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Abstract The persistency of interests differs among consumers.
Some consumers significantly change their interests and some

We propose a new topic model for tracking time- do not. Furthermore, it also differs according to periods.
varying consumer purchase behavior, inwhichcon-  There may be periods during which a consumer’s interests

sumer interests and item trends change over time.  change greatly and there may also be long periods when these
The proposed model can adaptively track changes interests remain unchanged. Therefore, we need to infer the
in interests and trends based on current purchase nterest persistency for each consumer and for each time pe-
logs and previously estimated interests and trends.  riod. We also infer the trend persistency for each topic and
The online nature of the proposed method means  for each time period because it differs among topics and over
we do not need to store past data for currentinfer-  time according to new releases of items, seasons, and social
ences and so we can considerably reduce the com-  gnd economic environments.
putational cost and the memory requirement. We Probabilistic Latent Semantic Analysis (PLS#ofmann,
use real purchase logs to demonstrate the effective- 1999 and Latent Dirichlet Allocation (LDA)[Blei et al.,
ness of the proposed method in terms of the predic- 2003 are two representative topic models. However, these
tion accuracy of purchase behavior and the compu-  models assume that samples are exchangeable, and there-
tational cost of the inference. fore they cannot capture the dynamics. More recently, topic
models with dynamics, such as the Dynamic Topic Model
. (DTM) [Blei and Lafferty, 2006 Dynamic Mixture Model
1 Introduction (DMM) [Wei et al, 2007, and Topic over Time (ToTWang

Modeling consumer purchase behavior in e-commerce is afifd McCallum, 2005 have been proposed. TTM has an ad-

important task, because it enables online stores to providéAntage over the other models in its adaptability to changes
recommendations, personalized advertisements, and perforggcauseé TTM models dynamics of both interests and trends,
trend analyses. Recently there has been great interest in afﬁrjd it infers their persistency for each time interval from the
alyzing discrete data using topic models, where the discret8!Ven data. . .

data are mainly text corpora but also include human behavior ' the rest of this paper, we assume that the given data are
log datalJin et al, 2004; Daset al, 2007. A topic model ~Purchase logs. However, our method is applicable to a wide
is a hierarchical Bayesian model, in which a user (documen’tjﬁj\""nge of human behavior data with timestamps, such as web
is modeled as a mixture of topics, where a trend in a topicccess l0g, blog, e-mail and discourse data.

is modeled as a purchase probability distribution over cata- . .

log items (words). However, traditional topic models do not2 ~ Preliminaries

fulfill two important requirements for modeling consumer be-The goal of this paper is to estimate the probability that user
havior in online stores. The firstis the adaptability to changesy, purchases item at timet, P(i|u,t), which represents the
Consumer interests and item trends change over time for purchase behavior of user whereu € {1,--- ,U} is a user
variety of reasons. The second is the ease with which increindex, andi € {1,--- , I} is an item index. We assume that
mental model updates can be achieved. Huge amounts of datds a discrete variable, and we can set the unit time interval
are accumulated every day in real online stores. arbitrarily at, for example, one day or one week.

In this paper, we propose a topic model, which we call In topic modeling,P(i|u,t) is obtained by the following
the Topic Tracking Mode{TTM), that satisfies the above two equation with the assumption of the conditional independence
requirements. With TTM, interests for each consumer anf « and: given latent topicz,
trends for each topic are sequentially inferred using newly ob- 4
tained data and previously estimated interests and trends. The Plilu.t) — 0, . 1
computational cost and the memory requirement of TTM are (elu, ) = Z Ptu0t.z.i @
low because past data are not required for the inference and z=1
need not be stored. where Z is the number of topics¢, . . = P(z|u,t) rep-



resents the interests of a user, which is the probability that (b) Foreach purchase =1,---, M, ,:

)

useru is interested in topic: at timet, whereg; ,, . > 0, i. Draw topic

>, e, = 1,andb; . ; = P(i]z,t) represents trends in a Ztu.m ~ Multinomial(¢, )
topic, which is the probability that iteris selected and pur- ii. Draw item ’
chased from topie at timet, wheref; . ; > 0,% . 0; ., = 1. Tt um ~ Multinomial(6, ., . ).

