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Abstract. We present a machine learning task, which we call bidirec-
tional semi-supervised learning, where label-only samples are given as
well as labeled and unlabeled samples. A label-only sample contains the
label information of the sample but not the feature information. Then, we
propose a simple and effective graph-based method for bidirectional semi-
supervised learning in multi-label classification. The proposed method
assumes that correlated classes are likely to have the same labels among
the similar samples. First, we construct a graph that represents sim-
ilarities between samples using labeled and unlabeled samples in the
same way with graph-based semi-supervised methods. Second, we con-
struct another graph using labeled and label-only samples by connecting
classes that are likely to co-occur, which represents correlations between
classes. Then, we estimate labels of unlabeled samples by propagating la-
bels over these two graphs. We can find a closed-form global solution for
the label propagation by using matrix algebra. We demonstrate the ef-
fectiveness of the proposed method over supervised and semi-supervised
learning methods with experiments using synthetic and multi-label text
data sets.

Keywords: semi-supervised learning, label propagation, multi-label clas-
sification

1 Introduction

The performance of a classifier can be improved as the number of labeled samples
is increased. However, we might not have enough labeled samples to achieve a
reasonable performance because their generation incurs cost and requires time.
To overcome the shortage of labeled samples, there has been great interest in
methods that effectively increase training samples. For example, semi-supervised
learning [1] augments training samples by using unlabeled samples. The other
examples include domain adaptation [2] and class adaptation [3], where the
former utilizes samples from different domains and the latter utilizes samples
from different taxonomies.

In this paper, we consider a new way to improve multi-label classification
performance, where we have label-only samples as well as labeled and unlabeled



Table 1. Notation.

Symbol Description

{(x, y)} labeled samples
{x} unlabeled samples
{y} label-only samples
N number of labeled samples
U number of unlabeled samples
O number of label-only samples
K number of classes
M number of features

Table 2. Given data in supervised, semi-supervised and bidirectional semi-supervised
learning.

Problem Given data

supervised {(x, y)}
(one-directional) semi-supervised {(x, y)}, {x}

bidirectional semi-supervised {(x, y)}, {x}, {y}

samples. The labeled samples are a set of pairs of feature and label vectors
{(xi, yi)}N

i=1, and the unlabeled samples are a set of feature vectors {xi}N+U
i=N+1

without label information. The label-only samples are a set of label vectors
{yi}N+U+O

i=N+U+1, where corresponding feature information is unavailable. We call
this setting bidirectional semi-supervised learning. Semi-supervised learning is
defined as a task with abundant inputs (unlabeled samples) but few input-output
pairs (labeled samples); so we define bidirectional semi-supervised learning as a
task with abundant inputs and abundant outputs (label-only samples), but few
input-output pairs. Table 1 summaries our notation, and Table 2 summaries
the given data in supervised, semi-supervised and bidirectional semi-supervised
learning.

This setting can be found in many real applications. For example, let us
consider recommendation problems in two different domains, where the feature
vector is a user’s preference for items in a given domain, and the label vector is
the user’s binary preference for items in another domain [4, 5]. Here, we suppose
that we want to estimate the preferences in the second domain. Users who have
preferences in the both domains can be used for labeled samples, those who have
preferences only in the first domain can be used for the unlabeled samples, and
those who have preferences only in the second domain can be used for the label-
only samples. Cross-lingual information retrieval [6–8] is another application,
where the feature vector is a query and the label vector consists of relevant
documents in a different language. Here, we might have a lot of documents in a
different language for label-only samples. Other applications include automatic
image annotation problems [9–11], where the feature vector is image features
and the label vector is the annotations. The label-only samples can be obtained
using text corpus under the assumption that correlation between annotations is



related to correlation between word in the text corpus. Similarly, in multi-label
text classification problems, label correlation might be available from outside
label-only sources. In general, bidirectional semi-supervised problems may arise
when we have disjoint datasets of features and labels.

Unlabeled samples contain information about the distribution of samples in
the feature space. Semi-supervised learning methods uses this information for
improving performance. Similarly, label-only samples contain information about
the distribution in the label space, or information about correlations between
classes. Therefore, we can expect that the multi-label classifier performance can
be improved by using label-only samples.

