029 0.524± 0.025 0.680± 0.037 0.946± 0.014

method, first the empirical mean for each group is calculated, and then convex kernel-
ized sorting (Djuric et al, 2012) is performed using the empirical means as features
for each group. With the KS-object method, objects are first matched based on kernel-
ized sorting using the original features. Next, we calculate a doubly-stochastic matrix
that represents correspondence probabilities between groups, which are estimated by
the number of matched objects between groups. Then, groups are matched using the
doubly-stochastic matrix by the Hungarian algorithm. For the proposed method, we
used Gaussian kernels with median trick as level-1 kernels, and linear kernels as
level-2 kernels.

Figure 3 shows the matching accuracy and computational time with different
numbers of objects, which are averaged over 100 experiments. The accuracy with
the KS-mean was low because it did not use covariance information for each group.
The accuracy with the KS-object was slightly higher than that with the proposed
method (GKS) with this simple example. However, the computational time of the
KS-object was much higher than those of the proposed method and KS-mean. The
computational time of the proposed method with 500 objects was 3.4 seconds. The
time complexity of the proposed method and KS-mean is cubic to the number of
groups, while that of the KS-object is cubic to the number of objects, which is costly
since the number of groups is much smaller than the number of objects.

Table 1 shows the matching accuracy with different level-1 kernels using the syn-
thetic data with 200 objects. For the level-2 kernel, we used the linear kernel. Since
the linear and polynomial kernels are not characteristic, their accuracies were lower
than the Gaussian kernel, which is characteristic. The performance of the Gaussian
kernel with median trick was better than the Gaussian kernel with fixed width γ = 1.
This result indicates that the kernel parameter setting is important, and the median
trick works for the proposed method.

5.2 Splitted real data

We evaluated the proposed method by using four data sets with multiple class labels,
which were obtained from the LIBSVM data sets (Chang and Lin, 2011). The statis-
tics of the four data sets are summarized in Table 2. The data sets with two domains
were generated by random splitting of the features as (Quadrianto et al, 2010; Djuric
et al, 2012) did in their experiments. Because the two domains do not share their
features, similarities between objects in different domains cannot be calculated. We
assume that objects with the same class labels form a group. We used Gaussian level-
1 kernel and linear level-2 kernel for the proposed method, and Gaussian kernel for
the KS-mean method. The result is shown in Table 3, which are averaged over 100
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Fig. 3 Average matching accuracy and computational time with different numbers of objects using the
synthetic data. The bars show their standard errors.

Table 2 Statistics of four splitted real data sets.

Glass Vowel Satimage Letter
#objects 214 528 4,435 15,000
#groups 6 11 6 26

experiments. The KS-object method was not applicable to Satimage and Letter data
sets because they contain a large number of objects. The proposed method (GKS)
achieved higher matching accuracy than the KS-mean and KS-object methods in all
of the data sets. This result indicates that the proposed method successfully finds
correspondence between groups by representing each group by its distribution using
kernel embedding.

5.3 Cross-lingual topic matching

For an application of unsupervised group matching, we employed the proposed method
for matching text document topic categories in different languages. We used 78 cat-
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Table 3 Average matching accuracies and their standard errors with four splitted real data sets. Values in
bold typeface are statistically better at the 5% level from those in normal typeface as indicated by a paired
t-test.

Method Glass Vowel Satimage Letter
GKS 0.442± 0.030 0.249± 0.017 0.993± 0.005 0.058± 0.005
KS-mean 0.297± 0.024 0.167± 0.017 0.955± 0.015 0.049± 0.005
KS-object 0.245± 0.020 0.168± 0.013 N/A N/A
Random 0.167± 0.000 0.091± 0.000 0.167± 0.000 0.038± 0.000

Table 4 Matching accuracy with multilingual Wikipedia data. Values in bold typeface are better than the
other.

