
Probabilistic user behavior models in online stores
for recommender systems

Tomoharu Iwata





Abstract

Recommender systems are widely used in online stores because they are expected
to improve both user convenience and online store profit. As such, a number of
recommendation methods have been proposed in recent years. Functions required
for recommender systems vary significantly depending on business models or/and
situations. Although an online store can acquire various kinds of information about
user behaviors such as purchase history and visiting time of users, this information
has not yet been fully used to fulfill the diverse requirements. In this thesis, we
propose probabilistic user behavior models for use in online stores to tailor rec-
ommender systems to diverse requirements efficiently using various kinds of user
behavior information. The probabilistic model-based approach allows us to sys-
tematically integrate heterogeneous user behavior information using rules of the
probability theory. In particular, we consider three requirements for recommender
systems: predictive accuracy, efficiency, and profitability.

Models that can accurately predict present user behavior, rather than past user
behavior, are necessary for recommendations because behaviors may vary with time.
We propose a framework for learning models that best describes present samples
and apply the framework to learning choice models that predict the next purchase
item. In the proposed framework, models are learned by minimizing a weighted
error over time that approximates the expected error at the present time.

Efficiency is also an important issue for recommender systems because the sys-
tems need frequent updates in order to maintain high accuracy by handling a large
number of purchase history data that are accumulated day by day. We present
an efficient probabilistic choice model using temporal purchase order information.
Fast parameter estimation and high predictive accuracy are achieved by combining
multiple simple Markov models based on the maximum entropy principle.

For the profitability requirement, it may be important for online stores to im-
prove customer lifetime value (LTV) rather than to predict future purchases accu-
rately. We present a recommendation method for improving LTV by integrating
probabilistic choice models and purchase frequency models. The proposed rec-
ommendation method finds frequent purchase patterns of high LTV users, and
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recommends items that simulate the found patterns. In addition, the proposed
recommendation method is extended to be applicable to subscription services by
integrating probabilistic subscription period models with choice models. The effec-
tiveness of the proposed methods is demonstrated via experiments using synthetic
data sets and real purchase log data sets of online stores.
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Chapter 1

Introduction

1.1 Background and motivation

With the rapid progress of network and database technologies, people can purchase
any number of items from anywhere in the world through online stores. Recom-
mender systems are important for online stores because they can help users to
find items of interest from an enormous number of items, and they can also help
online stores to promote sales by customizing items displayed for each user. In
the recommender system used by Amazon.com [36], items are recommended with
phrases such as “better together,” “customers who bought this item also bought,”
or “related items.” Recommender systems are also widely used in online stores for
products such as movies, music and cartoons [55].

To fulfill the growing need for qualified recommender systems, a number of
methods have been proposed in recent years [1]. A frequently-used method is
nearest-neighbor collaborative filtering [50, 57], in which similarities between users
are calculated by using ratings or purchase histories, and a user preference is pre-
dicted from the weighted average of similar user preferences. Content filtering is
also used for recommendations that predicts interests using item information [40],
such as the author of a book or the director of a movie. Hybrid methods of collab-
orative and contents filtering that integrate rating histories and item information
have also been proposed [33, 45].

Functions required for recommender systems vary significantly depending on
the business model or/and situation. First, online stores need to accurately predict
the user’s interests because the recommendation of least favorite items is useless. If
numerous users visit a store at the same time, its recommender system is required
to be able to deal with each user quickly and efficiently. If many new items are made
available each day, the system should be easy to update. Online stores providing
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measured services want to encourage users to purchase many items by recommen-
dation. On the other hand, online stores that provide subscription services need to
encourage users to extend their subscription periods.

Online stores can obtain various kinds of information about user behavior, such
as how frequently did the user purchase items, is the user a loyal customer, when
did the user start/stop visiting the online store, what kinds of items did the user
like in the past/recently, and when did the user purchase a certain item, as well
as ratings, purchase histories, and item information. This information can be used
to better understand user behavior and to improve recommender systems. By
understanding the interests of recent users, a store can recommend items effectively
because a user’s interests can change from day to day. By recommending items
that are often purchased by loyal customers, a store can improve sales because
such a recommendation strategy may increase customer loyalty. Although many
recommendation methods have been proposed, as described above, such diverse
information has not yet been fully used to fulfill the diverse requirements.

In the present thesis, probabilistic user behavior models for use in online stores
are proposed to tailor recommender systems to diverse requirements. The focus of
the present thesis is probabilistic models because heterogeneous user behavior in-
formation can be systematically integrated using the rules of the probability theory.
Probabilistic models are often used for the integration of heterogeneous informa-
tion, such as texts and images [6], authors [51], time [61], and citations [15], as well
as the integration of ratings and item information for recommendations [45]. Most
existing recommendation methods do not output probabilities and instead output
degrees for user’s interests, for instance. It is not simple to combine these degrees
with other information in a principled manner in situations involving uncertainty.
A probabilistic model for each behavior is constructed as a separate module such
as item choices, purchase frequency, and stop visiting, and then these models are
combined to fit for a certain purpose. Rather than describing various kinds of be-
haviors by one probabilistic model, combining modules can flexibly adapt to diverse
requirements.

1.2 Overview

Three requirements for recommender systems are considered: predictive accuracy,
efficiency, and profitability.

In recommender systems, models that can accurately predict present user behav-
ior, rather than past user behavior, are needed because items that are appropriate
for the present user should be recommended. User behavior in an online store may

2



change with time because items on sale may change from day to day owing to new
releases and item withdrawals, and popular items may change according to changes
in trends, seasons, and social and economic environments. In Chapter 2, a frame-
work is presented for learning a model that best describes present samples given
dynamically changing data, such as purchase log data, the distributions of which
differ over time. The proposed method defines a weight for each sample that de-
pends on its time of generation, and learns a model so as to minimize the weighted
error of all samples over time. The weighted error over time is shown to approxi-
mate the expected error at the present time. Therefore, we can obtain a model for
the present data by minimizing the weighted error. The proposed method can fit a
model to the present data simply by weighting samples, without the need to modify
the model to include the time structure of data. Experiments using synthetic data
sets and a real purchase log data set of an online cartoon downloading service show
the effectiveness of the proposed method for the analysis of dynamically changing
data.

Efficiency is also an important issue for recommender systems because the sys-
tems need frequent update in order to maintain high accuracy by handling a large
number of purchase log data that are accumulated daily. In Chapter 3, an effi-
cient probabilistic choice model that allows quick update of the recommendation
system is presented. Temporal purchase order information is used for item choice
modeling because the purchase order information can be useful for choice predic-
tion. For example, when the first volume of a series of DVD movies is purchased,
the next purchase would be the second volume. In addition, the interests of users
may change, in which case early purchase histories would not be as useful as recent
purchase histories for predicting future purchases. Markov models and maximum
entropy models have been used for choice models that predict the next purchase
item using the purchase history as input. In Markov models, parameters can be
estimated and updated quickly and efficiently, but predictions are not always ac-
curate. On the other hand, the accuracy of maximum entropy models is generally
high. However, the parameter estimation incurs a high computational cost. Both
fast parameter estimation and high predictive accuracy are achieved by combining
multiple simple Markov models based on the maximum entropy principle. Exper-
iments using real log data sets of online music, movie, and cartoon downloading
services show that the proposed method outperforms other conventional methods
in the literature.

In Chapter 4, by combining multiple probabilistic user behavior models, a rec-
ommendation method to increase profits, which is one of the most important re-
quirements for online stores, is constructed. The desired user behavior for online
stores to increase profits differs depending on their business model. For exam-
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ple, in a measured service, the desired behavior is to purchase items frequently,
whereas in a subscription service, the desired behavior is long-term subscription.
Recommendations are adapted to a business model using probabilistic models of
purchase frequency and unsubscription in the case of measured and subscription
services, respectively. In measured services, typical purchase patterns are identified
for heavy users who purchase many items using purchase frequency models, and
items are recommended for a new user using the typical patterns. Even though
a recommended item is often purchased by heavy users, the recommendation is
not useful if the user is not interested in the recommended item. Therefore, it is
also necessary to take the user’s interests into consideration by using choice mod-
els and combining these models with purchase frequency models so that we can
make effective recommendations. This is an example of heterogeneous information
integration using probabilistic models, where the information consists of purchase
frequencies and user’s interests. The recommendation method in order to increase
profits for subscription services follows the same procedure as that for measured
services, where purchase frequency models are replaced by subscription period mod-
els. The proposed method is evaluated using two sets of real log data for measured
and subscription services.

1.3 Mathematical notations

Vectors are denoted by lower case bold letters, such as x, and all vectors are assumed
to be column vectors. Uppercase bold letters, such as X, denote matrices or sets.
xT denotes the transpose of vector x, and |X| denotes the number of elements in
set X. The function I(x) is used to denote the indicator function as follows:

I(x) =

{
1 if x is true,

0 otherwise.
(1.1)

A list of notations used in this thesis is provided in Table 1.1.
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Table 1.1: Notation

U set of users
S set of items
N number of users, N = |U |
V number of items, V = |S|
u user, or purchase history of user u
s item
un nth user, or purchase history of nth user un = (s1, · · · , sKn)
Kn number of purchased items of user un

snk kth purchase item of user un

dnk kth purchase time of user un

unk purchase history of user un at the kth purchase unk = (sn1, · · · , sn,k−1)
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Chapter 2

Model learning for the latest data

2.1 Introduction

In recommender systems, models that can accurately predict present user behavior,
rather than past user behavior, are needed because items that are appropriate for
the present user should be recommended. User behaviors in a online store may
change with time because items on sale may change from day to day owing to new
releases and item withdrawals. Popular items may change according to changes
in trends, seasons, and social and economic environments. In such cases, high
predictive accuracy in relation to past data does not necessarily guarantee high
predictive accuracy for present data.

In this chapter, we present a learning framework for obtaining a model that
best describes present samples given dynamically changing data, such as purchase
log data, the distributions of which differ over time. Let a sample consist of an
input, x ∈ X, an output, y ∈ Y , and the time d ∈ {1, · · · , D} at which the sample
(x, y) was generated. We assume that input x, output y, and time d are discrete
variables. Namely, both X and Y consist of discrete symbols. We say that data
{(xm, ym, dm)}M

m=1 is changing dynamically when the joint distribution of the input
and output depends on the time as follows:

P (x, y|d) 6= P (x, y|d′), d 6= d′, (2.1)

where M is the number of samples. As an example, we can learn a probabilistic
choice model that has high predictive accuracy for present data using the proposed
framework. In the case of choice models, purchase history unk = (sn1, · · · , sn,k−1)
corresponds to input xm, purchase item snk corresponds to output ym, and purchase
time dnk corresponds to time dm, in which index m = k +

∑n
n′=1 Kn′ , where Kn is

the number of purchased items of user un. A choice model represents the probability

7



of purchasing item y given purchase history x, R(y|x), and it can be directly used
for recommendations by suggesting an item ŝ with the highest purchase probability
as follows:

ŝ = arg max
y∈S

R(y|x), (2.2)

where S represents the set of items. It can also be used as a module of a recom-
mendation method for improving profits described in Chapter 4.

We focus on the problem of predicting the unknown output y generated at
time D for an input x given dynamically changing data, where D represents the
present time or the latest time in the data. The proposed method defines a weight
for each sample that depends on its time of generation and learns a model so as
to minimize the weighted error of all samples over time. The model distribution
P̂ (x, y|d) is calculated at each time d, and the weights are defined so that a mixture
of the model distributions over time approximates the distribution at the present
time P (x, y|D). The weighted error function is shown to approximate the expected
error at the present time. Therefore, we can obtain a model that fits data at
the present time by minimizing the weighted error. In broad terms, the proposed
method finds time points at which the data distribution is similar to that of the
present time and also uses the data at the similar time points to learn the model
for the present time. In general, the performance of models can be improved as the
number of learning samples increases. By using the data at other time points, the
proposed method can learn the model robustly when similar time points exist.

Dynamically changing data is usually modeled by explicitly incorporating the
time structure of the data into the model (for example [7, 61]). The proposed
method can fit a model to dynamically changing data simply by weighting samples
without the need to modify the model to include the time structure of the data.

Here, a certain number of samples are assumed to be generated each time,
and their model distributions can be calculated. Examples of such data include
purchase log data, news stories, scientific articles, and web surfing data. With
purchase log data, when the unit time is assumed as a day, many users purchase
various items, and many samples (x, y) are generated each day. In this respect,
the data considered herein are different from the data used in the conventional
time-series analysis setting, in which only one sample is generated at a time.

The remainder of this chapter is organized as follows. In the next section, a basic
model learning method based on error minimization and its problem for predictions
of the present data are described. Section 2.3 presents the proposed method and its
learning procedures. In Section 2.4, a brief review of related research is presented.
In Section 2.5, the proposed method is evaluated experimentally using synthetic
data sets and a real purchase log data set. Finally, this chapter is summarized and
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future research is discussed in Section 2.6.

2.2 Model learning by error minimization

Let {(xm, ym, dm)}M
m=1 be a training data. If we can assume the stationarity of the

training data, a model that fits the data can be learned by minimizing the following
empirical error of all samples:

E0(M) =
M∑

m=1

J(xm, ym;M), (2.3)

where error function J(x, y;M) represents the error of model M given sample
(x, y). Typical examples of such error functions include the negative log likelihood:

J(x, y;M) = − log P (y|x;M), (2.4)

and the 0-1 loss function:

J(x, y;M) =

{
0 if f(x;M) = y,

1 otherwise,
(2.5)

where f is a regression function.

In this chapter, the focus is on finding a model that best describes the samples
at the present time D given a dynamically changing data. A simple way to do this
is to minimize the empirical error of samples only at the present time, as follows:

ED(M) =
∑

m:dm=D

J(xm, ym;M). (2.6)

As the number of samples at the present time M(D) grows to infinity, the value
ED(M) divided by M(D) converges to the expected error at the present time, as
follows:

lim
M(D)→∞

1

M(D)
ED(M) =

∑

x∈X

∑

y∈Y

P (x, y|D)J(x, y;M)

= ED[J(x, y;M)], (2.7)

where E denotes the expectation. However, when we only use the present samples,
the estimated model might have a tendency to overfit the training samples because
there are fewer training samples.
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2.3 Proposed method

2.3.1 Weighted error

To achieve more robust learning, both past and present data are used because past
data often include information that is useful for fitting samples at the present time.
Namely, the errors of all samples with weights that depend on the time at which
the samples were generated are minimized, as follows:

E(M) =
M∑

m=1

w(dm)J(xm, ym;M), (2.8)

where w(d) is the weight of a sample at time d. Intuitively, this represents the
degree of usefulness of a sample at time d for fitting the model M at the present
time D.

Since a model that best describes present samples is required, it is necessary to
determine weights {w(d)}D

d=1 so that the weighted error approximates the expected
error at the present time, as follows:

E(M) ≈ ED[J(x, y;M)]. (2.9)

To achieve this approximation, we determine weights {w(d)}D
d=1 in the following

manner. First, we estimate a model distribution P̂ (x, y|d) for each time d that
approximates the empirical distribution, as follows:

P̂ (x, y|d) ≈ 1

M(d)

∑

m:dm=d

I
(
(x, y) = (xm, ym)

)
, (2.10)

where M(d) is the number of samples at time d. For model distributions P̂ (x, y|d),
we can use arbitrary distributions that are appropriate for the given data, such
as Gaussian, multinomial, and empirical distributions. Second, we estimate the
mixture coefficients P = {P (d)}D

d=1 with
∑D

d=1 P (d) = 1 such that the follow-
ing mixture of model distributions over time approximates the distribution at the
present time P (x, y|D), as follows:

P (x, y|D) ≈
D∑

d=1

P (d)P̂ (x, y|d). (2.11)

See Figure 2.1 for the image of this approximation. Note that both model distri-
butions at past times and the model distribution at the present time D are used to
approximate the true distribution at the present time D. If the number of samples
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at D is insufficiently large, the model distribution at D that is learned using only
data at D might not be close enough to the true distribution. Third, we set the
weight as follows:

w(d) =
P (d)

M(d)
. (2.12)

By setting weights in this way, the weighted error (2.8) can approximate the ex-
pected error at the present time, as follows:

E(M) =
M∑

m=1

w(dm)J(xm, ym;M)

=
∑

x∈X

∑

y∈Y

D∑

d=1

w(d)
∑

m:dm=d

I
(
(x, y) = (xm, ym)

)
J(x, y;M)

≈
∑

x∈X

∑

y∈Y

D∑

d=1

w(d)M(d)P̂ (x, y|d)J(x, y;M)

=
∑

x∈X

∑

y∈Y

D∑

d=1

P (d)P̂ (x, y|d)J(x, y;M)

≈
∑

x∈X

∑

y∈Y

P (x, y|D)J(x, y;M)

= ED[J(x, y;M)]. (2.13)

Therefore, we can obtain a model that best describes data at the present time by
minimizing the weighted error E(M) given in (2.8). This method is referred to as
the Mixture Coefficient Weighting (MCW) method.