We propose a simple and effective graph-based method for bidirectional semi-
supervised learning. A number of graph-based semi-supervised learning methods,
or label propagation, have been proposed [12–15] because of its simplicity and
easy implementation. They have used for a wide variety of applications, such
as text classification [16], image recognition [17] and protein function predic-
tion [18]. With the graph-based semi-supervised method, a graph is constructed
using labeled and unlabeled samples by connecting samples that have similar
feature vectors, where each node corresponds to a sample. Then, labels are es-
timated by propagating labels over the constructed graph with the assumption
that connected samples tend to have the same label. An advantage of graph-base
methods is that we can obtain a global closed-form solution.

The proposed method is an extension of the graph-based semi-supervised
methods. First, we construct a graph using labeled and unlabeled samples in the
similar way with graph-based semi-supervised learning. Second, we construct
another graph using labeled and label-only samples by connecting classes that
are likely to co-occur, where each node corresponds to a class. Then, we estimate
labels by using these two graphs with the assumption that labels of correlated
classes in similar samples tend to be the same. We can obtain a global closed-form
solution for the proposed method. We can use similar techniques that have been
extensively studied for graph-based semi-supervised methods for the proposed
method, such as techniques for constructing effective graphs and algorithms for
efficient estimation.

The remainder of this paper is organized as follows. In Section 2, we formu-
late the proposed method, and describe a closed-form solution and an iterative
estimation method. In Section 3, we briefly review related work. In Section 4, we
demonstrate the effectiveness of the proposed method with experiments using
synthetic and multi-label text data sets. Finally, we present concluding remarks
and a discussion of future work in Section 5.

2 Proposed method

We suppose that there are N labeled samples {(xi, yi)}N
i=1, U unlabeled samples

{xi}N+U
i=N+1, and O label-only samples {yi}N+U+O

i=N+U+1. A feature vector is repre-
sented by xi = (xim)M

m=1, where xim is the mth element of the ith sample’s
feature vector, and M is the number of features. A label vector is represented



(a) sample graph (b) class graph (c) sample-class graph
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Fig. 1. Sample, class and sample-class graphs. Square and circle nodes represent sample
and class, respectively.

by yi = (yik)K
k=1, where yik = 1 if the ith sample is categorized into class k,

yik = −1 otherwise, yik ∈ {−1, 1}, and K is the number of classes. Each sample
can be assigned to multiple classes. Classes that do not appear in labeled sam-
ples can appear in label-only samples. Our task is to assign labels to unlabeled
samples.

First, we construct a sample graph, where nodes are the labeled and unlabeled
samples. An edge between two nodes represents the similarity of feature vectors
of the two samples. The edge weight can be calculated by using Gaussian kernel
as follows,

wij = exp
(
−α

2
‖ xi − xj ‖2

)
, (1)

where α is the precision parameter. We can also build the sample graph with k
nearest neighbors, where nodes are connected if they are k nearest neighbors in
Euclidean distance, and wij = 0 otherwise. Figure 1 (a) shows an example of a
sample graph, where a square node represents a sample.

Second, we construct a class graph, where nodes are the classes that appear
in the labeled and label-only samples. An edge between two nodes represents
the similarity of the two classes, or how likely the two classes co-occur. The edge
weight can be calculated by using Gaussian kernel in the similar way to the
sample graph,

vkl = exp
(
−β

2
‖ y(k) − y(l) ‖2

)
, (2)

where β is the precision parameter, and y(k) = (y1k, · · · , yNk, yN+U+1,k, · · · , yN+U+O,k)
is an N +O dimensional vector that consists of the kth elements of label vectors
in the labeled and label-only samples. y(k) can be used with L2 normalization
so that the weights correlate to their cosine similarities. Figure 1 (b) shows an
example of a class graph, where a circle node represents a class. Note that there
are N + U nodes in the sample graph, and K nodes in the class graph.