EN-DE EN-FI EN-FR EN-IT EN-JA DE-FI DE-FR DE-IT
GKS 0.603 0.321 0.564 0.782 0.410 0.385 0.538 0.615
KS-mean 0.192 0.269 0.346 0.564 0.231 0.295 0.397 0.385
Vocabulary-size 0.051 0.051 0.051 0.064 0.051 0.090 0.051 0.051

DE-JA FI-FR FI-IT FI-JA FR-IT FR-JA IT-JA Average
GKS 0.526 0.564 0.526 0.449 0.577 0.513 0.564 0.529
KS-mean 0.167 0.449 0.308 0.064 0.679 0.487 0.256 0.339
Vocabulary-size 0.026 0.026 0.077 0.051 0.090 0.038 0.103 0.058

egories from Wikipedia in six languages: English (EN), German (DE), Finnish (FI),
French (FR), Italian (IT) and Japanese (JA). Each category contains at least 100 doc-
uments, and a document can be associated with multiple categories. The number
of documents is 7,447 for each language. For the feature vector of documents, we
used tf-idf (term frequency - inverse document frequency). The feature vectors were
then normalized to unit length in terms of ℓ2 norm. For the level-1 kernel, we used
a polynomial kernel with degree two and zero constant, which is a common kernel
for the bag of words representation of text documents (Taira and Haruno, 1999). For
the level-2 kernel, we used a Gaussian kernel with median trick. We compared with
KS-mean and Vocabulary-size. The vocabulary-size method finds category matching
based on the average vocabulary size per document, where it assumes that a group
with large vocabulary in a language is likely to have large vocabulary in different
languages. We did not compare with KS-object because it is inapplicable to data with
a large number of objects as shown above.

The matching accuracy between pairs of six languages is shown in Table 4. The
accuracy with random matching is 0.013. With 14 language pairs out of 15 pairs, the
proposed method achieved the highest accuracy. In some language pairs, e.g. EN-DE
and DE-JA, improvement of the proposed method from the KS-mean was significant.
This implies that the empirical average of word counts is not enough for representing
document categories, and it is important to model the distribution of documents in
each category. Table 5 shows incorrectly matched categories estimated by the pro-
posed method. Even though they were incorrect, the proposed method found corre-
spondence between related categories across different languages, such as ‘Premier
League player’ and ‘Football (soccer) strikers’, ‘English-language films’ and ‘Amer-
ican films’, and ‘American stage actors’ and ‘New York actors’ in matching between
English and German.
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Table 5 Examples of incorrectly matched categories in Wikipedia

English German
Disambiguation Greek mythology

Premier League players Football (soccer) strikers
English-language films American films

2006 FIFA World Cup players Premier League players
American films English-language films

American film directors American novelists
American stage actors New York actors

Greek mythology 20th century classical composers
2002 FIFA World Cup players Football (soccer) midfielders

Emmy Award winners Jewish actors
UEFA Euro 2004 players UEFA Euro 2000 players

English Finnish
American film actors American television actors

Disambiguation 2000s automobiles
American television actors California actors
Hollywood Walk of Fame American film directors

Grammy Award winners Disambiguation
English-language films Rock and Roll Hall of Fame inductees

American films 20th century classical composers
American film directors BAFTA winners (people)

La Liga footballers Football (soccer) midfielders
American Jews Hollywood Walk of Fame

Greek mythology Medicinal plants
English French

Disambiguation 2000s automobiles
American television actors New York actors

Grammy Award winners Disambiguation
Least Concern species Grammy Award winners

English-language films American films
American films Companies listed on

the New York Stock Exchange
Greek mythology 1990s music groups

BAFTA winners (people) American voice actors
2002 FIFA World Cup players Football (soccer) strikers

Emmy Award winners BAFTA winners (people)
Jewish actors American television actors

English Italian
Disambiguation Chemical elements

English-language films American films
2006 FIFA World Cup players Football (soccer) midfielders

