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Abstract

In conversations, people tend to mimic their companions’ behavior depend-
ing on their level of trust. This phenomenon is known as entrainment. We
propose a probabilistic model for estimating influences among speakers from
conversation data with multiple people by modeling lexical entrainment. The
proposed model estimates the word use as a function of weighted sum of ear-
lier word use of other speakers. The weights represent influences between
speakers. The influences can be efficiently estimated by using the expec-
tation maximization (EM) algorithm. We also develop its online inference
procedures for sequentially modeling the dynamics of influence relations. Ex-
periments on two meeting data sets in Japanese and in English demonstrate
the effectiveness of the proposed method.

Keywords: conversation analysis, influence, latent variable model,
entrainment

1. Introduction

In conversations, people tend to mimic such aspects of their compan-
ions’ behavior as postures [1], facial expressions [2], lexicon [3, 4], syntax [5],
acoustic, prosodic [6] and amplitude [7]. This phenomenon is known in the
literature as entrainment, accommodation, adaptation, or alignment [8]. En-
trainment is said to indicate that people are trusting, accommodating and
empathic [1, 9].
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This paper focuses on the entrainment of lexicon in polylogue, or how peo-
ple are influenced by their companions in terms of word use in conversation
with multiple speakers. The degree to which a person exerts an influence and
is influenced by others varies from speaker to speaker. A powerful person is
likely to be mimicked by others, and a passive person might often be accom-
modating to others. The influences also differ between pairs depending on
their level of trust. For example, Alice might use words spoken by Bob, but
not words spoken by Charlie. The influences therefore have an asymmetric
nature.

We propose a simple and effective probabilistic model for estimating in-
fluence relations among speakers from conversation data with multiple peo-
ple [10]. With the proposed model, we assume that a speaker’s word use
(word distribution) depends on the preceding word use of other speakers
as well as his/her own preceding word use and the general word distribu-
tion. We estimate the strength of influence for each pair of speakers using
the expectation maximization (EM) algorithm [11]. We also develop online
inference procedures for sequentially modeling the dynamics of influence re-
lations. Note that the proposed model estimates influences on the word use
of a speaker from the word use of other speakers.

The remainder of this paper is organized as follows. In Section 2, we
briefly review related work. In Section 3, we formulate our proposed proba-
bilistic model for influence estimation. In Section 4, we describe the inference
procedures for the proposed model. In Section 5, we extend the inference with
online version for efficiency. In Section 6, we demonstrate the effectiveness of
the proposed method by analyzing two meeting data sets in Japanese and in
English. Finally, we present concluding remarks and a discussion of future
work in Section 7.

2. Related Work

In recent years, a huge amount of conversation data have been accu-
mulated due to the improvement of recoding devices and automatic speech
recognition systems, and there has been great interest in the analysis of con-
versation [12, 13]. For example, [4] investigated the correlation between task
success and similarity of word use, and [9] analyzed the relationship between
social game results and word repetition. However, they focused on dyadic
conversations, and did not consider the asymmetric nature of influences. On
the other hand, we deal with the conversation of multiple people, in which
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influence and sensitiveness are assumed to depend on the pair of speakers. In
addition, since the proposed method is a probabilistic generative model for
conversations, we can efficiently estimate inferences in a principled statistical
framework, and use it for a language model of the conversation.

The proposed method is related to speaker role recognition [14, 15], in
which each speaker is automatically classified into a role category, because
influences depend on the speaker’s role. In the role recognition, roles are
predefined, and classifiers are trained using labeled data. On the other hand,
the proposed method directly estimate influences, and it does not require
labeled data.

A number of language models for conversation have been proposed [16,
17]. However, they do not aim to estimate influences between speakers. By
using online social network data, [18] proposed a probabilistic model for esti-
mating influences in online behavior, but this is not applied to conversation
data.