Roughly speaking, this method finds time points that are similar to the present
time, and uses their data to learn the model at the present time. The similarity
is represented by the mixture coefficient P (d). Data at similar time points have
large mixture coefficients. The greater the number of similar time points, and thus
similar data, that exist in the past, the more robustly the model at the present
time can be learned by including these past data along with the present data. If
there is no similar time point, the past data do not help to model the present data,
and the prediction accuracy of the proposed method is comparable to that of the
basic method, as in (2.6). However, time-series data often have a periodic nature,
or temporarily close points exhibit similar behavior. In such cases, the proposed
method is effective for improving the prediction accuracy at the present time. The
proposed method can use arbitrary functional forms of the error functions and
models as long as their objective functions to be minimized are written as in (2.3).

11



P(x, y| d=D)^P(x, y| d=2)^P(x, y| d=1)^

P(x, y| d=D)

x,y x,y x,y

x,y

P(d=1)
P(d=2)

P(d=D)

Figure 2.1: Approximation of the distribution at the present time by the mixture
of empirical distributions over time.

2.3.2 Estimation of mixture coefficients

We can estimate mixture coefficients that satisfy (2.11) by maximizing the following
log likelihood for samples at the present time:

L(P ) =
∑

m:dm=D

log P (xm, ym|D)

=
∑

m:dm=D

log
D∑

d=1

P (d)P̂−m(xm, ym|d), (2.14)

where P̂−m(x, y|d) represents a model distribution at time d that is estimated using
data excluding the mth sample. If we estimate mixture coefficients using training
samples that are also used for estimating the model distribution, the estimation is
biased, and we will obtain unuseful solutions P (D) = 1 and P (d 6= D) = 0. There-
fore, we use leave-one-out cross-validation. Note that when we use an exponential
family for the model distribution, the computational cost required for the leave-
one-out estimation is no greater than that of the non-leave-one-out estimation by
calculating sufficient statistics in advance. Note that the leave-one-out estimation
at d 6= D coincides with the non-leave-one-out estimation.

Since the logarithm is a convex function, L(P ) is also convex with respect to
mixture coefficients P . Therefore, we can obtain a globally optimum solution by

12



maximizing L(P ). Using the EM algorithm [14] allows us to estimate mixture
coefficients that maximize L(P ). Let P (τ) be an estimate at the τth step. The
conditional expectation of the complete-data log likelihood to be maximized is as
follows:

Q(P |P (τ)) =
∑

m:dm=D

D∑

d=1

P (d|xm, ym; P (τ)) log P (d)P̂ (xm, ym|d), (2.15)

where P (d|xm, ym; P (τ)) represents the posterior probability of the mth sample
given the current estimate P (τ). In E-step, we compute the posterior probability
with the Bayes rule:

P (d|xm, ym; P (τ)) =
P (τ)(d)P̂ (xm, ym|d)∑D

d′=1 P (τ)(d′)P̂ (xm, ym|d′)
. (2.16)

In M-step, we obtain the next estimate of the mixture coefficient P (τ+1)(d) by
maximizing Q(P |P (τ)) with respect to P (d) subject to

∑D
d=1 P (d) = 1, as follows:

P (τ+1)(d) =
1

M(D)

∑

m:dm=D

P (d|xm, ym; P (τ)). (2.17)

By iterating the E-step and the M-step until convergence, we obtain a global opti-
mum solution for P .

2.3.3 Procedure

The procedure of the proposed method is summarized as follows:

1. Estimate model distributions at each time d that approximate the empirical
distribution as follows:

P̂ (x, y|d) ≈ 1

M(d)

∑

m:dm=d

I
(
(x, y) = (xm, ym)

)
. (2.18)

2. Estimate mixture coefficients P so as to maximize the following maximum
likelihood:

P̂ = arg max
P

∑

m:dm=D

log
D∑

d=1

P (d)P̂ (xm, ym|d), (2.19)

using the EM algorithm as in (2.16) and (2.17).
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3. Set weights as follows:

w(d) =
P̂ (d)

M(d)
, (2.20)

for 1 ≤ d ≤ D.

4. Obtain model M by minimizing the weighted error function as follows:

M̂ = arg min
M

M∑

m=1

w(dm)J(xm, ym;M), (2.21)

while fixing weights {w(d)}D
d=1.

The order of computational complexity of the proposed method is the same
as that of the basic model learning procedure as in (2.3) once the weights are
determined. Therefore, additional computational cost is needed only for the weight
estimation. The complexity for each iteration of an EM-step is O(M(D)D), which
means that it increases linearly with the number of samples at the present time and
the number of time points.

2.3.4 Extension to continuous variables

The input and output were assumed to be discrete variables. Based on the same
framework, we can learn a model for the present data when the input and/or output
are continuous variables by considering a mixture of continuous distributions at
each time that approximates the continuous distribution at the present time. In
the continuous case, the model distribution should be a continuous distribution
such as Gaussian and Gaussian mixture distributions. The justification of the
proposed weights follows the same lines as in the discrete case (2.13) by replacing
the summations with integrations as required, as follows:

E(M) =
M∑

m=1

w(dm)J(xm, ym;M)

=

∫

x

∫

y

D∑

d=1

w(d)
M∑

m=1

I
(
(xm, ym) = (x, y)

)
J(x, y;M)dxdy

≈
∫

x

∫

y

D∑

d=1

w(d)M(d)P̂ (x, y|d)J(x, y;M)dxdy

=

∫

x

∫

y

D∑

d=1

P (d)P̂ (x, y|d)J(x, y;M)dxdy
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≈
∫

x

∫

y

P (x, y|D)J(x, y;M)dxdy

= ED[J(x, y;M)]. (2.22)

2.3.5 Weights when output distributions differ

The proposed method for a situation in which the joint distributions of the input
and output differ over time P (x, y|d) 6= P (x, y|d′) have been described. When the
output distributions are assumed to differ P (y|d) 6= P (y|d′) while the conditional
distributions are equal over time P (x|y, d) = P (x|y, d′), the proposed method can
be simplified. In this case, first, we estimate a model distribution of output y at
each time, as follows:

P̂ (y|d) ≈ 1

M(d)

∑

m:dm=d

I(y = ym). (2.23)

Next, we determine the mixture coefficients P such that a mixture of the model out-
put distributions at each time approximates the output distribution at the present
time P (y|D) as follows:

P (y|D) ≈
D∑

d=1

P (d)P̂ (y|d), (2.24)

and set weights by

w(d) =
P (d)

M(d)
. (2.25)

Then, the weighted error approximates the expected error at the present time, as
follows:

E(M) =
M∑

m=1

w(dm)J(xm, ym;M)

=
∑

x∈X

∑

y∈Y

D∑

d=1

w(d)
∑

m:dm=d

I
(
(x, y) = (xm, ym)

)
J(x, y;M)

≈
∑

x∈X

∑

y∈Y

D∑

d=1

w(d)M(d)P̂ (x|y, d)P̂ (y|d)J(x, y;M)

≈
∑

x∈X

∑

y∈Y

P (x|y, D)
D∑

d=1

w(d)M(d)P̂ (y|d)J(x, y;M)
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=
∑

x∈X

∑

y∈Y

P (x|y, D)
D∑

d=1

P (d)P̂ (y|d)J(x, y;M)

≈
∑

x∈X

∑

y∈Y

P (x|y, D)P (y|D)J(x, y;M)

=
∑

x∈X

∑

y∈Y

P (x, y|D)J(x, y;M)

= ED[J(x, y;M)], (2.26)

where we used assumption P̂ (x|y, d) ≈ P (x|y, D) for all d. In the same way, we can
simplify the proposed method when the input distributions differ P (x|d) 6= P (x|d′)
while the conditional distributions are equal over time P (y|x, d) = P (y|x, d′).

2.4 Related research

A number of methods that attempt to model dynamically changing data have been
proposed, in which the time structure of data is included in the models [7, 61]. Un-
like these methods, the proposed method can fit the model to dynamically changing
data simply by weighting samples, and there is no need to modify the model. More-
over, since the proposed method does not directly model the dynamics, such as the
transition probability from d − 1 to d in the Markov model, the proposed method
is applicable even when data distributions change drastically.

One method for weighting samples according to the generated time is the expo-
nential decay weighting method [16]:

w(d) = exp
(
−λ(D − d)

)
, (2.27)

where the weight decays corresponding to the period before the present time. Since
the decay rate is constant, this method is not appropriate for periodic data.

In terms of weighing samples, the proposed method is related to the covariate
shift or sample selection bias [4, 25, 60, 63]. Covariate shift refers to a situation, in
which the input distribution of training samples P (x|d) for d 6= D is different from
that of test samples P (x|D) and the conditional probabilities do not change over
time P (y|x, d) = P (y|x,D). In order to learn models under the covariate shift, the
importance weighted method has been proposed [58], in which samples are weighted
depending on the ratio of the input likelihoods:

w(d, x) =
P (x|D)

P (x|d)
. (2.28)
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After weights have been determined according to (2.28), this method minimizes the
following function:

EI(M) =
M∑

m=1

w(dm, xm)J(xm, ym;M). (2.29)

When the number of samples at time d grows to infinity, the weighted error corre-
sponding to time d, EI(M, d) where EI(M) =

∑D
d=1 EI(M, d), divided by M(d)

converges to the expected error at the present time, as follows:

lim
M(d)→∞

1

M(d)
EI(M, d) = lim

M(d)→∞

1

M(d)

∑

m:dm=d

w(d, xm)J(xm, ym;M)

=
∑

x∈X

∑

y∈Y

P (x, y|d)
P (x|D)

P (x|d)
J(x, y;M)

=
∑

x∈X

∑

y∈Y

P (x|d)P (y|x, d)
P (x|D)

P (x|d)
J(x, y;M)

=
∑

x∈X

∑

y∈Y

P (x|D)P (y|x,D)J(x, y;M)

=
∑

x∈X

∑

y∈Y

P (x, y|D)J(x, y;M)

= ED[J(x, y;M)], (2.30)

where we used P (y|x, d) = P (y|x,D). In this method, we need to know the true
input distributions of the learning and test samples, or we need estimate the model
distributions. Note that this method requires the estimation of weights for each pair
of time and input (d, x), where the number of weights is D|X|. Therefore, when the
number of samples is small compared with the number of input elements |X|, the
weight estimation might not be robust because of data sparseness. On the other
hand, we can robustly estimate weights with the proposed method because the
weights depend only on time d, where the number of weights is D. The advantage
of weighting of Equation (2.28) is that it can adjust weights according to the input
when data distributions are partly similar and partly dissimilar to the present data
over the input space.

Alternatively, if the output distributions are different P (y|d) 6= P (y|D), and the
conditional probabilities remain unchanged P (x|y, d) = P (x|y, D), a method that
weights samples depending on the ratio of the output distributions:

w(d, y) =
P (y|D)

P (y|d)
, (2.31)
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has been proposed [35].
We consider the relationship between the proposed method and the importance

weighted method in detail. The joint distribution at D can be calculated using the
joint distribution for each time and the likelihood ratio as follows:

P (x, y|D) =
1

D

D∑

d=1

P (x, y|D)

P (x, y|d)
P (x, y|d). (2.32)

However, this is useless because the joint distribution at D is needed in the likeli-
hood ratio. Under the covariate shift, P (y|x, d) = P (y|x, D), the above equation
can be rewritten as follows:

P (x, y|D) =
1

D

D∑

d=1

P (x|D)

P (x|d)
P (x, y|d). (2.33)

Therefore, the ratio between input likelihoods is used for the weight in the impor-
tance weighted method, in which the input likelihoods P (x|d) are usually estimated
individually. On the other hand, in the proposed method, the ratio between joint
likelihoods is parameterized by one parameter P (d) as follows:

P (d) =
1

D

P (x, y|D)

P (x, y|d)
, (2.34)

where the parameter does not depend on input x and output y. The parameters
P = {P (d)}D

d=1 are estimated so as to approximate the joint distribution at D
without estimating distributions explicitly.

2.5 Experimental results

2.5.1 Synthetic data

We evaluated the proposed method using the following four sets of synthetic data:

• Periodic: The distribution changes periodically. A sample at time d is gen-
erated from the following distribution:

P (x, y|d) =
exp(πx,y,d)∑

x′∈X

∑
y′∈Y exp(πx′,y′,d)

, (2.35)

where πx,y,d is sampled from πx,y,d ∼ N (0, γ0) if 0 ≤ d ≤ C − 1, πx,y,d =
πx,y,d mod C otherwise, and N (µ, σ2) represents a Gaussian with mean µ and
variance σ2. Here, γ0 = 1.0, and C = 7.
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• Random: The distribution changes randomly. First, {πg
x,y}G

g=1 are sampled
from πg

x,y ∼ N (0, γ0). Then, at each time a random integer r with range [1, G]
is sampled, and a sample is generated as follows:

P (x, y|d) =
exp(πr

x,y)∑
x′∈X

∑
y′∈Y exp(πr

x′,y′)
. (2.36)

Here, G = 7. This data can be also generated by randomly permutating
Periodic data over time.

• Gradual: The distribution changes gradually with time. In (2.35), πx,y,d is
sampled from πx,y,d ∼ N (0, γ0) if t = 0, πx,y,d ∼ N (πx,y,d−1, γ) otherwise.
Here, γ = 0.1.

• Drastic: The distribution changes drastically every τ . In (2.35), πx,y,d is
sampled from πx,y,d ∼ N (0, γ0) if d mod τ = 0, πx,y,d = πx,y,d−1 otherwise.
Here, τ = 30.

We assumed that X and Y consist of ten kinds of symbols, and therefore P (x, y|d)
has 100 values at each d, as shown in Figure 2.2. Here, D = 100.

Empirical distributions with leave-one-out cross-validation were used as model
distributions, as follows:

P̂ (x, y|d) =
M(d, x, y) − δd,D

M(d) − δd,D

, (2.37)

where M(d, x, y) is the number of samples at d with input x and output y. In
addition, δd,D is Kronecker’s delta, i.e., δd,D = 1 if d = D and 0 otherwise, and is
used for the leave-one-out cross-validation, where we simply subtract one from both
of the numbers of samples M(d, x, y) and M(d) for the empirical distribution at the
present time D. For practical reasons, we introduce Laplace smoothing parameter
α = 10−8 to avoid the zero probability problem when we estimate the empirical
distribution. The first order Markov model was used as model M, assuming that x

is the item purchased just before item y, and the negative log likelihood was used
as error function J(x, y;M). The weighted error to be minimized is as follows:

E
(
{R(sj|si)}

)
= −

M∑

m=1

w(dm) log R(ym|xm), (2.38)

where R(sj|si) is the probability of purchasing item sj after item si (0 ≤ R(sj|si) ≤
1,

∑
s∈S R(s|si) = 1), and X = S, Y = S in this case. Parameters {R(sj|si)}
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Figure 2.2: Examples of distributions of synthetic data.
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that minimize the weighted error can be obtained by the following equation with
Laplace smoothing parameter β:

R̂(sj|si) =

∑M
m=1 I

(
(xm = si) ∧ (ym = sj)

)
w(dm) + β

∑M
m=1 I(xm = si)w(dm) + βV

, (2.39)

where we used β = 10−2 in the experiments.

The following six weighting methods were compared:

• MCW : Mixture Coefficient Weighting (proposed method).

• Exp : Exponential decay (2.27).

• Input : Ratio of input likelihoods (2.28).

• Output : Ratio of output likelihoods (2.31).

• NoWeight : No weight. w(d) = 1 for all d.

• Present : Only samples at the present time have weight. w(D) = 1 and
w(d 6= D) = 0.

The hyper-parameter λ in Exp was estimated using a golden section search [46],
which is an optimization method for one-dimensional parameters, with 10-fold cross-
validation. Note that the range of the search was [0, 10]. The likelihood ratio was
determined using the empirical distributions in Input and Output.

Six sets of learning samples were generated, in which the numbers of samples
at each time were 64, 128, 256, 512, 1,024, and 2,048, respectively. The number of
test samples was 8,192. We evaluated the predictive performance of each method
from the perplexity of the held-out data at the present time D:

Perp(D) = exp

(
− 1

M(D)

∑

m:dm=D

log R(ym|xm)

)
. (2.40)

A lower perplexity represents higher predictive performance. We generated 100
evaluation data sets with different P (x, y|d) for Periodic, Random, Gradual, and
Drastic data. Table 2.1 shows the average perplexities over the 100 evaluation sets.
The value in parentheses is the average of the ratio of the perplexities between
MCW and the other method, which is defined as follows:

ratio(D) =
PerpMCW(D)

Perpmethod(D)
, (2.41)
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where Perpmethod(D) represents the perplexity of the method. The value after ±
in the table represents the standard deviation. The method is better than the
proposed method if ratio(D) > 1.