Then, we estimate labels for unlabeled samples using the sample and class
graphs. We suppose that fik is a real valued relaxation of yik, which is to be
estimated. We assume that labels of correlated classes (which are connected in
the class graph) in similar samples (which are connected in the sample graph) are



likely to be similar. This can be achieved by minimizing the following function,

E =
1
2

N+U∑
i,j=1

K∑
k,l=1

wijvkl(fik − fjl)2, (3)

with the constraint of fik = yik on the labeled data i = 1, · · · , N . When wij is
high (feature vectors of i and j are similar) and vkl is high (classes k and l are
correlated), the estimated value for class k of the ith sample needs to be similar
to that for class l of the jth sample so as to minimize the objective function E.
Therefore, by minimizing the objective function, we can find estimated labels,
where correlated classes in similar samples have similar labels.

The proposed method can be seen as label propagation on a sample-class
graph that is build by combining sample and class graphs as shown in Figure 1
(c), where the correlated classes in the similar samples are connected. In the
sample-class graph, each node corresponds to a class of each sample, and the
number of nodes is (N + U)K.

With graph-based semi-supervised learning methods, the following objective
function is minimized,

E =
1
2

N+U∑
i,j=1

wij

K∑
k=1

(fik − fjk)2, (4)

where they assume that similar samples have similar labels. However, they do
not consider the correlation between classes. The graph-based semi-supervised
learning methods can be seen as label propagation on a sample graph without
class graphs. The proposed method with vkl = 1 if k = l and vkl = 0 otherwise
coincides with the graph-based semi-supervised method.

2.1 Closed-form solution

We can find a closed-form global solution for the minimization of the objective
function E by using matrix algebra. The proposed method propagates labels on
the sample-class graph as shown in Figure 1. Therefore, we can use the same
algorithm for finding the solution with label propagation for semi-supervised
learning [15]. Let A be an (N+U)K×(N+U)K matrix, whose (iK+k, jK+l)th
element is AiK+k,jK+l = wijvkl as follows,

A=


w11v11 w11v12 · · · w11v1K

w11v21 w11v22 · · ·
...

...
...

. . .
...

wN+U,1vK1 · · · · · · wN+U,N+UvKK

 , (5)

which represents the sample-class graph. Let D be a diagonal matrix, whose ith
diagonal element is

Dii =
(N+U)K∑

j=1

Aij . (6)



The graph Laplacian matrix L is defined as,

L = D − A. (7)

Let f = (f11, f12, · · · , f1K , f21, · · · , fN+U,K)> be the vector of f values on all of
the labeled and unlabeled samples. The objective function E can be written as,

E = f>Lf . (8)

Then, we can obtain the following closed-form solution by solving the constrained
optimization problem using Lagrange multipliers,

fl = yl, (9)

fu = −L−1
uuLulyl. (10)

Here, f = (fl, fu) and

L =
(

Lll Llu

Lul Luu

)
, (11)

which are partitioned with respect to values of labeled and unlabeled samples.

2.2 Iterative algorithm

We can also obtain a solution by using an iterative algorithm [19, 20]. When
the graphs are sparse, the iterative algorithm is efficient and reduces required
memory. Sparse graphs can be obtained by using k nearest neighbor graph con-
struction for sample and class graphs. With the closed-form solution, we need
the inverse of a UK×UK matrix Luu, whose inverse is not sparse even if Luu is
sparse. The numbers of unlabeled samples U and classes K might be large, and
it might require a huge memory space for storing the UK × UK dense matrix.
On the other hand, the iterative algorithm does not need to calculate any dense
matrices. First, we initialize estimates as follows,

f
(0)
l ← yl, (12)

f (0)
u ← (0, 0, · · · , 0). (13)

Then, we iterate the following updates until convergence,

f (t+1) ← D−1Af (t), (14)

f
(t+1)
l ← yl, (15)

where f (t) is the estimates of the tth iteration. We can find the unique fixed
point by the iterative algorithm.



2.3 Induction

The method described before is transductive, which means that the method
estimates labels of the given unlabeled samples. When we newly obtain unlabeled
samples to be estimated, we can estimate their labels by combining previously
given samples and the newly obtained samples. However, it is inefficient. We can
efficiently estimate labels for out of samples using the estimation result for the
previously given samples as follows,

fik =

∑N+U
j=1

∑K
l=1 wijvklfjl∑N+U

j=1

∑K
l=1 wijvkl

, (16)

where fjl is the estimated labels of the previously given samples.