In LDA, interestsg, , = {¢+.,.}2_, are assumed to have

.. . As in LDA, each iteme is sampled from a topic-specific
a Dirichlet prior as follows: boum P pic-sp

multinomial distribution.
o Figure 1 (a) shows a graphical model representation of
Py uly) o H‘ﬁt,w ) (2) TTM, where shaded and unshaded nodes indicate observed
z and latent variables, respectively.
wherey = {7.}%_,,v. > 0, is a set of Dirichlet parameters.
In this assumption, current interests are independent of thd Inference

past interests, and their dynamics are not incorporated. e estimate the parameters in TTM based on stochastic EM
) ) algorithm, in which Gibbs sampling of latent topics and maxi-
3 Topic Tracking Model mum joint likelihood estimation of parameters are alternately

To model the dynamics of user interests, we assume that tHg—:rated[Wallach, 2006’.

mean of the user interests at the current time are the same -€t? be the current time. Suppose that we have; purc_:hase
as those at a previous time unless otherwise confirmed gg?gs X at the current time, the mean of the previous in-
the newly observed data. In particular, we use the follow{erests®._1 = {¢,_, ,};—;, and the mean of the previ-
ing Dirichlet prior, in which the mean of the current interestsous trends®, ; = {6,_;.}% ,. By using these data and

is the same as the mean of the previous inter&glgu, and parameters, we estimate current intereBis= {¢, ,}\_,

the precision isy; ,,, and trend®; = {0, .}, as well as interest persistencies
U ; ; z
. S S o = {_at7u}u:1 and trend persistencigh = {ﬁt,z}z:_l.
P(¢y b1 o ) o< [[ o™ ; 3) We infer latent topics based on the collapsed Gibbs sam-

pling [Griffiths and Steyvers, 2004in which the joint dis-

where Dirichlet parameters in (2) are factorized into the meaffibution of data and latent topics is required. L& =

; il : ,
and precisiony; ., . = a4 1.4... The precisiony; ,, rep- {Ztw}ou=1 bea zett of Iz.:\tent topics of aII. users at. timeand
resents the interest persistency, which is a measure of ho#t,u = {ztu,m},,—1- Since we use conjugate priors for pa-

consistently user maintains her interests at timeompared ~rameters®, and®,, we can integrate out the parameters in
with those att — 1. We estimaten, ,, for each time period the joint distribution as follows:

and for each user because the variability of interests depenqlg X, Z.|1% o

on both time and user. Since this is a conjugate prior, the in- (X0, Z0|®11,O11, 00, By)

ference is simple as in LDA, which is a topic model without = P(Z;|®;_1, ;) P(X:|Z;,0:_1,,)
dynamicd Griffiths and Steyvers, 2004 .

To model the dynamics of trends, we use the following — /P<Ztvq’t|‘1’t*1’at)dq’t
Dirichlet distribution for the prior of trend®; . = {6; ..}/_, X
in the same way as interests, X /P(Xt, 0©:|Z:,0;_1,3,)dO;

POAbrs ) [T @ Do) TLT0wws ¥ 0rudir)
i W Hz F(at,u¢t—1,u,z) F(nt,u + at,u)
where the mean is the previous trerﬁdsl,z, and the preci- NG [LT(ne-i + B th_l i)
sion isf; ... This prior is also conjugate. X H - — : == (5)
My . LT (Be,20i-1,2,4) L(ne. + Br,z)
Let ;. = {Zrum}nme; be a set of items purchased by

useru at timet, wherez, ,, ,,, is themth item purchased by Wheren, . is the number of items purchased by useat
useru at timet, and M, ., is the number of items purchased time¢ that have been assigned to topjc, . ; is the number

by useru at timet. TTM assumes the following generative Of times itemi has been assigned to topicat time¢, and
process forX ; = {x,,,}U_,, which is a set of all items pur- I'(z)is the gamma function. _

chased by users at time, The assignment of a latent topic is estimated using the fol-
lowing equation, which is calculated from (5),

1. Foreachtopie =1,---,Z: N X
P(Z] = k‘XtaZt\ja(ﬁtfla@tflyahﬁt)

(a) Draw trends

0, . ~ Dirichlet(5; .0;_1..) ~ N k\j T at,uétfl,u,k Nk \j T ﬂt,kétfl,k,zj ©6)
2. Foreachusetr=1,---,U: Nt + Qo Ny v + Bek ’
(a) Draw interests wherej = (t,u,m), and\j represents a count that does not

#,.,, ~ Dirichlet(cy ;1 ,) include a purchasg
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Figure 1: Graphical model representations of Topic Tracking Model (TTM), Dynamic Topic Model (DTM), and Dynamic
Mixture Model (DMM).