The perplexities of the proposed method in the Periodic and Random data
are the lowest for all numbers of learning samples. This result indicates that the
proposed method performs well when some time points whose distributions are
similar to the present time exist in the past, even if the locations of the similar
time points are random. On the other hand, the perplexities of Exp in the Periodic
and Random data are high because temporarily close points do not have similar
distributions to the present time in these data. It is obvious that the exponential
decay method, in which the weight changes with a constant ratio, is best suited
to the gradually changing data, and the perplexity of Exp in the Gradual data is
in fact the lowest. The proposed method exhibits almost the same performance
as Exp, even for the Gradual data. With the Drastic data, the perplexities of
the proposed method and Exp are comparable. This is reasonable because the
distribution is the same when the time is close to the present time in both the
Drastic and Gradual data, and this characteristic can be approximated by Exp, as
well as by the proposed method. Since the joint distributions of both input and
output change in all data, the performance of Input and Output that assume only
input or output distribution changes is not high. The perplexity of NoWeight does
not decrease with the number of learning samples. This is because NoWeight uses
the samples at different time points, where their distributions are not the same as
that at the present time. The perplexity of Present is high when the number of
learning samples is small and decreases as the number of learning samples increases,
and when the number of samples at D is sufficient, the performance approaches that
of the proposed method. Since the proposed method does not explicitly model the
change of distribution, it can handle various kinds of distribution changes, and this
results in high predictive performance for almost all data sets.

Figure 2.3 and Figure 2.4 show the estimated weights of Periodic, Random,
Gradual, and Drastic data when the numbers of learning samples at each time
are 256 and 2,048, respectively. Note that the weights are normalized so that the
maximum is one. In the Periodic data, the weights have periodically high weights
every seven time points. In the Gradual data, the weights gradually decay as the
time diverges from the present time. In the Drastic data, only the weights after
d = 90 have high values. These results show that the estimated weights describe the
characteristics of given data, although the estimated weights have some variance
when there are fewer learning samples.

In addition, the proposed method was evaluated while changing the number
of learning samples at D while fixing the number at other time points d 6= D.
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Table 2.1: Perplexities for synthetic data with different numbers of learning samples
at each time. The value in parentheses is the ratio of the perplexities between MCW
and the other method with the standard deviation. The bold values represent those
that were lower than others statistically significantly at the one-sigma level.

(a) Periodic
M(d) MCW Exp Input Output NoWeight Present

64 7.72 9.44 (.82±.06) 9.34 (.83±.06) 9.85 (.79±.08) 9.29 (.83±.05) 24.25 (.33±.06)
128 7.10 8.73 (.81±.04) 9.27 (.76±.04) 9.18 (.77±.04) 9.24 (.77±.04) 15.02 (.48±.05)
256 6.87 7.91 (.87±.02) 9.25 (.74±.04) 9.00 (.76±.03) 9.22 (.74±.04) 10.24 (.68±.05)
512 6.77 7.36 (.92±.01) 9.24 (.73±.04) 8.90 (.76±.03) 9.22 (.73±.04) 8.10 (.84±.03)
1024 6.73 7.03 (.96±.01) 9.24 (.73±.04) 8.86 (.76±.03) 9.21 (.73±.04) 7.23 (.93±.02)
2048 6.72 6.87 (.98±.01) 9.24 (.73±.04) 8.84 (.76±.03) 9.22 (.73±.04) 6.91 (.97±.01)

(b) Random
M(d) MCW Exp Input Output NoWeight Present

64 7.65 9.17 (.84±.07) 9.39 (.81±.05) 9.81 (.79±.08) 9.30 (.82±.05) 23.12 (.34±.05)
128 7.07 8.59 (.83±.06) 9.36 (.76±.05) 9.20 (.77±.04) 9.28 (.76±.04) 14.95 (.48±.05)
256 6.83 7.85 (.87±.04) 9.33 (.73±.05) 9.00 (.76±.04) 9.25 (.74±.04) 10.25 (.67±.05)
512 6.73 7.28 (.92±.02) 9.32 (.72±.04) 8.91 (.76±.04) 9.24 (.73±.04) 8.00 (.84±.03)
1024 6.70 6.96 (.96±.01) 9.31 (.72±.04) 8.87 (.75±.04) 9.23 (.73±.04) 7.17 (.93±.02)
2048 6.68 6.82 (.98±.01) 9.31 (.72±.04) 8.84 (.76±.04) 9.23 (.72±.04) 6.86 (.97±.01)

(c) Gradual
M(d) MCW Exp Input Output NoWeight Present

64 7.89 7.15 (1.11±.05) 7.59 (1.04±.05) 8.17 (.98±.10) 7.59 (1.04±.05) 22.67 (.36±.06)
128 7.22 6.99 (1.03±.02) 7.54 (.96±.03) 7.64 (.95±.03) 7.56 (.96±.03) 15.00 (.49±.06)
256 6.95 6.87 (1.01±.01) 7.52 (.92±.02) 7.49 (.93±.02) 7.54 (.92±.02) 10.18 (.69±.05)
512 6.83 6.80 (1.00±.00) 7.51 (.91±.02) 7.42 (.92±.02) 7.53 (.91±.02) 8.08 (.85±.03)
1024 6.76 6.75 (1.00±.00) 7.50 (.90±.02) 7.39 (.92±.02) 7.53 (.90±.02) 7.16 (.95±.02)
2048 6.73 6.73 (1.00±.00) 7.50 (.90±.02) 7.37 (.91±.02) 7.52 (.90±.02) 6.86 (.98±.01)

(d) Drastic
M(d) MCW Exp Input Output NoWeight Present

64 7.74 7.39 (1.05±.05) 10.25 (.76±.06) 10.70 (.73±.08) 10.21 (.76±.06) 22.21 (.36±.06)
128 7.09 7.01 (1.01±.02) 10.19 (.70±.05) 10.00 (.71±.05) 10.18 (.70±.05) 14.89 (.49±.06)
256 6.80 6.83 (1.00±.01) 10.17 (.67±.05) 9.76 (.70±.04) 10.16 (.67±.05) 10.18 (.67±.05)
512 6.69 6.73 (.99±.00) 10.17 (.66±.05) 9.64 (.69±.04) 10.15 (.66±.04) 7.97 (.84±.04)
1024 6.64 6.67 (1.00±.00) 10.16 (.65±.05) 9.59 (.69±.04) 10.15 (.65±.04) 7.10 (.94±.02)
2048 6.62 6.64 (1.00±.00) 10.16 (.65±.05) 9.58 (.69±.04) 10.15 (.65±.04) 6.79 (.98±.01)

23



Table 2.2: Perplexities for synthetic data with different numbers of learning samples
at D. The number of learning samples at d 6= D is 2,048. The value in parentheses is
the ratio of the perplexities between MCW and the other method with the standard
deviation.

(a) Periodic
M(d) MCW Exp Input Output NoWeight Present

64 6.81 9.54 (.72±.06) 9.30 (.73±.04) 10.01 (.70±.09) 9.22 (.74±.04) 23.45 (.30±.06)
128 6.77 8.93 (.76±.04) 9.30 (.73±.04) 9.14 (.74±.04) 9.22 (.73±.03) 15.09 (.45±.05)
256 6.72 7.94 (.85±.03) 9.29 (.72±.04) 8.95 (.75±.04) 9.22 (.73±.03) 10.27 (.66±.05)
512 6.70 7.34 (.91±.01) 9.28 (.72±.04) 8.87 (.76±.03) 9.21 (.73±.03) 8.10 (.83±.03)
1024 6.70 7.00 (.96±.01) 9.27 (.72±.04) 8.82 (.76±.03) 9.19 (.73±.03) 7.21 (.93±.02)

(b) Random
M(d) MCW Exp Input Output NoWeight Present

64 6.79 8.88 (.78±.11) 9.27 (.73±.05) 10.07 (.69±.09) 9.20 (.74±.04) 22.73 (.31±.05)
128 6.73 8.50 (.80±.09) 9.27 (.73±.04) 9.20 (.73±.05) 9.19 (.73±.04) 15.08 (.45±.06)
256 6.69 7.73 (.87±.05) 9.26 (.72±.04) 8.97 (.75±.04) 9.19 (.73±.04) 10.18 (.66±.05)
512 6.67 7.22 (.92±.03) 9.25 (.72±.04) 8.89 (.75±.04) 9.18 (.73±.04) 8.06 (.83±.04)
1024 6.66 6.93 (.96±.01) 9.24 (.72±.04) 8.82 (.76±.04) 9.16 (.73±.04) 7.15 (.93±.02)

(c) Gradual
M(d) MCW Exp Input Output NoWeight Present

64 6.87 6.81 (1.01±.02) 7.44 (.92±.03) 8.27 (.85±.10) 7.45 (.92±.03) 23.56 (.30±.05)
128 6.78 6.75 (1.01±.01) 7.43 (.91±.02) 7.56 (.90±.03) 7.45 (.91±.02) 14.94 (.46±.05)
256 6.74 6.72 (1.00±.01) 7.43 (.91±.02) 7.42 (.91±.02) 7.45 (.91±.02) 10.09 (.67±.05)
512 6.72 6.70 (1.00±.00) 7.43 (.90±.02) 7.36 (.91±.02) 7.45 (.90±.02) 8.00 (.84±.03)
1024 6.70 6.70 (1.00±.00) 7.42 (.90±.02) 7.33 (.92±.02) 7.44 (.90±.02) 7.14 (.94±.02)

(d) Drastic
M(d) MCW Exp Input Output NoWeight Present

64 6.66 6.65 (1.00±.01) 10.33 (.65±.06) 11.45 (.61±.10) 10.33 (.65±.05) 22.86 (.30±.06)
128 6.63 6.62 (1.00±.01) 10.33 (.64±.06) 9.98 (.66±.05) 10.33 (.64±.05) 14.66 (.46±.05)
256 6.60 6.61 (1.00±.00) 10.33 (.64±.06) 9.79 (.68±.05) 10.33 (.64±.05) 10.10 (.66±.05)
512 6.58 6.60 (1.00±.00) 10.31 (.64±.06) 9.70 (.68±.05) 10.31 (.64±.05) 7.93 (.83±.03)
1024 6.58 6.60 (1.00±.00) 10.28 (.64±.06) 9.62 (.68±.05) 10.27 (.64±.05) 7.08 (.93±.02)
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Figure 2.3: Estimated weights for synthetic data when the number of learning
samples at each time is 256.

We generated sets of learning samples, in which the numbers of samples at D are
64, 128, 256, 512, and 1,024, respectively, and the number at other time points
d 6= D is 2,048. Table 2.2 shows the average perplexities over the 100 evaluation
sets. The perplexities of the proposed method were low compared with those of
other methods, especially as regards the Periodic and Random data. Compared
with results for fewer learning samples at d 6= D (Table 2.1), the perplexities of
the proposed method in the case of more samples at d 6= D were improved. One
reason for this is that the number of samples that can be used to learn the model
increases. Another reason is that the weights can be estimated robustly because

25



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

w
e
ig

h
t

time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100
w

e
ig

h
t

time

(a) Periodic (b) Random

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

w
e
ig

h
t

time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

w
e
ig

h
t

time

(c) Gradual (d) Drastic

Figure 2.4: Estimated weights for synthetic data when the number of learning
samples at each time is 2,048.

the variances of the estimated empirical distributions decrease when using more
learning samples at d 6= D.

Figure 2.5 shows the weights estimated when the number of learning samples at
D is 256 and the number at d 6= D is 2,048. By using more samples at other time
points, the estimated weights become stable in the sense that past time points that
have similar distributions have similar weights. The past weights were smaller than
that at the present time because the weight is divided by the number of samples
w(d) = P (d)/M(d).
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Figure 2.5: Estimated weights for synthetic data when the number of learning
samples at the present time is 256 and the number at other time points is 2,048.

As described in Section 2.3, the computational complexity of a single EM it-
eration for the weight estimation is O(M(D)D). That is, the computational time
increases linearly with the number of samples at the present time and the number of
time points. The computational time was measured experimentally on a PC having
a 3.6-GHz Xeon CPU with 2 GB of memory. Figure 2.6 shows the average com-
putational time over 100 Random data sets with the standard deviation changing
the number of samples from 200 to 2,000 (a), and changing the number of samples
at the present time from 200 to 2,000 while fixing the number at other times to
2,048 (b). The increase in the computational time is nearly linear with the number
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Table 2.3: Average perplexities for the cartoon purchase log. The value in paren-
theses is the ratio of perplexities between MCW and the other method with the
standard deviation.

MCW Exp Input Output NoWeight Present
32.18 33.73(.95±.06) 43.59(.75±.16) 46.21(.70±.12) 46.94(.71±.17) 75.95(.46±.11)

of samples at the present time, and this result is consistent with the theoretical
computational complexity. Note that this value includes the computational time
for model learning. The computational cost for model learning is far smaller than
the cost for weight estimation in this experiment. For example, approximately 0.05
seconds is required for learning the Markov model when the number of samples at
each time is 2,048. The Markov model can be learned quickly by simply counting
the numbers of samples. Since the proposed method simply weighs samples without
modifying the model, the fast learning feature of the Markov model is retained. Fig-
ure 2.6 (c) shows the computational time when the number of time points changes,
where the number of samples at each time is 512. The computational cost increases
linearly with the number of the time points. Figure 2.6 (d) shows the computational
time when the numbers of elements of input and output changes, where there are
512 samples at each time. The computational time does not increase despite the
increase in the number of elements. This result implies that the proposed weighting
method is efficient, even if the data is of very high dimension.

2.5.2 Real data

The proposed method was also evaluated using a real purchase log data set of a
cartoon downloading service for cell phones from 1 April 2005 to 31 March 2006.
The numbers of users, items, and transactions were 164,538, 175, and 1,018,741,
respectively. Here, a cartoon with several volumes was regarded as one item. Items
and users that appeared less than two times in the purchase histories were omitted.
If an item was purchased more than once by a user, only the first purchase was
considered. Assuming that the unit time was one day, we set the present time
D to each day from the start date to the end data and created 365 data sets.
Empirical distributions were used for model distributions, the first-order Markov
model was used for model M and the negative log likelihood was used for error
function J(x, y;M), as in the synthetic data experiments. The perplexity was used
for the evaluation measurements. For each D, the perplexity was evaluated by
10-fold cross-validation.

Table 2.3 shows the average perplexity over all days, Perp = 1
D̃

∑D̃
D=1 Perp(D),
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Figure 2.6: Computational time (second) of the proposed method changing (a) the
number of learning samples at each time, (b) the number of learning samples at
the present time, (c) the number of time points, and (d) the numbers of input and
output elements.

where D̃ is the number of D, or D̃ = 365 in this data. The value in parentheses is the
average of the ratio of perplexities between MCW and the other methods (2.41) with
the standard deviation. Figure 2.7 shows the daily ratio of perplexities. The average
perplexity of the proposed method is the lowest, and the daily perplexities are the
lowest for most days. This result indicates that the models that fit samples at the
present time can be learned appropriately using the proposed method. Although the
average perplexity of Exp is comparable to that of the proposed method, the ratios

29



 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250  300  350

ra
tio

 o
f 
p
e
rp

le
xi

tie
s

present time

Exp
Input

Output
NoWeight

Present

Figure 2.7: Daily ratio of perplexities between MCW and the other method for the
cartoon purchase log.

of perplexities between the proposed method and Exp after D = 154 were not higher
than one, which means that the daily perplexities of Exp after D = 154 were not
better than those of the proposed method. The old-time weights in Exp are likely
to be zero because the weights decay constantly. Therefore, Exp cannot effectively
use all of the past data when D is large. On the other hand, the proposed method
can use even data from a long time ago by tuning the weight at each time correctly,
and this feature resulted in lower perplexities for a larger D. The perplexities of
Input and Output, where samples at the same time can have different weights, are
higher than those of the methods that can have a constant weight in samples at the
same time, i.e., MCW and Exp. If the true distribution P (x|d) or P (y|d) is known
at each time, and the assumption of the covariate shift is true, the perplexities of
Input and Output should be lower. However, since it is difficult to estimate the
true distributions correctly, and the assumption of the covariate shift might not
hold, their perplexities were high. Since the proposed method uses weights that
depend only on time, and the number of weights is smaller than those of Input
and Output, the weight estimation is more robust. The perplexity of Present is the
highest, which is reasonable because there are few training samples.