American films Greek mythology
American film directors BAFTA winners (people)

Greek mythology English-language films
BAFTA winners (people) Emmy Award winners

Emmy Award winners Jewish actors
Jewish actors American film directors

2000s music groups 1990s music groups
1990s music groups 2000s music groups

English Japanese
Disambiguation Knights of the Golden Fleece

English-language films American films
2006 FIFA World Cup players Football (soccer) midfielders

Serie A players Italian footballers
American films American novelists

American film directors English-language films
La Liga footballers Football (soccer) strikers

American Jews People from New York City
American stage actors Jewish actors

Greek mythology Chemical elements
National flags Disambiguation
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6 Conclusion

We proposed a method for unsupervised group matching, called group kernelized
sorting, for finding correspondence between groups in different domains. With the
proposed method, a group is represented by a distribution, and distributions are matched
by maximizing the dependency. The dependency is measured by the Hilbert space in-
formation criterion, which can be calculated efficiently by mapping distributions into
reproducing kernel Hilbert spaces. In experiments, we confirmed that the proposed
method can perform much better than object matching based methods using synthetic
and real data sets. The high performance of the proposed method indicates the valid-
ity of modeling groups as distributions.

Our approach can be further improved in a number of ways. We can extend the
proposed method to semi-supervised setting, where a small number of correspon-
dences across different domains are available. The correspondences can be either
between groups or between objects. The proposed method can also be extended to
data with different number of groups across different domains. This can be achieved
by using the rectangular doubly-stochastic matrix in (16), and adding dummy groups
with low connecting weights so as to discourage aligning with these dummy groups
in (17) as proposed in (Jagarlamudi et al, 2010).

Since we assume that two domains have common groups, a method to distin-
guish whether the given data contain common groups or not would be beneficial.
The doubly-stochastic matrix π∗ obtained by (16) might be used for this. When there
are common groups, the doubly-stochastic matrix are likely to be clear as with sim-
ilar to a permutation matrix. On the other hand, when there is no common groups,
the doubly-stochastic matrix would be unconcentrated, and the probability mass is
scattered in a wide variety of possible matchings.

A Proofs

A.1 Proof of Proposition 1

Proof First note that kp is well-defined since k is bounded. Then we have

KLIN(µPn , µPm ) := ⟨µPn , µPm ⟩Hk

=

⟨∫
k(·, x)dp(x|xn),

∫
k(·, x̃)dp(x̃|xm)

⟩
Hk

=

∫ ∫
k(x, x̃)dp(x|xn)dp(x̃|xm)

= kp(xn, xm). (25)

This completes the proof for kp. The proof for ℓq is obtained by a literal repetition of the arguments above.

A.2 Proof of Lemma 1

Proof It is known that the space of probabilities P with the weak topology is compact, provided that
(X , dX ) is compact (Thm. 6.4., (Parthasarathy, 1967)). Let (Pn)∞n=1 be a sequence in P such that Pn
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converges weakly to P. Then,

γk(µPn , µP)
2 =

∫
k(x, x̃)dPn(x)dPn(x̃)− 2

∫
k(x, x̃)dPn(x)dP(x̃) +

∫
k(x, x̃)dP(x)dP(x̃)

converges to zero by the definition of weak convergence, since k(x, x̃) is a bounded continuous function.
This implies that the mapping P 7→ µP is continuous, and thus its image FP is compact (Thm. 2.2.3., (Dud-
ley, 2002)).

A.3 Proof of Theorem 1

Proof Thm. 2.2. of (Christmann and Steinwart, 2010) shows that Kγ is universal on FP , since the identity
map

id : (FP , γk) → (Hk, ∥ · ∥Hk
), (26)

is clearly continuous and injective. Therefore, Kγ is characteristic on FP , since a universal kernel on a
compact metric space is characteristic (Thm. 5, (Gretton et al, 2012a)).
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