The persistency parametess and 3, are estimated by of yesterday but also on the interests of a week ago. There-
maximizing the joint distribution (5). The following updat- fore, to capture the long term dependences, we modify the
ing rules for maximizing the joint distribution are derived by prior of interestsp, ,, so that it can depend on pdstnterests

using the bounds itMinka, 2004, {1}, as follows:
Z (Z%,l u zAt u,z 2
z S — g DXt 1Pt 1w,z 1
Ytu T Hu U(ngy + o) — Vo) (7) P(y {¢t—l,u>at~,u,l}lL:1) x H¢t,ul,z o )
WherEAt,u_,z = \I’(n_t,u,z + O‘t,u(ﬁt—l_,u,z) - \_P(at,qut—l,u,z)a . . i (11)
and U(-) is the digamma function defined by(z) = where the mean is proportional to the weighted sum of the
dlogT(z) anq pastL interests of the user, and ,, ; represents how the in-
oc ! ' terests at are related to theprevious interests. The informa-
) , . tion loss is reduced by considering long term dependences.
Z‘et—l z.thzz . . f .
B,z ﬁt,z\ll . = \IJ ; (8) Furthermore, the bias of the inference is reduced by using
(ne,z + Be,z) — W(Br,z) multiple estimates. When we use only the previous interests,

whereB; . ; = U(ng . i+ Brafr1..)— (.0, 1 .,). By theinference might be biased because it depends on just one
iterating Gibbs sampling with (6), and maximum likelihood &stimate. _ _ _
estimation with (7) and (8), we can estimate latent togfgs In a similar fashion, we can also modify the prior of the
and parameters; andg,. trendsé, ,, so that it can depend on pastrends{6;_; ., } -,

After the iterations, the means of ,, . andd, . ; are ob-  in order to make the inference more robust as follows:

tained as follows: ) ) iy 1
. P(0; ,1{0:_; , e g1 Pr=ib—t,i— 12
N,z T QuPt—1,u,z ( 2 |{ t=1, ’ﬁt* ’l}l—l) X 1:[ t,2,i , (12)

qgt,u,z = (9)
Nt + At . . .
A where the mean is proportional to the weighted sum of the
0. N i+ Br20t—1,2 (10) pastL trends of the topic, and; . ; represents how the trends
PR e+ B att are related to the-previous trends. A graphical model of
These estimates are used to estimate interests and trendstI : W|thrl10ng .term.depender&ceszls ShOWT‘”'” F '|grlljlre 3.(b).'
the next time period + 1. ince the priors in (11) and (12) are still Dirichlet distri-

TTM uses only current dat& ; (not past data) when in- Putions and conjugate priors, the parame@gsand ©; in
ferring current interest®, and trend€®,, Therefore, TTM the joint Q|strlbutlon can be m;egrated ou_t as in (5). There—
can greatly reduce the computational cost compared with thi'€: the inference can be achieved by using a stochastic EM
conventional models that use past data. Moreover, TTM alsg'90rithm in the same way with the model described in the

reduces the memory requirement because past data need Ipﬁ;?vious §ection. E?‘.Ch latent topic is sampled according to
be stored. the following probability,

C_ 1§ : L
5 Capturing long term dependences Pz = kX1, Znj, {q’t‘f’ Oty v, By ihiz) )
In the above discussion, we infer interegts, using an es- - M\ + 200 i Ptk Mk \g 20 B0t ko,

timate of the previous interes‘ﬁa_m. However in practice, AR DD TRN e+ Bekd
the interests of today may depend not only on the interests (13)




whereay; = {oy . }_,, andB,; = {B;-.}7_,. The up-  since SVD implicitly assumes Gaussian noise, it is not appro-

date rule of weighty; ,, ; is as follows: priate for discrete datadofmann, 1999 such as text corpora
R and purchase logs.
Do Ptz Al TTM is related to the Kalman filtefwelch and Bishop,
Al O S ) — (S )’ 1995 even though TTM deals with discrete variables and
v pehe the Kalman filter deals with continuous variables. In the
/ 7 Kalman filter, since both the transition and emission distri-
where Ai... Vs + 2 at’“’l¢t_l.’”’Z) butions are Gaussian, and the conjugate distribution of the
V(X Qtuid-10,2).  The update rule of weightii..  Gaussian is also Gaussian, the inference is tractable. On the
Is as follows: other hand, with topic models, since the emission distribu-
> 0, 1. Bl .. tion is the multinomial, and the conjugate distribution of the
Btai < Brzi G o TES , (15)  multinomial is the Dirichlet, the inference in the same way
V(e + 220 Brzr) =V y Brz) is infeasible. DTM is inferred as with the Kalman filter by
- mapping the Gaussian to the multinomial using the softmax
where B£7f7i = Wz + XiBieabiizi) — fungtl?onq In contrast, TTM is inferred by assur?]ing that the
V(Y Bt,210¢—1,2:). The means ofp,, . and 6,.; are transition distribution is the Dirichlet, in which the mean is
obtained as follows: the previous mean of the multinomial, and the variance is