Figure 2.8 shows the daily share of items, which represents the percentage of
transactions for each item each day. The shares vary from day to day, which means
that the cartoon data are indeed dynamically changing data. The perplexities
of the proposed method and Present tend to decrease on days when the share
changes significantly, while that of NoWeight tends to increase on these days. As
an example, in the period shown in Figure 2.9 and Figure 2.10, a new item was
released on the 119th day, and the share changed greatly on that day. Most items
that increased their shares were newly released items. Since data for newly released
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Figure 2.8: Daily share of items in the cartoon purchase log.

items are scarce, the performance of NoWeight that treats all samples equally is
likely to be low. On the other hand, since Present emphasizes the present day,
Present performs well when there is a new release. However, the perplexity of
Present is usually high because it uses relatively fewer samples for training, as
compared to the other methods. The proposed method can automatically adapt
the weights using the daily distribution information so as to use samples only on
the present day if an item is newly released. The proposed method can also use
past samples if the share remains unchanged.

Figures 2.11 (a) and (b) show the weights obtained using the proposed method,
where the present time is the 118th day and 119th day, respectively. Since a new
item was released on the 119th day, and the share changed significantly on that
day, weights excluding the present time are almost zero. On the other hand, some
weights in the 118th data set have volume even on past days.

2.6 Summary

In this chapter, a theoretical framework was proposed for better model learning at
the present time by effectively using past data, in which the samples are weighted
depending on the time generated. The weights are determined as the mixture coef-
ficients of a mixture of the empirical distributions through time that approximates
the distribution at the present time. Using the proposed method, models can be
learned robustly using past samples as well with adequate weights. Experiments
using synthetic data sets and a real log data set of an online cartoon downloading
service have demonstrated that the proposed method could fit the model at the
present time.

Experiments have demonstrated the effectiveness of the proposed method using
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Figure 2.9: Daily perplexities for the cartoon purchase log from the 110th day to
the 120th day.
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Figure 2.10: Daily share in the cartoon purchase log from the 110th to the 120th
day.

purchase log data. The proposed method can also be applied to various kinds of
dynamically changing data, such as news stories, scientific articles, and web surfing
data, where a sufficient number of samples are generated at each time. Simple
Markov models were used as the models in the experiments. Further verification
of the proposed method by applying it to other types of data and other types of
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Figure 2.11: Estimated weights for the cartoon purchase log on the 118th day (a),
and on the 119th day.

models is necessary.

The proposed method was introduced as a method to learn models for dynam-
ically changing data, assuming that d is time. By considering that d is another
discrete variable, the proposed method can be used for other types of problems,
such as domain adaptation [13, 12] and multi-task learning [62]. For example, d

could be the country of the user, and we could fit the model to domestic users by
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using the data of users in other countries with weights determined by the proposed
method. Domain adaptation techniques are used in spam filtering [5] or natural
language processing [12, 31], for example. In the future, the application area of the
proposed method will be investigated extensively.
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Chapter 3

Efficient choice model using
temporal purchase order
information

3.1 Introduction

In the previous chapter, a framework for learning models that can accurately pre-
dict present data was proposed. Efficiency is an important issue for recommender
systems because the systems require frequent update to maintain high accuracy by
handling a large number of purchase log data that are accumulated day by day. In
this chapter, a computationally efficient probabilistic choice model that considers
temporal purchase order information, which can be used for recommendations by
suggesting an item that maximizes the choice probability, is proposed.

Most recommendation methods do not consider the order in which items are
purchased [50, 53]. However, the recent purchase history can be more informative
than the early purchase history for predicting the next purchase item. For example,
when the first volume of a series of DVD movies is purchased, the next purchase
might be the second volume. Moreover, since the interests of some users change,
their early purchase histories would not be useful for predicting the next item.
For computational efficiency, some methods consider only the previously purchased
item [28, 33], and disregard a lot of purchased item information.

In some recommendation methods, rating or item information is used as the
input. However, it is often difficult for stores to obtain such information. For
example, stores need to ask their users to evaluate items for the purpose of collecting
rating data sets. On the other hand, online stores that actually sell items usually
already have purchase histories. In such cases, purchase histories constitute basic
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data for online stores, and the focus herein is choice models that depend on purchase
histories.

Markov models and maximum entropy models are used for choice modeling [32],
as methods that take sequential information into account. Although we can esti-
mate and update the parameters of Markov models efficiently, their predictive per-
formance is limited. On the other hand, maximum entropy models incur greater
computational cost for the estimation of their parameters, but their predictive
performance is high. The proposed method achieves low computational cost and
high predictive performance by combining multiple simple Markov models using
the maximum entropy principle. The parameters of the proposed method can be
updated quickly. Fast parameter update is important for online stores because a
large number of purchase histories are accumulated at any given moment.

The remainder of this chapter is organized as follows. In Section 3.2, the Markov
models and maximum entropy models that are basis of the proposed method are
described. In Section 3.3, an efficient choice model that uses sequential information
is presented. In Section 3.4, a brief description of related research is presented. In
Section 3.5, the proposed method is evaluated using three sets of log data of online
music, movie, and cartoon distribution services, and the low computational cost
and high predictive performance are demonstrated. In the last section, this chapter
is summarized and future research is described.

3.2 Conventional methods

3.2.1 Markov models

Markov models are widely used as probabilistic models that can employ sequential
information. In an Lth Markov model, the next purchase item depends on the
previous L purchased items as follows:

R(sk|uk) = R(sk|sk−1, · · · , sk−L), (3.1)

where sk is the kth purchase item and uk = (s1, · · · , sk−1) is the purchase history
at the kth purchase. The probability of purchasing item sk given purchase history
uk in the Lth Markov model can be written as the following equation using the
maximum a posteriori (MAP) estimation:

R̂(sk|uk)=

∑N
n=1

∑Kn

v=L+1 I
(
(sk =snv) ∧ (sk−1 =sn,v−1) ∧ · · · ∧ (sk−L =sn,v−L)

)
+ β

∑N
n=1

∑Kn

v=L+1 I
(
(sk−1 =sn,v−1) ∧ · · · ∧ (sk−L =sn,v−L)

)
+ βV

,

(3.2)
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where V is the number of items, and β is a hyper-parameter that can be estimated
by a leave-one-out cross-validation. The denominator and numerator represent the
number of purchase sequences (sk, · · · , sk−L) and (sk−1, · · · , sk−L) in the purchase
histories of all users, respectively.

Since the parameter of the Markov model can be written as above in a closed
form and the model can be calculated solely by a simple summation, its compu-
tational cost for estimation is low. Moreover, its parameter can be easily updated
after new data are added to the training data set, as described hereinafter. First,
we count and memorize the numbers of purchase sequences in the data that cor-
respond to the denominator and numerator in (3.2). Then, when new data are
added, we simply add the numbers of sequences in the new data to the counts in
memory. In this process, we do not need to read the existing data again. However,
the robust estimation of high-order Markov models is difficult because the number
of parameters of the Lth Markov model is O(V L+1) and the number becomes huge
compared with the number of training samples for high-order Markov models.

We can reduce the number of parameters of a Markov model by assuming the
conditional independence of the l-previous purchased item sk−l and the l′-previous
purchased item sk−l′ given sk as follows:

R(sk−1, · · · , sk−L|sk) =
L∏

l=1

Rl(sk−l|sk), (3.3)

in which we still use information of L previous purchased items. Here, Rl(s
′|s)

is referred to as an l-gapped Markov model, which represents a probability that
the l-previous purchased item is s′, given that the present purchased item is s.
In accordance with the Bayes rule, the probability of purchasing item sk given
purchase history uk becomes as follows with the L gapped Markov models assuming
the conditional independence:

R(sk|uk) =
R(sk)R(sk−1, · · · , sk−L|sk)∑
s∈S R(s)R(sk−1, · · · , sk−L|s)

=
R(sk)

∏L
l=1 Rl(sk−l|sk)∑

s∈S R(s)
∏L

l=1 Rl(sk−l|s)
, (3.4)

where R(s) is the prior probability of purchasing item s. The number of parameters
in this model is O(LV 2), and it is far smaller than the number of the normal Markov
model O(V L+1) in the high-order case. The MAP estimation of the prior is as
follows:

R̂(sk) =

∑N
n=1

∑Kn

v=L+1 I(sk = snv) + β
∑N

n=1 Kn − NL + βV
, (3.5)
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where the denominator is the number of purchases, and the numerator is the number
of item sk purchases. The MAP estimation of the l-gapped Markov model is as
follows:

R̂l(sk−l|sk) =

∑N
n=1

∑Kn

v=L+1 I
(
(sk = snv) ∧ (sk−l = sn,v−l)

)
+ β

∑N
n=1

∑Kn

v=L+1 I(sk = snv) + βV
, (3.6)

where the denominator is the number of item sk purchases, and the numerator is
the number of a purchase pattern in which the l-previous item of sk is item sk−l.

3.2.2 Maximum entropy models

The maximum entropy model estimates a probability distribution that maximizes
entropy under the constraints in the given data, and this model has been used
in various fields of research such as collaborative filtering [33, 43, 64] and natural
language processing [42, 49]. In the maximum entropy model, the probability of
purchasing item sk given purchase history uk is as follows:

R(sk|uk) =
1

Z(uk)
exp

(∑

c∈C

αcyc(uk, sk)
)
, (3.7)

where c is a feature index, C is a set of feature indices, αc is an unknown pa-
rameter to be estimated, yc is a feature of the purchase history, and Z(uk) =∑

s∈S exp
(∑

c∈C αcyc(uk, s)
)

is the normalization term. We use the following l-

previous purchased item as the feature for considering sequential information:

ylij(uk, sk) =

{
1 if si = sk−l and sj = sk,

0 otherwise.
(3.8)

The unknown parameters α = {αc}c∈C can be estimated by maximizing the
following log likelihood L(α) using optimization techniques such as quasi-Newton
methods [37]:

L(α) =
N∑

n=1

Kn∑

k=1

log R(snk|unk)

=
N∑

n=1

Kn∑

k=1

∑

c∈C

αcyc(unk, snk)

−
N∑

n=1

Kn∑

k=1

log
∑

s∈S

exp
(∑

c∈C

αcyc(unk, s)
)
, (3.9)
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In maximum entropy models, we can obtain a global optimum solution. By using
a Gaussian prior with a zero mean on unknown parameter αc, overfitting can be
reduced [9]. A Gaussian prior is used in the present experiments. See Appendix A.2
for details of the parameter estimation.

In some cases, discriminative models such as maximum entropy models have
higher predictive performance than generative models such as Markov models [48],
and it has been experimentally confirmed in the collaborative filtering problem [32].
However, an iterative optimization method such as a quasi-Newton method is re-
quired for the parameter estimation in the maximum entropy model, and this model
incurs a high computational cost for its parameter estimation and updating as the
number of parameters increases compared with Markov models.

3.3 Proposed method

A choice model that achieves high computational efficiency comparable to that of
Markov models and high predictive performance comparable to that of maximum
entropy models is proposed by integrating multiple gapped Markov models using the
maximum entropy principle. First, we estimate the prior probability of purchasing
item sk, R(sk), using Equation (3.5), and the l-gapped Markov models, Rl(sk−l|sk),
l = 1, · · · , L, using Equation (3.6). We use their log likelihoods as features of the
maximum entropy model:

y0(uk, sk) = log R̂(sk), (3.10)

yl(uk, sk) = log R̂l(sk−l|sk), l = 1, · · · , L. (3.11)

This means that we maximize the entropy under the constraints that the expecta-
tions of their log likelihoods with the empirical distribution and with model R(sk|uk)
are the same as follows:

N∑

n=1

Kn∑

k=1

log R̂(snk) =
N∑

n=1

Kn∑

k=1

∑

s∈S

R(s|unk) log R̂(s), (3.12)

N∑

n=1

Kn∑

k=l+1

log R̂l(sn,k−l|snk) =
N∑

n=1

Kn∑

k=l+1

∑

s∈S

R(s|unk) log R̂l(sn,k−l|s). (3.13)

Then, we obtain the probability of item sk given purchase history uk:

R(sk|uk) =
1

Z(uk)
exp

(
α0 log R̂(sk) +

L∑

l=1

αl log R̂l(sk−l|sk)
)
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Figure 3.1: Hybrid model of multiple gapped Markov models with weights.

=
1

Z(uk)
R̂(sk)

α0

L∏

l=1

R̂l(sk−l|sk)
αl , (3.14)

where α = {αl}L
l=0 are unknown parameters, α0 represents the weight of the prior

probability, αl represents the weight of the l-gapped Markov model, and Z(uk) =∑
s∈S exp

(
α0 log R̂(s) +

∑L
l=1 αl log R̂l(sk−l|s)

)
is the normalization term. If all of

the weights are equal to 1, αl = 1, l = 0, · · · , L, the proposed method coincides with
Equation (3.4), which assumes the conditional independence of L gapped Markov
models. Figure 3.1 shows a diagram of the proposed method.

We can obtain a global optimum solution for the unknown parameters α by
maximizing the log likelihood in the same way as in maximum entropy models. If we
estimate α using samples that are used in estimating the priors and gapped Markov
models, the estimated α is likely to overfit. To avoid overfitting, we estimate α

by C-fold cross-validation. First, we divide a set of user indices N = {n}N
n=1

into C subsets of user indices, {Nc}C
c=1, and estimate prior R̂(sk; N−c) and gapped

Markov model R̂l(sk−l|sk; N−c) employing a user subset N−c = {Nj}j 6=c for each c
as follows:

R̂(sk; N−c) =

∑
n∈N−c

∑Kn

v=1 I(sk = snv) + β
∑

n∈N−c
Kn + βV

, (3.15)

R̂l(sk−l|sk; N−c) =

∑
n∈N−c

∑Kn

v=l+1 I
(
(sk = snv) ∧ (sk−l = sn,v−l)

)
+ β

∑
n∈N−c

Kn − |Nc|l + βV
. (3.16)
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Then, by maximizing the summation of the log likelihood of Nc that have not been
used for estimating the priors and gapped Markov models:

L(α) =
C∑

c=1

∑

n∈Nc

Kn∑

k=1

log R(snk|unk; N−c), (3.17)

we can obtain unknown parameters α, where

R(sk|uk; N−c) =
1

Z(uk)
R̂(sk; N−c)

α0

L∏

l=1

R̂l(sk−l|sk; N−c)
αl . (3.18)

In the experiments, we used a Gaussian prior with mean 0 for unknown parameters
α.

The number of parameters in the proposed method is LV (V − 1) + V + L. We
can quickly estimate and update LV (V − 1) + V − 1 parameters that correspond
to the prior probabilities and L gapped Markov models, as described above. The
number of parameters that incur a high computational cost for estimation is only
L + 1, which is corresponds to the weights α. Therefore, the total computation
time is much less than that needed for standard maximum entropy models with
features considering sequential information that have O(LV 2) costly parameters.

We can further reduce the computational cost by updating only the priors and
gapped Markov models while fixing weights α. Although the priors and gapped
Markov models are likely to change based on the new release of items and changes
in trends, weights α are not likely change rapidly due to the addition of new data.

3.4 Related research

The integration of generative models by using the maximum entropy principle has
been proposed for a document classifier that has multiple components, such as
title, author, and references [18, 48]. In the proposed method, generative models
are integrated in order to take sequential information into account and to realize
fast parameter estimation and updating.

For the robust estimation of high-order Markov models, deleted interpolation
has been proposed in language modeling, which interpolates a Markov model using
multiple lower order Markov models [29]. In deleted interpolation, a huge memory
is needed for high-order Markov models. In language modeling, the regularity of
word sequences is high because they are restricted by grammar, and high-order
Markov models are needed. On the other hand, since the regularity of purchase
sequences is lower than that of word sequences, multiple gapped Markov models are
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Table 3.1: Start dates, end dates, numbers of users, items, and transactions of
evaluation data sets.

start end #users #items #transactions
Music4 2005/4/1 2005/4/30 247 132 1,508
Music5 2005/4/1 2005/5/31 1,120 348 7,588
Music6 2005/4/1 2005/6/30 2,104 561 15,216
Movie 2007/1/1 2007/1/1 3,085 1,569 25,363

Cartoon1 2005/4/1 2006/1/31 42,184 153 453,386
Cartoon2 2005/4/1 2006/2/28 53,830 161 599,196
Cartoon3 2005/4/1 2006/3/31 69,217 175 808,182

used instead of high-order Markov models. A mixture of gapped Markov models
is proposed in [47, 54]. The mixture coefficients and gapped Markov models are
estimated using the EM algorithm [14], which requires iterative procedures.

3.5 Experiments

3.5.1 Data sets

The proposed method was evaluated experimentally using three sets of purchase
log data, related music, movies, and cartoons.

The music data were purchase history log data of an online music distribution
service. Three sets of music data, which were log data from 1 April 2005 to 30
April 2005, 31 May 2005, and 30 June 2005 were constructed and referred to as
Music4, Music5, and Music6, respectively. The movie data were purchase history
log data of an online movie distribution service for 1 January 2007. The cartoon
data were purchase history log data of a cartoon distribution service for cell phones.
Three sets of cartoon data, which were log data from 1 April 2005 to 31 January
2006, 28 February 2006, and 31 March 2006, were constructed and are referred
to as Cartoon1, Cartoon2, and Cartoon3, respectively. Here, a cartoon that had
several volumes was regarded as one item. From all of the data sets, items that
occurred fewer than ten times and users that occurred fewer than five times in the
purchase histories of all users were omitted. If an item was purchased more than
once by a user, purchases after the second purchase were omitted. Table 3.1 shows
the number of users, items, and transactions for music, movie, and cartoon data
sets. The last purchase item of each user was predicted, and the purchase histories
excluding the last purchase items were used as training data. Here, samples that
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were not present in the training data were omitted from the test data.