3 Related work

Bidirectional semi-supervised learning is a new type of machine learning task,
and the proposed method is a simple method based on graphs. A lot of graph-
based semi-supervised learning methods have been proposed. However, most of
them are for single-label classification. Those methods can be applied to multi-
label classification by estimating each label independently. However, by consid-
ering the class interdependence for multi-label classification, the performance
can be improved and some those types of graph-based semi-supervised learning
methods have been proposed [21–23, 4]. For example, [22] proposed a method
that estimates labels so that multiple labels for each sample satisfy the given
correlations between classes. Other multi-label classifiers also uses class correla-
tion [24]. However, they utilize only classes that appeared in the labeled samples.
On the other hand, the proposed method can utilize classes that do not appear
in the labeled samples by representing class correlation by a graph, and propa-
gate labels over the graph. With the proposed method, even if two classes do not
directly co-occur, label information can propagate through edges. In [21], cor-
relation between labels for each sample is considered. In contrast, the proposed
method considers correlation between labels not only in one sample but also in
multiple similar samples.

4 Experiments

4.1 Data

We demonstrate the effectiveness of the proposed method using the following
two data sets: Swissroll and Patent.

The Swissroll data [25, 26] are synthetic, where samples of three dimensional
feature vectors are lying on a two dimensional nonlinear manifold as shown in
Figure 2. We augmented the swissroll data set with multiple labels. We generated
label vectors so that they became similar if their feature vectors were located
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Fig. 2. Swissroll data. Each point represents a feature vector and its color represents
the labels. The numbers show that nearby samples are assigned to those classes.

closely in the two dimensional nonlinear manifold, where we set the number of
classes at K = 10. We generated samples, where the number of labeled, unlabeled
and label-only samples were N = 10, U = 1, 000 and O = 1, 000 respectively.

The Patent data consist of patents published in Japan from January to March
in 2004, to which International Patent Classification (IPC) codes were attached
by experts according to their content. We used bag-of-words of a patent for the
feature vector, where the number of words was M = 104, 621, and we normalized
each feature vector by L2 norm. We used the most frequently occurred 500 IPC
codes in the corpus for the classes, K = 500. We sampled 10 labeled samples,
1, 000 unlabeled samples, and 5, 000 label-only samples from the corpus.

Figure 3 shows a class graph of the Patent data set. Here, each node rep-
resents a class, and it is visualized by [27] so that connected nodes are located
closely. Some classes form clusters, and we can see the structure of classes from
the visualization result. In the Patent data set, there are correlated classes, such
as ‘transmitter’ and ‘receiver’, ‘distinct material semiconductor’ and ’distinct
alignment semiconductor’, and ‘system to generate signals for adjusting focus’
and ‘automatic focus adjusting system’.

4.2 Measurements

For the evaluation measurements, we used mean reciprocal rank (MRR) and
normalized discounted cumulative gain (NDCG) [28], which were widely used in
evaluating ranking problems. We used ranking measurements because they give
higher scores when true classes are ranked higher than false classes even if the
estimated classes did not exactly match with the true classes. They were also
used for multi-label classification [29–31].



Fig. 3. A class graph of the Patent data set, where each node represents a class or IPC
code.

The MRR is the average of the reciprocal ranks, and the MRR of the ith
sample is given as follows,

MRRi =
1
|yi|

∑
k:yik=1

1
rankik

, (17)

where rankik is the rank of class k of the ith sample in the estimated result, and
|yi| represents the number of classes that satisfy yik = 1.

The DCG is calculated as follows,

DCGi = gi1 +
K∑

k=2

gik

log2 k
, (18)

where gik = 1 if the kth ranked estimated class is the true class for the ith
sample, and gik = 0 otherwise. NDCG can be obtained by normalizing DCG by
the maximum possible DCG, and NDCG lies on the interval 0.0 to 1.0. With the
proposed method, classes were ranked according to values fik for each unlabeled
sample. Higher MRR and NDCG represent better classification performance.

4.3 Compared methods

We compared the proposed method, which uses all of the labeled, unlabeled and
label-only samples, with a supervised method, which uses only labeled samples,
and a semi-supervised method, which uses labeled and unlabeled samples.