- adaptively estimated from the given data.
Nt,u,z + Zl Oét,u,l¢t7l,u,z P y g

(gt,u,z = ) (16)

M+ 2 Ot 7 Experiments
i Tt S Btz abitzi 17 We evaluated TTM using two real purchase log data sets con-
T Y P (17)  sisting of movie and cartoon data. The movie data are the logs
',Z 7Z7

) o ) of a movie downloading service from May 14th to August
These estimates are efflClently used for the inference fronglst, 2007, in which the numbers of users, itemS, and trans-

t+1tot+ L. actions are 70,122, 7,469, and 11,243,935, respectively. The
cartoon data are the logs of a cartoon downloading service for
6 Related work cell phones from January 1st to May 31st, 2006, in which the

numbers of users, items, and transactions are 143,212, 206,
Yand 12,642,505, respectively. We considered cartoons with
different volumes to be the same item. We omitted items and
users that appeared fewer than ten times. We set the unit time
interval at one day.

For the evaluation measurement, we employed¥hieest
rediction accuracy of purchase items. We used data until the
revious dayt — 1 as training data to infer the model, and

Topic models with dynamics have been proposed recentl
These include the Dynamic Topic Model (DTNiBlei and
Lafferty, 2004, Dynamic Mixture Model (DMM)[Wei et
al., 2007, and Topic over Time (ToTjwang and McCal-
lum, 2008. A graphical model of DTM is shown in Fig-
ure 1 (c). DTM analyzes the time evolution of topics in doc-
ument collections, in which a document is assumed to hav

only one timestamp. Therefore, DTM does not consider th . : e
dynamics in each document (user), and it cannot be used f redicted purchase items at dags test data. The probability

modeling user behavior dynamics, which is the goal of this hat usen: purchases itemat timet was calculated using the

paper. Since DTM uses a Gaussian distribution for the dy€Stimated parameters at the previous day,; and®;1, as

namics, the inference is intractable owing to the nonconjufollows:

gacy of the Gaussian and multinomial distributions, and it P(z = i|u, t; &, , é)t—l) _ qut_l O (18)
requires complicated variational approximations. In contrast oY ~ " =

to DTM, the inference of TTM is relatively simple because

it uses Dirichlet distributions that are conjugate for multino- The N-best accuracy represents the percentage that the
mial distributions. A graphical model of DMM is shown in purchased items are contained in the set/fhighest
Figure 1 (d). DMM only considers a single dynamic sequence’(z=i|u, t; ®;_1, O;_1) items.

of documents, which corresponds to a single user over time. In order to demonstrate the effectiveness of modeling the
On the other hand, TTM considers multiple users with differ-dynamics of interests and trends, we compared TTM with
ent dynamics as well as the dynamics of trends for multiplehree topic models, LDAall, LDAonline, and LDAone, which
items in each topic, which is essential for analyzing consumeare based on LDA. LDAall is an LDA that uses all the past
purchase behavior. Furthermore, DMM assumes that the irdata for inference. LDAonline is an online learning extension
terest persistency is fixed and known. Therefore, it is nobf LDA, in which the parameters are estimated using those of
appropriate for purchase logs, in which distributions somethe previous day and the newly obtained dd&anerjee and
times change greatly, and are sometimes stable. ToT needs Biasu, 200¥. LDAone is an LDA that uses just the previous
the samples over time for the inference. Therefore, it cannatlay data for inference. For a fair comparison, the hyper pa-
be updated sequentially, and is not appropriate for data thaameters in these LDAs were optimized using stochastic EM
are continuously accumulated. Singular Value Decomposias described ifiwallach, 2008.

tion (SVD) is also used for analyzing multiple timeselia- The N-best accuracies for movie and cartoon data sets av-
padimitriouet al,, 2004 as well as topic models. However, eraged over time are shown in Table 1. TTM1 and TTM10



TTM10 !