3.5.2 Compared methods

The following eight models were compared with the proposed method (OurMethod).

• Markov1: 1st-order Markov model. L = 1 in Equation (3.2).

• Markov2: 2nd-order Markov model. L = 2 in Equation (3.2).

• Markov3: 3rd-order Markov model. L = 3 in Equation (3.2).

• GapMarkov: Combination of gapped Markov models with the assumption of
their conditional independence. Equation (3.4).

• MaxEntSeq: Maximum entropy model with features considering sequential
information as in Equation (3.8).

• MaxEnt: Maximum entropy model with features not considering sequential
information as follows:

yij(uk, sk) =

{
1 if si ∈ uk and j = sk

0 otherwise,
(3.19)

where uk = {sv}v−1
v=1 is the set of purchased items, and the feature represents

whether an item has been purchased.

• Cosine: Item-based collaborative filtering based on the cosine similarity [53].
The cosine similarity between item si and item sj is defined as follows:

sim(si, sj) = cos(ri, rj) =
rT

i rj

‖ ri ‖‖ rj ‖
, (3.20)

where ri = (ri1, · · · , riN)T is a column vector that represents the users who
purchased item si, in which

rin =

{
1 if user un,

0 otherwise,
(3.21)

and ‖ · ‖ is the Euclidean norm. The probability of purchasing item s is pro-
portional to the summation of the cosine similarities of items in the purchase
history uk, as follows:

R(sk|uk) ∝
∑

s∈uk

sim(sk, s), (3.22)
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which implies that items similar to purchased items are likely to be purchased.
This method is mainly used for the prediction of unknown ratings. The
number of parameters is O(V 2). Although user-based collaborative filtering
methods, which use similarities between users instead of items, have been also
proposed [50], these methods require more computational time and memory
in general.

• PLSA: Probabilistic latent semantic analysis [21, 23, 24], in which the prob-
ability that user u purchases item s is as follows:

R(s|u) =
Z∑

z=1

P (s|z)P (z|u), (3.23)

where z is a latent class, Z is the number of latent classes, P (s|z) is the prob-
ability that a user in class z purchases item s, and P (z|u) is the probability
that user u belongs to class z. The probabilities P (s|z) and P (z|u) can be
estimated by maximizing the following likelihood:

L =
N∑

n=1

Kn∑

k=1

log R(snk, un), (3.24)

using the EM algorithm, where

R(snk, un) =
Z∑

z=1

P (z)P (snk|z)P (un|z). (3.25)

This method is used for information retrieval and natural language processing
as well as collaborative filtering [22]. The number of parameters is O(NZ +
V Z).

• Mixture: Mixture of gapped Markov models [47, 54], in which the probability
of purchasing item sk is modeled by the convex combination of gapped Markov
models, as follows:

R(sk|uk) =
L∑

l=1

P (l)Rl(sk|sk−l), (3.26)

where P (l) ≥ 0 is the mixture coefficient,
∑L

l=1 P (l) = 1, and Rl(sk|sk−l) is
the probability of purchasing item sk given the l previous purchased item sk−l.

44



The mixture coefficients P (l) and probabilities Rl(sk|sk−l) can be estimated
by maximizing the following likelihood:

L =
N∑

n=1

Kn∑

k=1

log R(snk|unk), (3.27)

using the EM algorithm. The number of parameters is O(LV 2), which is the
same as that in the proposed method.

Markov, GapMarkov, MaxEntSeq, and OurMethod take sequential information
into account, whereas MaxEnt, Cosine and PLSA do not. MaxEnt uses the antero-
posterior relationship information because it directly models the posterior proba-
bility R(sk|uk) of item sk given purchase history uk. On the other hand, Cosine
and PLSA do not use even the anteroposterior relationship information because the
cosine similarity is symmetric sim(si, sj) = sim(sj, si) and PLSA models the joint
probability P (s, u) of item s and user u.

The weights α in OurMethod were estimated by 10-fold cross-validation (C =
10). The hyper-parameters β in Markov models, prior probabilities, and gapped
Markov models are estimated by leave-one-out cross-validation. See Appendix A.3
for the estimation with leave-one-out cross-validation. In maximum entropy models,
the following features, which represent an item’s popularity, were also used:

yi(uk, sk) =

{
1 if si = sk,

0 otherwise,
(3.28)

and their priors were Gaussian with mean 0 and variance 1.

3.5.3 Results

Table 3.2 and Table 3.3 show the accuracies and top-3 accuracies, respectively. The
predictive accuracy is calculated as follows:

Acc =
1

N

N∑

n=1

I
(
sn,Kn = ŝ′(un,Kn)

)
× 100, (3.29)

where ŝ′(u) is the predicted next purchase item as follows:

ŝ′(u) = arg max
s∈S−u

R(s|u), (3.30)

which is the highest purchase probability item. Here, S−u represents the set of items
other than items in purchase history u. The top-3 accuracy represents the rate at
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Table 3.2: Accuracies of choice models.

Music4 Music5 Music6 Movie Cartoon1 Cartoon2 Cartoon3
Markov1 15.7 12.8 11.4 39.1 15.8 16.2 16.1
Markov2 10.6 6.4 7.1 31.1 16.2 18.3 17.1
Markov3 2.1 1.4 2.0 30.1 10.4 14.4 14.4

GapMarkov 19.5(2) 12.9(1) 10.9(2) 39.4(1) 17.7(3) 20.7(4) 18.3(5)
MaxEntSeq 19.5(1) 14.7(8) 12.5(6) 38.7(3) 19.1(5) 21.8(6) 20.9(7)

MaxEnt 15.7 10.4 9.1 27.7 17.3 19.1 18.8
Cosine 8.9 5.7 4.6 5.4 8.9 8.4 8.4
PLSA 12.3(5) 8.3(5) 6.9(15) 6.1(50) 11.3(5) 8.8(5) 9.6(30)

Mixture 16.1(3) 12.8(1) 11.5(2) 39.5(7) 16.4(2) 16.7(2) 16.1(1)
OurMethod 19.5(2) 14.0(6) 12.9(8) 39.6(3) 19.5(10) 21.7(10) 19.6(10)

Table 3.3: Top-3 accuracies of choice models.

Music4 Music5 Music6 Movie Cartoon1 Cartoon2 Cartoon3
Markov1 30.5 24.7 21.9 44.4 29.1 29.6 28.8
Markov2 15.3 12.0 11.4 32.7 28.3 31.0 30.2
Markov3 2.1 3.2 3.3 31.0 17.8 22.6 23.5

GapMarkov 32.2(2) 24.3(2) 22.2(1) 44.3(1) 31.7(4) 34.4(4) 32.8(6)
MaxEntSeq 36.4(3) 28.0(3) 25.0(3) 43.9(3) 34.5(7) 36.7(7) 35.6(8)

MaxEnt 25.4 22.6 18.4 35.3 34.1 35.0 33.4
Cosine 17.4 14.4 12.1 10.3 17.9 17.3 18.3
PLSA 26.7(10) 19.6(25) 14.7(15) 13.5(50) 22.9(40) 21.5(5) 23.8(30)

Mixture 31.4(3) 24.7(1) 23.2(6) 44.7(10) 30.1(2) 31.6(2) 30.1(2)
OurMethod 34.7(6) 27.6(7) 25.6(10) 45.0(6) 34.4(10) 42.7(4) 35.1(10)

which the purchased item is included in the three highest purchase probability
items, as follows:

Acc3 =
1

N

N∑

n=1

I
(
sn,Kn = ŝ′(un,Kn) ∨ sn,Kn = ŝ′2(un,Kn) ∨ sn,Kn = ŝ′3(un,Kn)

)
× 100,

(3.31)
where ŝ′2(un,Kn) and ŝ′3(un,Kn) represent the second and third highest purchase
probability items, respectively. With GapMarkov, MaxEntSeq, Mixture, and Our-
Method, we set the maximum gap as L = 1, 2, · · · , 10, and the highest accuracy is
shown. The value in parenthesis is the maximum gap L. With PLSA, we set the
number of latent classes as Z = 5, 10, · · · , 50, and the highest accuracy is shown.
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The value in parenthesis for PLSA is the number of latent classes Z. The accuracies
of OurMethod and MaxEntSeq are comparably high. The accuracy of GapMarkov
is lower than that of OurMethod, which indicates that the assumption of conditional
independence is not appropriate. In all of the data sets, the accuracy of Markov3
was lower than that of Markov1 and Markov2 because the number of parameters
becomes huge in higher-order Markov models, and it is difficult to estimate them
robustly. The accuracy of MaxEntSeq is higher than that of MaxEnt for all data
sets, which implies that sequential information is important for the prediction of
the next purchase items. The accuracies of Cosine and PLSA are low because they
do not consider sequential information in purchase histories. This result indicates
that they are inadequate for the prediction of the next purchase items, even though
they are widely used for unknown rating prediction. The accuracies of Mixture are
largely the same as those of Markov1. The estimated mixture coefficient of the
1-gapped Markov model is almost one, whereas those of the other gapped Markov
models are almost zero for each type of data. This result indicates that the 1-
gapped Markov model is likely to be dominant when gapped Markov models are
combined to form a mixture model for purchase history modeling, and the mixture
model would not use l-gapped Markov models (l ≥ 2) effectively. On the other
hand, the proposed method combines gapped Markov models to form a product
model [19].

Figure 3.2 shows the weights α in OurMethod with maximum gap L = 10.
The shorter the gap l is, the higher the weight αl becomes. This result implies
that recently purchased items are more informative for the prediction of the next
purchase item, which is an intuitive result. Note that the weights do not change
greatly even if the end dates are different.

Figure 3.3 shows the relationship between the accuracy and the maximum gap
L in OurMethod, MaxEntSeq, and GapMarkov. The accuracy of OurMethod did
not decrease. On the other hand, the accuracies of MaxEntSeq and GapMarkov
decreased as L increased because overfitting occurred in high-order MaxEntSeq, and
the assumption of the conditional independence of gapped Markov models becomes
inadequate with increases in the maximum gap.

The computational cost of the proposed method can be reduced if we update
only the priors and gapped Markov models while fixing weights α, as described
above. The effect on the accuracy of fixing weights α was evaluated. OurMethod2
in Figure 3.4 shows the accuracy of the proposed method, in which the weights
α were estimated using the log data until d days before the end date, and the
priors and gapped Markov models were estimated using all log data. Here, hyper-
parameters β in the priors and gapped Markov models were estimated using the log
data d days before the end date. OurMethod and MaxEntSeq in Figure 3.4 were
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Table 3.4: Computational time (second) of choice models

Music4 Music5 Music6 Movie Cartoon1 Cartoon2 Cartoon3
Markov1 0.03 0.12 0.30 2.00 1.61 2.13 2.96
Markov2 0.06 0.69 2.15 11.04 4.50 5.66 7.58
Markov3 0.05 0.76 2.65 9.35 20.45 27.42 40.05

GapMarkov 0.04 0.23 0.67 5.16 2.82 3.83 5.23
MaxEntSeq 12.77 456.56 1969.55 9316.09 132001.62 216770.25 347511.57

MaxEnt 6.28 217.54 916.47 8267.11 16046.90 21597.25 42994.86
Cosine 0.01 0.06 0.18 0.97 7.97 11.36 16.08
PLSA 1.07 10.31 29.05 117.69 239.01 356.28 478.59

Mixture 0.17 1.52 3.87 14.53 753.77 1242.36 1553.69
OurMethod 3.66 87.21 345.90 2968.72 5267.85 7931.55 10444.11
OurMethod2 0.08 0.45 1.12 7.49 4.39 5.59 7.50

estimated using the log data d days before. The accuracy of OurMethod2 does
not decrease, and is comparable to those of OurMethod and MaxEntSeq that were
estimated using all of the log data. On the other hand, there is a reduction in the
accuracies of models that were estimated using the log data until d days before the
end date. This result indicates that high predictive performance can be achieved
by updating only the priors and gapped Markov models having parameters that be
updated easily.

The computational time was measured experimentally on a PC having a 3.6-
GHz Xeon CPU with 2 GB of memory. Table 3.4 shows the results. OurMethod2
represents a method that estimates only the priors and gapped Markov models.
With GapMarkov, MaxEntSeq, Mixture, OurMethod, and OurMethod2, the max-
imum gap was set as L = 10. With PLSA, the number of latent classes was set
as Z = 10. Markov, GapMarkov, Cosine, and OurMethod2 were fast and finished
their parameter estimation in a few minutes with the largest data set Cartoon3.
Although OurMethod, which also estimates the weights, needs more time than
these methods, it was approximately 30 times faster than the comparably high
performance method MaxEntSeq with the cartoon data sets.

3.6 Summary

In this chapter, an efficient choice model was proposed that uses sequential infor-
mation, in which multiple simple Markov models are integrated by the maximum
entropy principle. High predictive performance and low computational cost were
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demonstrated through experiments using real data sets.
The proposed method may be extended for various applications. Even though

the purchase history was used as the input, content information and user attributes
can also be used to improve the proposed model. In the framework of the maximum
entropy principle, this information can easily be integrated as integrated multiple
Markov models. The weights of gap Markov models were estimated individually.
The weights can be modeled by the exponential distribution as follows:

αl = λ exp(−λl). (3.32)

Estimating weights individually has several advantages. For example, weights can
be estimated from data without prior knowledge, and the global optimum of the
estimation is guaranteed. On the other hand, modeling weights has also an advan-
tage in that the number of parameters can be reduced. Thus, further research into
the modeling of weights is needed. In addition, the computational time needed to
update parameters should be evaluated experimentally, and the number of trans-
actions per second that the proposed method can handle should be demonstrated.
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Figure 3.2: Estimated weights of gap Markov models when the maximum gap is
ten.
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Chapter 4

Recommendation method for
improving customer lifetime
values

4.1 Introduction

Customer lifetime value (LTV) is defined as the net present value of profit that a
customer generates over his/her entire purchase history, and it is used to evaluate
the relationship between the store and each customer in marketing. Improving
LTV, or developing the relationship with each existing customer to a higher level, is
important for stores to increase long-term profits because acquiring new customers
is often expensive.

The calculation of LTV depends on service types, which can be categorized as
either measured or subscription services. With a measured service, users pay for
individual purchased items. Therefore, LTV is roughly proportional to the purchase
count of the user. With a subscription service, on the other hand, users pay for
the periodic (e.g. monthly or yearly) use of magazines, music, movies, software,
cell-phone services, etc. LTV in subscription services is therefore proportional to
the subscription period of the user.

Recommendation is one way for online stores to influence user behavior. For
example, the probability that the recommended item is purchased increases if the
user did not know about the item before the recommendation or if the user is
newly attracted to the item by the recommendation. In this chapter, a novel rec-
ommendation method is proposed that influences users so as to increase LTV for
improving profits. Conventional recommendation methods recommend items that
best coincide with a user’s interests in order to maximize the purchase probability
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[33, 40, 43, 45, 50], as described in previous chapters. Although these methods
can increase short-term sales, they do not necessarily maximize long-term profits.
For example, if an online store recommends an electronic product that has a lot
of peripheral devices, the user is likely to revisit the store to purchase peripheral
devices in the future. A recommendation of a DVD that is the first of a series can
lead to the purchase of other DVDs in the series.

In the proposed method, LTV is modeled in a probabilistic form. Since the cal-
culation of LTV differs between measured and subscription services, as described
above, different probabilistic models are needed for each service, and LTV is mod-
eled as purchase frequency models and subscription period models, respectively.
The proposed method finds frequent purchase patterns among high LTV users using
a probabilistic model for LTV and recommends items for a new user that simulate
the found patterns. Since the possibility of purchasing the recommended item de-
pends on the user’s interests, the user’s interests are taken into consideration using
a probabilistic choice model in order to generate effective recommendations. To
find the patterns, a probabilistic model in survival analysis [8, 10, 26, 34] is used.
Maximum entropy models are used to estimate user’s interests. Then, the found
patterns are combined with the estimated user’s interests in a probabilistically prin-
cipled framework. Since a higher LTV is the result of higher user satisfaction, the
proposed method benefits both users and online stores. Therefore, the proposed
method can be seen as a tool for customer relationship management (CRM) [3].
CRM is important in terms of improving relationships between online stores and
their users.