For the supervised method (SL), we used a maximum entropy model, which
is a discriminative classifier, and it has achieved high performance for text classi-
fication [32]. The maximum entropy model estimates the probability distribution



Table 3. Average MRR and NDCG in the Swissroll data set and their standard devi-
ation.

MRR NDCG

SL 0.520 ± 0.049 0.738 ± 0.047
SSL 0.602 ± 0.048 0.814 ± 0.053

Proposed 0.675 ± 0.047 0.900 ± 0.039

Table 4. Average MRR and NDCG in the Patent data set and their standard deviation.

MRR NDCG

SL 0.029 ± 0.021 0.157 ± 0.021
SSL 0.025 ± 0.018 0.153 ± 0.019

Proposed 0.034 ± 0.023 0.166 ± 0.026

that maximizes entropy under the constraints imposed by the given data. The
probability that the ith sample is classified into class k is calculated as follows,

P (k|i) =
exp(θ>

k xi)∑K
l=1 exp(θ>

l xi)
, (19)

where θk is a parameter vector for class k. The labels were ranked according this
estimated probability. The parameters can be obtained using maximum a pos-
teriori (MAP) estimation with Gaussian priors. We chose the hyper-parameters
for the Gaussian priors from {10−2, 10−1, 1} that achieved the best performance.

For the semi-supervised method (SSL), we used a graph-based semi-supervised
method, or label propagation [12]. The graph-based semi-supervised method co-
incides with the proposed method when the class graph is constructed with
vkl = 1 if k = l, and vkl = 0 otherwise as described before. We set the precision
parameter for Gaussian kernel at α = 1, and the number of neighbors at 10
when we construct the graph.

With the proposed method, we set the precision parameters for Gaussian
kernel at α = 1 and β = 1, and the number of neighbors at 10 when we construct
both of the sample and class graphs. With the semi-supervised and proposed
method, we estimated labels using iterative algorithms.

4.4 Results

Tables 3 and 4 show the averages of MRR and NDCG and their standard devia-
tions over 100 experiments with Swissroll and Patent data sets, respectively. The
proposed method achieved the best performance in both data sets. This result
indicates that the proposed method can appropriately assign labels through its
use of label-only samples as well as unlabeled samples.

Figure 4 shows NDCGs achieved by the proposed method with different num-
bers of label-only samples in Swissroll and Patent data sets. As the number of
label-only samples increases, the NDCG increases. The MRR showed the same
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Fig. 4. NDCG with different numbers of label-only samples.

tendency of the NDCG. This result implies that the proposed method can obtain
relationships between classes more precisely by using more label-only samples.

5 Conclusion

We presented bidirectional semi-supervised learning, which is a novel machine
learning task to improve performance by using label-only samples as well as
labeled and unlabeled samples. We then proposed a simple and effective graph-
based method for bidirectional semi-supervised learning. The proposed method
assumes that correlated classes are likely to have the same labels among the sim-
ilar samples. The correlated classes can be found by using labeled and label-only
samples, and the similar samples can be found by using labeled and unlabeled
samples. In experiments with synthetic and text data sets, we confirmed that
the proposed method can improve the performance of multi-label classification.



Although our results have been encouraging as a first step towards bidirec-
tional semi-supervised learning, we must extend our approach in a number of di-
rections. First, we can extend the proposed method by using more advanced tech-
niques for graph-based semi-supervised learning because the proposed method
uses the same framework with the graph-based semi-supervised learning meth-
ods. Examples include methods for learning weight matrices [12], and efficient
algorithms for label estimation [33, 34].

Second, we need to investigate methods for bidirectional semi-supervised
learning other than the proposed graph-based method. In the semi-supervised
learning, a wide variety of methods have been proposed such as transductive
SVMs [35, 36], methods using generative models [1, 37] as well as graph-based
methods. These methods might be helpful for considering new bidirectional semi-
supervised learning methods.

Finally, we would like to evaluate the proposed method in other real appli-
cations. Application examples include collaborative filtering [4, 5], cross-lingual
information retrieval [6–8], and image annotation [10, 11].
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