Table 1: AverageV-best accuracies (%) over time. The digit | | Ry —
in the bracket is the standard deviation. “ framenne ]
(a) movie N

N LDAall LDAonline LDAone TTM1 TTM10 st N\ AT\ |

1 1.21(0.61) 1.08(0.54) 1.91(0.78) 2.22 (0.21%6(0.92) o S :
2 2.18(0.79) 2.00(0.78) 3.52 (1.22) 3.99 (1.3B47(1.36) , |
3 3.06(1.04) 2.81(1.02) 5.04 (1.64) 5.60 (1./35(1.85)

4 3.90 (1.27) 3.56 (1.24) 6.24 (1.90) 6.82 (2.0182(2.15) 0 2 S %0 % 100

5 4.70 (1.51) 4.26 (1.44) 7.37 (2.20) 7.92 (2.360(2.42)

(b) cartoon
N LDAall LDAonline LDAone TTM1 TTM10
27.0(3.3) 26.0(3.5) 24.8(4.5) 26.8 (4.2D.5(3.4)
37.3(3.6) 35.1(4.2) 32.4(4.9) 34.2(4.8p.9(3.5)
43.7 (3.9) 41.1(4.8) 37.2(5.3) 39.8(4.85.9(3.3)
48.5(4.0) 45.8(5.1) 40.9 (5.3) 44.5(4.60.6(3.2) “r )
52.4(4.2) 49.6 (5.4) 44.1(5.4) 48.5(4.6%1.4(3.0)
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Figure 3: Three-best accuracies (%) for each day.

accuracy
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Table 2: Average computational time (sec).

¥ 2 5 456 7 5 80 LDAall LDAonline LDAone TTM1I TTM10
L movie 12,380.3 523.7 503.2 4553 707.0
(b) cartoon cartoon 12,5284 663.2 6746 6339 936.9

Figure 2. Average three-best accuracies (%) of TTM with

different dependent lengths
low.

Table 2 shows the daily average computational time when
represent the proposed topic tracking models, which use paising a computer with a Xeon5355 2.66GHz CPU. The
rameters of one- and ten-previous dayd, e+ 1 andL = 10, computational time for LDAonline, LDAone and TTM are
respectively. For both of the data sets, the highest accuraciesughly the same since they use the same number of sam-
are achieved by TTM10, and this result indicates that TTM1(les for inference. The computational time for LDAall is
can appropriately predict consumer behavior by consideringpng although its accuracy was the second highest for the
dynamics and efficiently using information in the past data.cartoon data set since LDAall uses all samples for inference.
The accuracies achieved by LDAall and LDAonline are low Moreover, LDAall requires more memory than TTM. TTM10
because they do not consider the dynamics. The reason fprocessed data that consisted of over 100,000 transactions
the low accuracy of LDAone is that it uses only current dataper day in about 12 minutes, and it can deal with the huge
and ignores the past information. The accuracies achieved lymounts of data that are observed in real online stores. Fig-
LDAall and LDAonline for the cartoon data are higher thanure 4 shows the average computational time for TTM with
that of LDAone because the cartoon data has smaller dynangifferent dependent lengths. The computational time in-
ics than the movie data. The high accuracies of TTM10 increases linearly witli.. Note that the time for TTM is much
both of the data sets that have different dynamics represesimaller than that for LDAall even TTM witlh, = 10.
its high adaptability. Figures 5 and 6, respectively, show the averagand 3

Figure 2 shows the average three-best accuracies of TTMith different/ values of TTM10. The sum of the values for
with different dependent lengthis. The accuracy increased each day and for each user or topic are normalized to one.
asL increased. This result implies that TTM became robusiThe parameters decrease ascreases in the movie data set.
by using long term dependences. The accuracy saturated &his result implies that recent interests and trends are more
aroundL = 7, and then slightly decreased possibly due toinformative as regards estimating current interests and trends,
overfitting. Therefore, we can achieve high accuracy withwhich is an intuitive result. In the cartoon data set, the pa-
these data sets by storing estimated parameters for a wealameters at = 7 are high because the same cartoons with
The three-best accuracies for movie and cartoon data sets fdifferent volumes are released weekly.
each day are shown in Figure 3. The accuracies varied with Figure 7 shows some examples of estimated paranseter
a period of seven days because new items are released evefyTTM1 for each day with the movie data. The trends in
week, and the accuracies when new items were released weasdopic (red) have a high dependence on the previous trends,
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