The remainder of this chapter is organized as follows. In the next section, a brief
review of related research is presented. In Section 4.3, a recommendation method
for improving LTV for measured services is proposed. In Section 4.4, the validity of
the proposed method is demonstrated using the log data of an online music store.
In Section 4.5, the proposed method is modified for subscription services. In Section
4.6, this method is applied to the log data of an online cartoon distribution service.
Finally, this chapter is summarized and a discussion of future research is presented
in Section 4.7.

4.2 Related research

A number of recommendation methods, such as collaborative filtering [43, 50], con-
tent filtering [40], and their hybrids [33, 45], have been proposed. These approaches
recommend items that best coincide with a user’s interests to maximize the pur-
chase probability. Unlike these methods, the goal here is to improve LTV.
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The use of LTV estimation to identify loyal customers has been studied by
various researchers using survival analysis and data mining techniques [2, 17, 30,
39, 41, 59]. However, these techniques are not used for recommendation. Piatetsky-
Shapiro and Masand [44] and Rosset et al. [52] proposed models for estimating the
effects of marketing activity on LTV. A recommendation can be considered as a
marketing activity. By focusing on the recommendation of items, the proposed
method becomes an automatic recommendation framework that can learn from log
data. A recommendation method for improving long-term profits using Markov
decision process (MDP) has been proposed in [56]. Since the proposed method
explicitly models purchase frequencies or subscription, as compared with the MDP-
based method, models can be estimated robustly using log data.

4.3 Proposed method

4.3.1 Recommendation for improving customer lifetime val-
ues

The proposed method recommends item ŝ that maximizes P
(
l|u, r(s)

)
, which is the

probability of improving LTV of user u when item s is recommended, as follows:

ŝ = arg max
s∈S

P
(
l|u, r(s)

)
, (4.1)

where l represents an event in which the LTV is improved, r(s) represents an
event in which item s is recommended, and P

(
l|u, r(s)

)
+ P

(
l̄|u, r(s)

)
= 1, where

P
(
l̄|u, r(s)

)
is the probability of not improving the LTV of user u when item s is

recommended. Although the recommendation of one item is assumed above, we can
also recommend m items with the highest P

(
l|u, r(s)

)
values. In real applications,

candidates for recommendation would be a subset of item set S, such as a set of
items not yet purchased by the user.

In general, P
(
l|u, r(s)

)
cannot be directly estimated because it is not possi-

ble to observe whether the LTV is improved given a recommendation. Therefore,
we decompose P

(
l|u, r(s)

)
into two components with a number of assumptions so

that P
(
l|u, r(s)

)
can be estimated from data that can be easily obtained by online

stores. Let s′ be the item purchased by user u when item s is recommended. If
the recommendation does not influence the user’s purchase behavior, it is natural
to think that the recommendation does not influence the LTV either. Therefore,
we assume that improving LTV l and recommendation r(s) are independent con-
ditioned on purchased item s′ and user u. Based on this assumption, P

(
l|u, r(s)

)

can be decomposed into two components: LTV model Q(l|u, s′) and choice model
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R
(
s′|u, r(s)

)
, as follows:

P
(
l|u, r(s)

)
=

∑

s′∈S

P
(
l, s′|u, r(s)

)

=
∑

s′∈S

Q
(
l|u, s′, r(s)

)
R

(
s′|u, r(s)

)

=
∑

s′∈S

Q(l|u, s′)R
(
s′|u, r(s)

)
. (4.2)

where the LTV model Q(l|u, s′) is the probability of the LTV being improved when
user u purchases item s′, the choice model R

(
s′|u, r(s)

)
is the probability of purchas-

ing item s′ when item s is recommended to user u, and the conditional independence
assumption Q(l|u, s′, r(s)) = Q(l|u, s′) was used in the third equality. The condi-
tional dependence assumption means that situations, in which the purchase of an
item lead to further purchases, such as the purchase of an electronic product with
many peripheral devices, are considered. The probability Q(l|u, s′) can be obtained
from purchase frequency models, as described in Section 4.3.3, where purchase fre-
quency models can be estimated from the log data that online stores have usually
collected using survival analysis techniques, as described in the next section. The
choice model R

(
s′|u, r(s)

)
is estimated with maximum entropy models assuming

that the item choice of a user depends on the user’s purchase history and the recom-
mended item, as described in Section 4.3.4. Although, in a strict sense, a variable
that represents the purchase history should be used instead of u in R

(
s′|u, r(s)

)
,

u was used in order to keep the equations simple. The framework of the proposed
method is summarized in Figure 4.1.

4.3.2 Purchase frequency models

Assuming the profit generated by an item is constant for all items, the LTV is pro-
portional to the purchase frequency in measured services. We derive the probabil-
ity of improving LTV given the purchased item Q(l|u, s′) using purchase frequency
models as described in the next section. In this section, purchase frequency models
and their estimation procedures are presented.

Let enk be the status of the kth purchase of user un, which represents whether
it is the last purchase, as follows:

enk =

{
0 if the kth purchase of user un is the last purchase,

1 otherwise.
(4.3)
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Input Data

Survival Analysis Maximum Entropy Model

Recommendation

Improving Probability of LTV
given the Purchased Item

Improving Probability of LTV 
given the Recommendation

Purchase Probability
given the Recommendation

Q( l | u, s ) R( s | u, r )

P( l | u, r )

Figure 4.1: Framework of LTV improving recommendation.

Let tnk be the interpurchase time of the kth purchase of user un, as follows:

tnk =

{
dend − dnk if enk = 0,

dn,k+1 − dnk if enk = 1,
(4.4)

where dnk is the time of the kth purchase of user un, and dend is the last time
that the given log data were modified. We assume that the interpurchase time t
is a discrete variable. The status enk and the interpurchase time tnk are obtained
from the purchase log. The purchase log lists the user, the item, and the time
of each purchase. See Table 4.1 for an example purchase log. Figure 4.2 shows
the relationships among the interpurchase time t, the purchase time d, the last
modification time dend, and the status e. As input data for modeling purchase
frequencies, we use a set of users, purchase histories, interpurchase times, and
statuses, as in shown in Table 4.2.

The purchase frequency, or interpurchase time, is modeled using frailty mod-
els [8, 26], which are used in survival analysis for modeling repeated events. The
purchases are repeated events in the sense that a user purchase items repeatedly, as
shown in Figure 4.2. The purchase frequencies can differ among users even if their
preferences are the same, some heavy users purchase many items and some users
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Table 4.1: Example purchase log.

user item purchase time
u1 s3 2004/8/16 12:06:28
u1 s1 2004/8/16 13:01:21
u2 s2 2004/8/16 18:51:43
u1 s6 2004/8/16 21:35:06
u3 s2 2004/8/17 16:42:11
...

...
...

uN s10 2005/10/28 23:15:14

Table 4.2: Example input data of the recommendation method for measured ser-
vices.

user interpurchase time status purchase history
u1 3293 1 s3

u1 21022 1 s3, s1

u1 3253802 0 s3, s1, s6

u2 43261 1 s2

u2 243039 0 s2, s8
...

...
...

user nu

, 1interpurchase time nk n k nkt d d+= −

th purchase

purchase item  at time

state 1
nk nk

nk

k

s d

e =

1user nu +

last modification time endd

, 1 , 1

, 1

( 1)th purchase

purchase item  at time

state 1
n k n k

n k

k

s d

e
+ +

+

+

=

th purchase

purchase item  at time

state 0
nl nl

nl

l

s d

e =

interpurchase time nl end nlt d d= −

Figure 4.2: Relationships among interpurchase times, purchase times, the last mod-
ification time, and status.
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purchase only a few items. Frailty models can account for such heterogeneity across
users by incorporating a user specific effect into models. Let h(t|x, u) be a hazard
function that represents the instantaneous rate of purchases in interpurchase time
t of user u with purchase history x. See Appendix A.1 for details about hazard
functions. x = (xb)b∈B is a column vector of features for the purchase history,
where B is a set of feature indices. Examples of features include whether the user
has purchased item si, or whether the user has purchased item si directly after item
sj. In frailty models, the hazard function h(t|x, u) can be represented as follows:

h(t|x, u) = λ0(t)λu exp(λT x), (4.5)

where λ0(t) is the baseline hazard function, λu is the frailty effect of user u for
handling heterogeneity, and λ = (λb)b∈B is an unknown parameter vector. Under
the frailty models, the global optimum of the estimation is guaranteed, and Q(l|u, s′)
can be written in a closed form as described below.

We can estimate unknown parameters λu = {λun}N
n=1 and λ by maximizing

the log partial likelihood using optimization methods such as quasi-Newton meth-
ods. See Appendix A.2 for details. The log partial likelihood with the Breslow
approximation [10] is defined as follows:

PL(λu, λ) = log
∏

t∈T

∏
(n,k)∈D(t) h(t|xnk, un)

(∑
(m,j)∈E(t) h(t|xmj, um)

)|D(t)|

=
∑

t∈T

∑

(n,k)∈D(t)

(
log λun + λT xnk

)

−
∑

t∈T

|D(t)| log
∑

(m,j)∈E(t)

λum exp(λT xmj), (4.6)

where T is a set of interpurchase times, D(t) = {(n, k)|tnk = t ∧ enk = 1} is the
set of purchases for which interpurchase time is equal to t and which is not the last
purchase. E(t) = {(n, k)|tnk ≥ t} is the set of purchases for which interpurchase
time is no less than t, and xnk is the feature vector of the purchase history of user
un at the kth purchase. Note that we do not need to estimate the baseline hazard
function λ0(t) in the estimation of unknown parameters λu and λ.

In frailty models, features that have high λb ∈ λ (> 0) characterize purchase
patterns in a short interpurchase time, which is equivalent to a high purchase fre-
quency, and features that have low λb ∈ λ (< 0) characterize patterns in a long
interpurchase time. These patterns are informative for the online store. For exam-
ple, they enable the store to understand the relationship between purchase history
and purchase frequency, or to determine new items to be distributed to increase
purchase frequency.
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4.3.3 Probability of increasing the purchase frequency given
a purchased item

With measured services, if the interpurchase time is shortened, the purchase fre-
quency or LTV increases. Therefore, we assume that Q(l|u, s′) is the probability
of shortening the interpurchase time when user u purchases item s′. We derive
Q(l|u, s′) from hazard function h(t|x, u).

Let x be the purchase history of user u, and let x+s′ be the updated purchase
history when user u purchases item s′. For simplicity, we refer to the user who
purchases item s′ as u+s′ . We assume that either u or u+s′ purchases an item at
interpurchase time t, while neither user purchases the next item before interpur-
chase time t (Figure 4.3), and either u or u+s′ purchases an item at some future
time,

∑∞
t=0 Pr(u or u+s′ purchases an item at interpurchase time t) = 1. At t, the

hazard functions of u and u+s′ are h(t|x, u) and h(t|x+s′ , u+s′), respectively, where
we assume that the frailty effect does not change by the purchase, λu = λu+s′ . The
probability that user u+s′ purchases the item at t (case 1 in Figure 4.3) is equal to
the probability of shortening the interpurchase time when user u purchases item s′

as follows:

Q(l|u, s′) = Pr(interpurchase time of u+s′ is shorter than that of u)

=
∞∑

t=0

Pr(u or u+s′ purchases an item at interpurchase time t)

×Pr(u+s′ is the one who purchases an item at t)

=
∞∑

t=0

Pr(u or u+s′ purchases an item at interpurchase time t)

× h(t|x+s′ , u+s′)

h(t|x, u) + h(t|x+s′ , u+s′)

=
1

1 + exp
(
−λT (x+s′ − x)

) , (4.7)

which is a sigmoid function. The probability that user u+s′ purchases an item at
t is fixed across interpurchase time t because the baseline hazard function λ0(t) is
canceled out by considering the ratio of hazard functions in frailty models. Note
that the probability of improving LTV does not depend on frailty effect λu. While
we can recommend an item that maximizes Q(l|u, s′), the user may not purchase
the recommended item if the user is not interested in the item at all. In this
case, the recommendation is useless with respect to improving LTV. Therefore, it
is necessary to consider whether the recommended item is purchased by the user
taking the user’s interests into consideration.
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user u

user su ′+

next purchase

next purchase

previous purchase

previous purchase

interpurchase time 0= interpurchase time t=

CASE 1: User u+s′ purchases an item.

user u

user su ′+

next purchase

next purchase

previous purchase

previous purchase

interpurchase time 0= interpurchase time t=

CASE 2: User u purchases an item.

Figure 4.3: User u or user u+s′ purchases an item at interpurchase time t.

4.3.4 Probability of purchasing an item given a recommen-
dation

The estimation of R
(
s′|u, r(s)

)
, which is the probability that user u purchases item

s′ when item s is recommended, is now explained. Let R(s′|u) be the probability
that user u purchases item s′ without recommendations, where

∑
s′∈S R(s′|u) = 1.

The recommendation of item s increases the probability of the item being purchased.
We assume that the probability increases γ times as follows:

R
(
s′|u, r(s)

)
=





1

Z
(

u,r(s)
)γR(s′|u) s = s′,

1

Z
(

u,r(s)
)R(s′|u) otherwise,

(4.8)

where Z
(
u, r(s)

)
= 1 + (γ − 1)R(s|u) is the normalization term, and γ ≥ 1. γ

represents the effect of the recommendation on user purchase behavior, and depends
on the way that the recommendation is presented in the online store, including
considerations such as display size and position.

If an item matches the user’s interests, the probability of the user purchasing
the item becomes high, and if it does not match, the probability is low. Therefore,
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R(s′|u) represents the degree of agreement between the interests of user u and item
s′. Since conventional recommendation methods suggest items that coincide with
a user’s interests, we can use conventional methods to obtain R(s′|u). Maximum
entropy models [33, 43, 64], which estimate a probabilistic distribution that maxi-
mizes entropy under the constraints of the given data, are employed. In maximum
entropy models, the probability that user u purchases item s′ is as follows:

R(s′|u) =
1

Z(u)
exp

(∑

c∈C

αcyc(u, s′)
)
, (4.9)

where c is a feature index, C is a set of feature indices, αc is an unknown pa-
rameter to be estimated, yc is a feature of the purchase history, and Z(u) =∑

s∈S exp
(∑

c∈C αcyc(u, s)
)

is the normalization term.

The log likelihood of the maximum entropy model is:

L(α) =
N∑

n=1

Kn∑

k=1

log R(snk|unk)

=
N∑

n=1

Kn∑

k=1

∑

c∈C

αcyc(unk, snk)

−
N∑

n=1

Kn∑

k=1

log
∑

s∈S

exp
(∑

c∈C

αcyc(unk, s)
)
, (4.10)

where α = {αc}c∈C is an unknown parameter vector. The unknown parameters α
can be estimated by maximizing log likelihood L(α) using optimization techniques
such as quasi-Newton methods. A Gaussian prior is used in the present experiments.

4.4 Experimental results for a measured service

4.4.1 Evaluation of purchase frequency models

The proposed recommendation method for improving LTV on measured services
was evaluated by employing the log data of an online music download service in
Japan from 1 April 2005. The unit time was set as one day.

To evaluate the proposed purchase frequency model, a comparison of the frailty
models h(t|x, u) = λ0(t)λu exp(λT x) that use both the purchase history and the
user heterogeneity as their covariates, the Cox proportional hazards models [11]
h(t|x) = λ0(t) exp(λT x) that use the purchase history but not the user heterogene-
ity, and models that do not use purchase history h(t) was performed. xn = (xni)

V
i=1
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Table 4.3: Number of users, transactions, and features in the log data for purchase
frequency model evaluation.

2005/08/31 2005/09/30 2005/10/31
number of users 10,923 13,612 17,123

number of transactions 55,416 74,582 102,165
number of features 4,234 5,662 8,283

were used as features for the frailty models and Cox proportional hazards models,
where

xni =

{
1 if user un has purchased item si,

0 otherwise,
(4.11)

and features that appeared fewer than ten times in the learning data were omitted.
Three sets of data consisting of the log data up to 31 August 2005, 30 September

2005, and 31 October 2005 were used. Purchase frequency models were evaluated
based on the predictive performance of the last interpurchase time of each user.
The number of users, transactions, and features in the data set were as listed in
Table 4.3. For the predictive performance measurements, we used the perplexity
as follows:

Perp = exp

(
− 1∑

t∈T |D(t)|
log

h(t|xnk, un)∑
(m,j)∈E(t) h(t|xmj, um)

)
. (4.12)

A higher perplexity for the test samples indicates a higher predictive performance
of the model. Table 4.4 shows the results. The perplexities for the test samples of
the frailty models were higher than those of the Cox proportional hazards models
and the model that does not use purchase histories. This result shows that frailty
models with both of purchase history and user heterogeneity information can predict
purchase frequencies more precisely than models without them.

4.4.2 Evaluation of choice models in a measured service

The maximum entropy models described in Section 4.3.4, which estimate the prob-
ability that user u purchases item s′, R(s′|u), were evaluated. First-order Markov
transitions were used as features because the last purchased item was considered
to have revealed the user’s interests:

yij(u, s) =

{
1 if item si is the last purchased item of user u and sj = s,

0 otherwise.
(4.13)
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Table 4.4: Perplexities of purchase frequency models.

2005/08/31 2005/09/30 2005/10/31
learning test learning test learning test

without purchase histories 30546.3 5399.2 40823.0 6680.8 56162.2 8358.2
Cox models 19850.8 3952.1 26662.1 4934.5 36497.5 6198.1

frailty models 18657.4 3904.9 25084.4 4880.5 34406.5 6130.3

Three sets of samples were used consisting of the log data up to 31 August 2005,
30 September 2005, and 31 October 2005, from which transitions to the same item,
items that appeared fewer than ten times, and users that purchased no more than
one item were omitted. We divided each set of samples into learning and test
samples. The number of transitions and items were as shown in Table 4.5. We
compared maximum entropy models with uniform distributions and multinomial
distributions. Uniform distributions do not use the information in the log data at
all. Multinomial distributions use the information about the number of each item
purchased by all users, but do not consider individual interests. The unknown pa-
rameters of the multinomial distribution were estimated by the maximum likelihood
method.

The perplexity was used for the evaluation measurements as follows:

Perp = exp

(
− 1∑N

n=1 Kn

N∑

n=1

Kn∑

k=1

log R(snk|unk)

)
. (4.14)

Table 4.6 shows the results. The perplexities of the maximum entropy models for
the test samples were higher than those of uniform and multinomial distributions.
In addition, the maximum entropy models were evaluated using the accuracy of
next purchase prediction, which is widely used as a evaluation measurement for
collaborative filtering tasks. The item predicted to be purchased next is the highest
purchase probability item, as follows:

ŝ′(u) = arg max
s∈S

R(s|u), (4.15)

and the predictive accuracy is calculated as follows:

Acc =
1∑N

n=1 Kn

N∑

n=1

Kn∑

k=1

I(snk = ŝ′(unk)) × 100. (4.16)

Table 4.7 shows the results. The accuracies of the maximum entropy models are
the highest. This means that maximum entropy models with purchase histories
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Table 4.5: Number of transitions and items in the log data of a measured service
for choice model evaluation.

2005/08/31 2005/09/30 2005/10/31
learning test learning test learning test

number of transitions 45,395 4,783 61,904 6,089 85,262 8,598
number of items 1,007 1,288 1,642

Table 4.6: Perplexities of choice models for a measured service.

2005/08/31 2005/09/30 2005/10/31
learning test learning test learning test

uniform distribution 1007.0 1007.0 1288.0 1288.0 1642.0 1642.0
multinomial distribution 279.8 283.4 356.7 297.7 437.0 414.1
maximum entropy model 120.1 165.2 142.2 212.3 163.5 215.9

Table 4.7: Accuracies of choice models for a measured service.

2005/08/31 2005/09/30 2005/10/31
learning test learning test learning test

uniform distribution 0.10 0.10 0.08 0.08 0.06 0.06
multinomial distribution 5.16 3.71 4.36 3.27 3.51 2.58
maximum entropy model 13.60 7.32 13.42 7.62 13.47 8.40

can predict user purchase behavior and interests more precisely than those without
them.

4.4.3 Purchase frequencies and purchase probabilities

Conventional recommendation methods recommend items that have a high proba-
bility of being purchased. If high-purchase-frequency users tend to purchase high-
purchase-probability items, conventional methods are sufficient to improve LTV.
The relationship between purchase frequencies and purchase probabilities was in-
vestigated using the frailty model estimated using the log data up to 31 October
2005.

The hazard function in frailty models is multiplied by exp(λi) with the exis-
tence of feature xi. The effect on improving LTV of the purchase of an item si was
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Figure 4.4: Purchase probabilities vs. LTV improving effects.

expressed by exp(λi), and the purchase probability was expressed by the multi-
nomial distribution parameter estimated by the maximum likelihood. Figure 4.4
shows a scatter plot of the effect on the LTV due to the purchase, exp(λi), and the
purchase probability, R(si). The correlation coefficient was −0.052, and the effect
on the LTV and the purchase probability are not correlated. This result implies
that recommendations that suggest items that have a high probability of being
purchased do not necessarily improve the LTV.

4.4.4 Simulation

In Section 4.4.1, the ability of frailty models to predict purchase frequencies was
demonstrated, and in Section 4.4.2, the ability of maximum entropy models to
predict user purchase behavior was demonstrated. Here, the effectiveness of the
proposed method is examined by simulation. User behavior was simulated using
the frailty model and the maximum entropy model that were estimated using the
log data from 1 April 2005 to 31 October 2005.

The function of Algorithm 1 is to generate a purchase history, where d is the
time, u is the purchase history, u+s is the updated history when item s is pur-
chased, φ is an empty history, MaxTime is the time period for the simulation,
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Algorithm 1 Simulation algorithm of a user behavior in a measured service.

1: Set d ← 0, u ← φ
2: while d ≤ MaxTime do
3: if u = φ then

4: Sample s ∼ Multinomial
(
{R(s)}s∈S

)

5: else
6: ŝ ← arg maxs∈S P

(
l|u, r(s)

)

7: Sample s ∼ Multinomial

(
{R(s|u, r(ŝ))}s∈S

)

8: end if
9: Set u ← u+s

10: Sample t ∼ Exponential
(
λ0λu exp(λT x)

)

11: Set d ← d + t
12: end while
13: Output u

Multinomial(ψ) is the multinomial distribution of one event with j’s success prob-
ability ψj, and Exponential(λ) is the exponential distribution with parameter λ,
p(t) = λ exp(−λt). The first item that the user purchases is determined according
to R(s), which is the probability of purchasing item s first (line 4). If the user
has purchased items, a recommendation is generated using the proposed method
(line 6), and the item that the user purchases is determined according to choice

model R
(
s|u, r(ŝ)

)
(line 7). The interpurchase time is sampled from the exponen-

tial distribution (line 10), and the time is updated (line 11). Unknown parameters
R(s|u), R(s), and λu were estimated using the log data by the maximum likelihood
method.

The proposed method was compared with the following recommendation meth-
ods:

• Q Recommend recommends an item that is most likely to increase the
purchase frequency when the user purchases the item. Line 6 in Algorithm 1
is changed as follows:

ŝ ← arg max
s∈S

Q(l|u, s). (4.17)

This recommendation does not take the user’s interests into consideration.

• R Recommend recommends an item that best coincides with the user’s
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Figure 4.5: Average number of purchased items in simulations.

interests. Line 6 is changed as follows:

ŝ ← arg max
s∈S

R(s|u). (4.18)

This recommendation is the same strategy as that of conventional methods.

• No Recommend does not recommend any items. The item that the user
purchases is determined solely according to the user’s interests. Line 6 is
omitted, and line 7 is changed as follows:

Sample s ∼ Multinomial
(
{R(s|u)}s∈S

)
. (4.19)

This recommendation can also be achieved by using γ = 1 with Algorithm 1,
which means that the recommendation has no effect on user purchase behav-
ior.

A total of 171, 230 user histories were generated with recommendations by each
method where 1 ≤ γ ≤ 10, in which each estimated λu was used ten times. The
time period for the simulation was set to 365 days. Figure 4.5 shows the average
number of purchased items. The proposed method was more successful than the
others in increasing the number of purchased items. The number of purchased items

68



increases with increases in γ. This result indicates that if recommendations can
influence user behavior, or γ > 1, the proposed method can increase the purchase
frequency. Moreover, the purchase frequency can be increased further by improving
the influence of the recommendations. Q Recommend also increase the number of
purchased items, although the effect was smaller than that of the proposed method
because Q Recommend may recommend items that have low probabilities of being
purchased by the user. On the other hand, the proposed method recommends items
taking user’s interests into account in order to improve the recommendations. R
Recommend reduces the number of purchased items because the purchase frequency
is negatively correlated with the purchase probability, as shown in Figure 4.4.

4.5 Recommendation for subscription services

This section describes a recommendation method designed to improve the LTV for
subscription services. This method is obtained by modifying the proposed method
for measured services described in Section 4.3. With subscription services, the LTV
is proportional to the subscription period and does not depend on the purchase
frequency. Therefore, the probability of improving the LTV given the purchased
item is modified to Q′(l|u, s′), which represents the probability of extending the
subscription period given the purchased item.

4.5.1 Subscription period models

The subscription period is modeled using Cox proportional hazards models [11].
Let h′(τ |x) be the hazard function, which represents the instantaneous rate of
unsubscription at period τ of users with purchase history x = (xb)b∈B. In Cox
proportional hazards models, the hazard function h′(τ |x) is as follows:

h′(τ |x) = β0(τ) exp(βT x), (4.20)

where β0(t) is the baseline hazard function, and β = (βb)b∈B is the unknown pa-
rameter vector.

Let e′n be the status of user un, which represents still subscribing or already
unsubscribed, as follows:

e′n =

{
0 if user un is still subscribing,

1 if user un has already unsubscribed.
(4.21)

The subscription period τn of user un is obtained as follows:

τn =

{
dend − dstart

n if e′n = 0,

dend
n − dstart

n if e′n = 1,
(4.22)
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Table 4.8: Example subscription log.

user status subscribed time unsubscribed time
u1 1 2004/8/16 11:50:30 2005/01/08 20:14:11
u2 0 2004/8/16 18:01:28
u3 1 2004/8/17 16:10:51 2004/08/25 13:01:06
u4 1 2004/8/17 21:39:29 2004/08/29 07:21:51
u5 0 2004/8/18 01:44:17
...

...
...

...
uN 0 2005/10/28 23:10:03

where dstart
n is the subscribed time of user un, dend

n is the unsubscribed time of
user un, and dend is the last time the log was modified. The subscription period
τ is assumed to be a discrete variable. The status e′n and the subscription period
τn are obtained from the subscription log. The subscription log consists of the
subscribed time, the status and, where relevant, the unsubscribed time of each user.
Table 4.8 shows an example subscription log. Figure 4.6 shows the relationships
among subscription period τ , subscribed time dstart, unsubscribed time dend, last
modification time dend, and status e′. Note that unsubscription is not a repeated
event in the sense that one user can only unsubscribe one time. As input data for
modeling subscription periods, a set of status e′, subscription period τ , and purchase
history x, in which the subscription period at each purchase is also needed, are used,
as in shown in Table 4.9. The subscription period at the kth purchase of user un is
defined by τnk = dnk − dstart

n , where dnk is the time of the the kth purchase of user
un. Note that purchase history xn must be treated as time-dependent variables
because purchase history xn changes when user un purchases an item.

Unknown parameter vector β can be estimated by maximizing the log partial
likelihood as follows:

PL(β) = log
∏

τ∈Υ

∏
n∈D′(τ) h′(τ |xn(τ))

(∑
m∈E′(τ) h′(τ |xm(τ))

)|D′(τ)|

=
∑

τ∈Υ

∑

n∈D′(τ)

βT xn(τ)

−
∑

τ∈Υ

|D′(τ)| log
∑

m∈E′(τ)

exp(βT xm(τ)), (4.23)

where Υ is a set of subscription periods, D′(τ) = {n|τn = τ ∧ e′n = 1} is the
set of users unsubscribed at τ , E′(τ) = {n|τn ≥ τ} is the set of users subscribing
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Figure 4.6: Relationships among subscription periods, subscribed times, unsub-
scribed times, the last modification time, and status.

Table 4.9: Example input data of the recommendation method for subscription
services. The number in the parenthesis is the subscription period at which the
item is purchased.

subscription period status purchased history (subscription period)
145 0 s3(0), s1(0), s6(1), · · ·
438 1 s2(0), s8(3), s1(5), · · ·
8 1 s2(0), s13(7)
12 1 s3(0), s1(2), s2(12)
411 0 s5(0), s1(0), s8(2), · · ·
...

...
...

at τ , and xn(τ) is the feature vector of user u when the subscription period is
τ . Features that have low βb ∈ β (< 0) are characteristic purchase patterns for
long-subscription users, and features that have high βb ∈ β (> 0) are characteristic
patterns for short-subscription users.
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4.5.2 Probability of extending the subscription period given
a purchased item

With subscription services, if the subscription period is long, the LTV increases.
Therefore, Q′(l|u, s′) is assumed to be the probability of extending the subscription
period when user u purchases item s′, and is estimated from hazard function h′(τ |x)
in a manner similar to that described in Section 4.3.3.

Let x be the purchase history of user u, and let x+s′ be the updated purchase
history when item s′ is purchased. For simplicity, we refer to the user when item s′

is purchased as u+s′ . We assume that either u or u+s′ unsubscribed at t while the
other is still subscribing. At τ , the hazard function of u and u+s′ are h′(τ |x) and
h′(τ |x+s′), respectively. The probability that user u unsubscribed at τ is equal to
the probability of extending the subscription period when user u purchases item s′

as follows:

Q′(l|u, s′) = Pr(subscription period of u+s′ is longer than that of u)

=
∞∑

τ=0

Pr(u or u+s′ unsubscribes at τ)

×Pr(u+s′ is the one who unsubscribes at τ)

=
∞∑

τ=0

Pr(u or u+s′ unsubscribes at τ)
h′(τ |x)

h′(τ |x) + h′(τ |x+s′)

=
1

1 + exp
(
−βT (x − x+s′)

) , (4.24)

which is a sigmoid function.

The proposed method for subscription services recommends item ŝ that maxi-
mizes P ′(l|u, r(s)

)
, which is the probability of improving the LTV of user u when

item s is recommended, as follows:

ŝ = arg max
s∈S

P ′(l|u, r(s)
)
,

= arg max
s∈S

∑

s′∈S

Q′(l|u, s′)R
(
s′|u, r(s)

)
, (4.25)

where the probability is decomposed as in (4.2).
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4.6 Experimental results for a subscription ser-

vice

4.6.1 Evaluation of subscription period models

The proposed recommendation method for extending subscription periods was eval-
uated by using the log data of an online cartoon distribution service for cell phones
in Japan. With this service, users pay monthly to read cartoons on their cell
phones. Some cartoons have several volumes, and some users purchased an item
more than once. A cartoon that had several volumes was regarded as one item,
and the unit time was set to one day. This service began on 16 August 2004, and
the last modification date of the log was 28 October 2005.

In the proposed method, it is assumed that subscription periods can be esti-
mated efficiently using purchase histories. To evaluate this assumption, the Cox
proportional hazards models h′(τ |x) = β0(τ) exp(βT x) that use the purchase histo-
ries described in Section 4.5.1 and models that do not use purchase histories h′(τ)
were compared. In addition, the following three sets of features were compared for
the Cox proportional hazards models:

• F1: xn = (xni)
V
i=1, in which each feature represents whether user u has

purchased item si:

xni =

{
1 if user un has purchased item si,

0 otherwise,
(4.26)

• F2: xn = (xnij)
V
i,j=1, in which each feature represents whether user un has

purchased item si and item sj:

xnij =





1 if user un has purchased

item si and item sj,

0 otherwise,

(4.27)

• F3: xn = (xn,i→j)
V
i,j=1, in which each feature represents whether user un has

purchased item sj next to item si:

xn,i→j =





1 if user un has purchased

item sj next to item si,

0 otherwise,

(4.28)
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Table 4.10: Number of features for subscription period models.

2005/06/30 2005/07/31 2005/08/31
Cox models (F1) 75 80 84
Cox models (F2) 2,671 3,159 3,485
Cox models (F3) 3,711 4,455 5,250

Table 4.11: Numbers of subscribers and unsubscribers.

2005/06/30 2005/07/31 2005/08/31
learning test learning test learning test

number of subscribers 13,284 7,221 14,669 9,608 28,409 17,028
number of unsubscribers 4,988 6,063 8,802 5,061 9,765 11,381

where features that appeared fewer than ten times in the learning data were omitted.

Three sets of learning and test samples were used. The learning samples were
log data up to 30 June 2005, 31 July 2005, and 31 August 2005. The test samples
were log data of subscribers on the end date of the learning samples, and the end
date of the test samples was 28 October 2005. The number of features was as shown
in Table 4.10, and the number of subscribers and unsubscribers were as shown in
Table 4.11.

For the evaluation measurements, the following perplexity was used:

Perp = exp


− 1∑

τ∈Υ |D′(τ)|
log

∑

τ∈Υ

∑

n∈D′(τ)

h′(τ |xn(τ))∑
m∈E′(τ) h′(τ |xm(τ))


 . (4.29)

Table 4.12 shows the results. The perplexities for the test samples of the Cox
proportional hazards models (especially F3) were higher than those for the model
that does not use purchase histories. This result shows that Cox proportional
hazards models with purchase histories as input can predict subscription periods
more precisely than models without them.

4.6.2 Evaluation of choice models in a subscription service

Choice modeling for subscription services was evaluated based on the maximum
entropy models described in Section 4.3.4, which estimate the probability that user
u purchases item s′, R(s′|u) as in Section 4.4.2. First-order Markov transitions were
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Table 4.12: Perplexities of subscription period models.

2005/06/30 2005/07/31 2005/08/31
learning test learning test learning test

without purchase histories 7079.8 18863.8 9556.7 12900.2 13534.5 20010.3
Cox models (F1) 6167.2 9946.7 8501.5 12644.8 12271.1 18251.5
Cox models (F2) 6057.2 9691.5 8341.5 12357.3 11214.9 18751.0
Cox models (F3) 5453.4 9218.8 8501.5 11510.3 11214.9 17997.7

Table 4.13: Numbers of transitions and items in the log data of a subscription
service for choice model evaluation.

2005/06/30 2005/07/31 2005/08/31
learning test learning test learning test

number of transitions 300,486 122,904 382,778 171,749 459,456 197,476
number of items 75 81 86

used as features. Three sets of learning and test samples were used. The learning
samples were log data up to 30 June 2005, 31 July 2005, and 31 August 2005, from
which transitions to the same item, items that appeared fewer than ten times, and
users that purchased no more than one item were omitted. The test samples were
log data from the end date of the learning samples to 28 October 2005, from which
transitions to the same item and transitions that contained items that had not
been distributed during the learning sample period were omitted. The number of
transitions and items were as shown in Table 4.13. We compared maximum entropy
models with uniform distributions and multinomial distributions.

The perplexity and accuracy were used for the evaluation measurements. Ta-
ble 4.14 and Table 4.15 shows the results of these measurements. The maximum
entropy models had higher perplexities and accuracies for the test samples than
uniform and multinomial distributions. The ability to predict next purchase items
using the maximum entropy models in this subscription service, as well as in the
measured service, was shown.

4.6.3 Subscription periods and purchase probabilities

The relationship between the effect of extending subscription periods and the pur-
chase probabilities was investigated, where the Cox proportional hazards model
(F3) and the maximum entropy model estimated using the log data up to 31 Au-
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Table 4.14: Perplexities of choice models for a subscription service.

2005/06/30 2005/07/31 2005/08/31
learning test learning test learning test

uniform distribution 75.0 75.0 81.0 81.0 86.0 86.0
multinomial distribution 48.2 71.0 51.3 107.0 53.3 86.0
maximum entropy model 35.0 34.8 35.9 41.8 36.8 43.0

Table 4.15: Accuracies of choice models for a subscription service.

2005/06/30 2005/07/31 2005/08/31
learning test learning test learning test

uniform distribution 1.35 1.35 1.25 1.25 1.19 1.19
multinomial distribution 7.84 4.54 7.30 4.25 5.99 11.35
maximum entropy model 14.64 14.20 15.02 15.27 15.18 14.29

gust 2005 were used.

The expected subscription period given the purchase history in Cox proportional
hazards models is multiplied by exp(−βi→j) with the existence of feature xi→j that
represents the existence of the purchase of item sj next to item si. The effect on
extending subscription periods of a transition was expressed by exp(−βi→j). The
probability of the transition was estimated using maximum entropy models. Note
that the features of the Cox proportional hazards model (F3) and the maximum
entropy model are both first-order Markov transitions. Figure 4.7 shows a scat-
ter plot of the extending effects of transitions, exp(−βi→j), and their transition
probabilities, R(sj|si). The correlation coefficient was 0.159, and there was little
correlation. This result implies that recommendations of high-purchase-probability
items do not necessarily lead to an extended subscription period.

4.6.4 Simulation

The effectiveness of the proposed recommendation method for subscription services
was examined by simulation. User behavior was simulated using the Cox propor-
tional hazards model and the maximum entropy model that was estimated using
the log data from 16 August 2004 to 28 October 2005. The log data comprised 107
items.

The function of Algorithm 2 is to generate a subscription period τ , where u is the
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Figure 4.7: Transition probabilities vs. subscription extension effects.

sequence of purchased items, u+s is the updated sequence when item s is purchased,
φ is an empty sequence, Bernoulli(θ) is the Bernoulli distribution with success prob-
ability θ, MaxTime is the time period for the simulation, and Multinomial(ψ) is
the multinomial distribution of one event with j’s success probability ψj. First,
from line 3 to line 4 in Algorithm 2, whether the user unsubscribes in unit time is
decided using the unsubscription probability in unit time of a subscriber h′(τ |x).
Second, from line 7 to line 8, whether the user purchases an item in unit time is de-
cided using the purchase probability in unit time, g. We assumed that g is constant
over subscription period τ . The first item that the user purchases is determined ac-
cording to R(s), where R(s) is the probability of purchasing item s first (line 10). If
the user has purchased some items, a recommendation is made using the proposed
method (line 12), and the item that the user purchases is determined according to

R
(
s|u, r(ŝ)

)
(line 13). Unknown parameters g, and R(s) were estimated using the

log data by the maximum likelihood method.

The proposed method is compared with the following recommendation methods:

• Q Recommend recommends an item that is most likely to extend the sub-
scription period when the user purchases the item. Line 12 in Algorithm 2 is
changed as follows:

ŝ ← arg max
s

Q′(l|u, s). (4.30)
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Algorithm 2 Simulation algorithm of a user behavior in a subscription service.

1: Set τ ← 0, u ← φ
2: while τ ≤ MaxTime do

3: Sample r1 ∼ Bernoulli
(
h′(τ |x)

)

4: if r1 is success then
5: break
6: end if
7: Sample r2 ∼ Bernoulli(g)
8: if r2 is success then
9: if u = φ then

10: Sample s ∼ Multinomial
(
{R(s)}s∈S

)

11: else
12: ŝ ← arg maxs∈S P ′(l|u, r(s)

)

13: Sample s ∼ Multinomial
(
{R(s|u, r(ŝ))}s∈S

)

14: end if
15: Set u ← u+s

16: end if
17: Set τ ← τ + 1
18: end while
19: Output τ

This recommendation does not take the user’s interests into consideration.

• R Recommend recommends an item that best coincides with the user’s
interests. Line 12 is changed as follows:

ŝ ← arg max
s∈S

R(s|u). (4.31)

This recommendation is the same as that of conventional methods.

• No Recommend does not recommend any items. The item that the user
purchases is determined solely according to the user’s interests. Line 12 is
omitted and line 13 is changed as follows:

Sample s ∼ Multinomial
(
{R(s|u)}s∈S

)
. (4.32)

A total of 100, 000 user subscription periods were generated through recommenda-
tions by each method, where 1 ≤ γ ≤ 10. The maximum subscription period was
set at 365 days. Figure 4.8 shows the average subscription period. The proposed

78



 150

 160

 170

 180

 190

 200

 1  2  3  4  5  6  7  8  9  10

su
bs

cr
ip

tio
n 

pe
rio

d

effect of recommendations (γ)

Our Method

Q Recommend

R Recommend

No Recommend

Figure 4.8: Average subscription periods in simulations.

method was more successful than the others in extending subscription periods.
Since Q Recommend may recommend items that have rare probabilities of being
purchased by the user, the effect of Q Recommend is smaller than that of the
proposed method. R Recommend only slightly extended subscription periods be-
cause there was little correlation between the subscription periods and the purchase
probability, as shown in Figure 4.7.

4.7 Summary

In this chapter, a recommendation method was proposed for improving the LTV,
which encourages users to purchase more items for measured services and encour-
ages users to extend subscription periods for subscription services. Basic features
were used in the experiments to make the novelty of the proposed framework easy
to understand. The proposed method can use other features such as long distance
dependencies or user attributes. Since the proposed method is divided into two
modules, namely the estimation of LTV and the estimation of user’s interests, it
can be further enhanced using survival analysis or collaborative filtering techniques.
For example, the present approach can be combined with content filtering for mod-
eling item choices. The frailty model or Cox proportional hazards model can also
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be improved by including the feature selection process in order to find informative
purchase patterns among high-LTV users.

Further research will be conducted in the future. First, the proposed method
should be made applicable to more general business models. For example, the
LTV was modeled in measured services assuming the profit generated by an item
to be constant for all items. Although the profit is almost constant for all items
in the online music store from which the data for the experiments were obtained,
some online stores sell items of the wide price range, such as electronics and books.
In these cases, the purchase frequency should be modeled considering item price
information. Second, the influence of recommendations on user purchase behavior
must be estimated from the log data automatically. This can be achieved by using
the log data of purchase histories with and without recommendations. Finally, the
proposed method should be applied to an online store, and the improvement in the
LTV of real users should be examined.

80



Chapter 5

Conclusion and future research

In the present thesis, probabilistic user behavior models were proposed to tailor
recommender systems to diverse requirements using heterogeneous information. In
Chapter 2, a learning framework was proposed for obtaining a model that accu-
rately predicts present data, in which past data are effectively used based on the
similarity between the distribution at the present time and the distribution for each
time. In Chapter 3, an efficient probabilistic choice model that achieves both fast
parameter estimation and high predictive accuracy by combining multiple simple
Markov models based on the maximum entropy principle was presented. In Chap-
ter 4, it is shown that recommendations for improving customer lifetime values
can be achieved by integrating choice models and purchase frequency or subscrip-
tion period models based on a probabilistic framework. Thus, different types of
behaviors can be integrated for effective recommendations by using probabilistic
models.

Although encouraging results have already been obtained, the present approach
must be extended before it can become a useful tool for recommendations. In the
present thesis, basic probabilistic models, such as item choices, purchase frequency,
and stop visiting, were proposed that use purchase log data or subscription log
data. The models can be improved using other data. In the case of cartoon data,
for example, the following item information can be taken into consideration for
improving the predictive performance of choice models: author, publication date,
and genre, such as female-oriented, hard-boiled, comedy, or sports. This item
information is especially helpful for choice models for users who purchase only a
few items or for items that are rarely purchased. The predictive performance of
choice models can be improved using the recommendation log data that contains
the information of the recommended item for each transactions because item choices
are affected by the recommendations. The probability that the recommended item
is purchased increases because the user has not seen the item before or the user
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is newly attracted to the item by the recommendation. The access log data, by
which items accessed by each use can be determined with the time stamp, even if
the user does not purchase the item, are also valuable. Using the access log, the
user’s interests or the behavioral pattern can be estimated, such as the fact that
the user often visits the store in the middle of the night or on Sunday. The ease of
obtaining such information is one advantage of online stores compared with offline
stores because it is difficult for offline stores to accumulate such data.

The way the presentation of the recommendation is an important factor for
effective recommendations, although this was not considered in the present thesis.
For example, the effectiveness of recommendation will change depending on the
number of recommended items. If we recommend only one item, it is not likely
to be purchased. If we recommend too many items, users may neglect all of the
recommendations. By estimating the optimal number of recommendations for each
user, we can improve the recommendation effect. Online stores can recommend
many items to users who are easily affected by recommendations, and can avoid
making recommendations to users who do not purchase recommended items. The
probability that users click the recommendation also depends on whether the store
provides images or abstracts of items with recommendations. The recommendations
need not to be presented in the form of the item list. By using dimensionality
reduction methods, we can locate items in the two-dimensional map, in which
similar items are located closely. With the map, users can intuitively understand
the relationships among a large number of items and browse through items. Since
probabilistic dimensionality reduction methods have been proposed [20, 27], a map
can be created based on the probabilistic behavior models presented in the present
thesis.

Although the focus of the present thesis is modeling behaviors in online stores,
it is hoped that the present research will be extended to model behaviors on the
entire WWW. The log data used in the experiments were obtained from stores for
specific products, such as music, movies, or cartoons. In order to model WWW
behaviors, the integration of a wide variety of heterogeneous items must be consid-
ered. Furthermore, it is hoped that the present research can be extended to model
behaviors in real life. To obtain personal behavioral data in real life has become
easier with the rapid progress of technology. For example, daily behavioral data
can be gathered using a cell phone with GPS. The framework presented in this
thesis is also expected to be useful for considering behavior models on the entire
WWW and in real life.
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Appendix A

A.1 Survival analysis

Survival analysis is used for modeling time to a certain event, such as death or
failure of machines. The hazard function h(t) is the instantaneous rate of death at
time t, and is defined as follows:

h(t) = lim
∆t→0

Pr(t < T < t + ∆t|T > t)

∆t
=

f(t)

S(t)
, (A.1)

where T is a random variable that represents the time of death, and Pr(t < T <
t + ∆t|T > t) is the probability of death between t and t + ∆t conditioned on
the survival until t. S(t) is a survival function that represents the probability of
survival until t as follows:

S(t) = Pr(T > t) = 1 −
∫ t

0

f(τ)dτ, (A.2)

where f(t) is a density function. If the hazard function h(t), survival function S(t),
or density function f(t) is specified, the others are fully determined as follows:

h(t) =
−d log S(t)

S(t)
=

f(t)

1 −
∫ t

0
f(τ)dτ

, (A.3)

S(t) = exp(−
∫ t

0

h(τ)dτ) = 1 −
∫ t

0

f(τ)dτ, (A.4)

f(t) = h(t) exp(−
∫ t

0

h(τ)dτ) =
−dS(t)

dt
. (A.5)

Using survival analysis techniques, we can handle data including censored samples.
For example, if users are still subscribing, we cannot know their true subscription
period. These samples are called censored samples.
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A.2 Log-linear models

All frailty models for purchase frequency modeling, Cox proportional hazards mod-
els for subscription period modeling, and maximum entropy models for choice mod-
eling are categorized as log-linear models, in which the probability of class y given
feature vector x = (xj)

V
j=1 is defined as follows:

P (y|x) =
exp(λT

y x)∑
y′∈Y exp(λT

y′x)
, (A.6)

where λy = (λyj)
V
j=1 is an unknown parameter vector for y to be estimated, and Y

is a set of classes. Given a set of training samples {xn, yn}N
n=1, unknown parameters

Λ = (λy)y∈Y can be estimated by maximizing the following log likelihood with a
Gaussian prior with mean 0 and variance β−1I for Λ:

L(Λ) =
N∑

n=1

log P (yn|xn) + log P (Λ)

=
N∑

n=1

(
λT

yn
xn − log

∑

y∈Y

exp(λT
y xn)

)
− β

2

∑

y∈Y

‖ λy ‖2 . (A.7)

For the maximization, the limited memory BFGS quasi-Newton method, which is
a gradient-based optimization algorithm that has been shown to be superior for
learning large-scale log-linear models [38], can be used. The gradient of the log
likelihood with regard to λy is as follows:

∂L(Λ)

∂λy

=
N∑

n=1

I(yn = y)xn −
N∑

n=1

P (y|xn)xn − βλy. (A.8)

The Hessian of the log likelihood is negative definite and the global optimum of the
estimation is guaranteed.

A.3 Hyper-parameter estimation for multinomial

distribution

We estimate hyper-parameters using leave-one-out cross-validation of the multino-
mial distribution. In multinomial distributions, the probability of feature vector
x = (x)V

j=1 is described as follows:

P (x; θ) ∝
V∑

j=1

θ
xj

j , (A.9)
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where θ = (θj)
V
j=1 is an unknown parameter vector to be estimated. Given a set

of training samples {xn}N
n=1, the MAP estimation with the Dirichlet prior is as

follows:

θ̂j =
mj + α

m + αV
, (A.10)

where mj =
∑N

n=1 xnj, m =
∑V

k=1

∑N
n=1 xnk, and α is a hyper-parameter to be

estimated. The above MAP estimation can be rewritten as a linear combination of
the maximum likelihood estimation and the uniform distribution as follows:

θ̂j = β
mj

m
+ (1 − β)

1

V
, (A.11)

where β = N
N+αV

. We can estimate hyper-parameter β with leave-one-out cross-
validation by the following log likelihood using the Newton method:

L(β) =
N∑

n=1

log P (xn; θ̂−n)

=
N∑

n=1

V∑

j=1

xnj log
(
β

mj − xnj

m −
∑V

k=1 xnk

+ (1 − β)
1

V

)
, (A.12)

where θ̂−n = (θ̂−n,j)
V
j=1 is the MAP estimation for the training data without the

nth sample. The gradient of the log likelihood is as follows:

∂L(β)

∂β
=

N∑

n=1

V∑

j=1

xnj

θ̃−n,j − 1
V

θ̂−n,j

, (A.13)

where

θ̃−n,j =
mj − xnj

m −
∑V

k=1 xnk

, (A.14)

is the maximum likelihood estimation without the nth sample, and

θ̂−n,j = βθ̃ + (1 − β)
1

V
, (A.15)

is the MAP estimation without the nth sample. The second-order differential of
the log likelihood is as follows:

∂2L(β)

∂β2
= −

N∑

n=1

V∑

j=1

xnj

(
θ̃−n,j − 1

V

)2

θ̂2
−n,j

, (A.16)

which is always negative. Therefore, and the global optimum of the estimation is
guaranteed. The hyper-parameter estimation with leave-one-out cross-validation
for gapped Markov models follows the same procedure as that for multinomial
distributions.
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