3. Proposed Model

With the proposed model, we assume that the word use of a speaker
changes depending on the preceding word use of other speakers as well as
the own preceding word use. Figure 1 shows the dynamics of the word use
of each speaker in the proposed model, where λ represents the weight of the
influence.

Let w = {w1, · · · , wt, · · ·} be a word sequence of a polylogue, where wt

represents the tth word, and let s = {s1, · · · , st, · · ·} be its speaker sequence,
where st indicates the speaker of the tth word. Here, wt ∈ {1, · · · ,W} and
st ∈ {1, · · · ,M}, where W is the vocabulary size, and M is the number of
participants.

In the proposed model, we assume that a speaker’s word use depends on
the preceding word use of other speakers. The preceding word use of speaker
m at position t can be modeled as follows:

PC(w|wt−1
t−τ ,m) =

N(t − 1, τ, w, m) + β∑
w′ N(t − 1, τ, w′,m) + βW

, (1)

where τ represents the period of the influence, β is a smoothing parameter,
and N(t−1, τ, w, m) represents the count of word w that is spoken by speaker
m from t−τ to t−1. This probability is proportional to the number of times
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Figure 1: The word use of a speaker changes depending on the preceding word use of other
speakers as well as the own preceding word use.

word w is used by speaker m in the preceding period τ . The smoothing
parameter β is introduced to avoid the zero probability problem.

The word use of speaker n at position t is then modeled by a mixture of
the preceding word use of the participants as follows:

P (w|wt−1
t−τ , n) =

M∑
m=1

λnmPC(w|wt−1
t−τ ,m) + (1 −

M∑
m=1

λnm)PG(w), (2)

where λnm represents the influence of speaker m on speaker n, 0 ≤ λnm ≤ 1,
and PG(w) is the general word distribution, which does not depend on the
preceding conversation. The general word distribution can be obtained by
using other corpora. Speaker m who influences the word distribution of
speaker n is not observed, and m is a latent variable.

This proposed model is an extension of cache models [19] for multi-speaker
conversations. The cache-based language model integrates short-term pat-
terns of word use into the word distribution by means of a cache component.
With the proposed model, we build speaker-specific cache components, and
set different influences among pairs of speakers. The proposed model can be
easily extended for n-gram language models by taking a n-gram sequence as
input instead of unigram sequence w. The other approaches to incorporate
sequential information include unigram rescaling [20] and linear interpolation
of the proposed model with n-gram language models.
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4. Inference

We estimate the influences λnm based on maximum posterior (MAP)
estimation. For simplicity, we rewrite the proposed word distribution in (2)
as follows:

P (w|wt−1
t−τ , n) =

M∑
m=0

λnmPC(w|wt−1
t−τ ,m), (3)

where we set PC(w|wt−1
t−τ ,m = 0) ≡ PG(w), λn0 ≡ 1 −

∑M
m=1 λnm, in which

λnm ≥ 0 and
∑M

m=0 λnm = 1. With this notation, the logarithm of the
posterior probability of parameters given the conversation data {wT

t=1, s
T
t=1},

which is to be maximized, is calculated as follows,

L =
T∑

t=1

log
M∑

m=0

λstmPC(wt|wt−1
t−τ ,m) +

M∑
n=1

log P (λn|α), (4)

where T is the current position, and the second term represents the prior
probability for parameters λn = {λnm}M

m=0. We use the following Dirichlet
prior with hyperparameter α:

log P (λn|α) =
M∑

m=0

α log λnm, (5)

because it is conjugate to multinomial parameters λn. The inference is made
more robust by introducing the priors.

We can efficiently maximize the posterior (4) by using the EM algo-
rithm [11]. The EM algorithm is commonly used for the inference of mixture
models. Because the proposed model is a mixture model, the standard EM
algorithm can be used for the proposed model. The conditional expectation
of the complete-data log likelihood with priors is represented as follows:

Q =
T∑

t=1

M∑
m=0

P (m|t) log λstmPC(wt|wt−1
t−τ , m) +

M∑
n=1

M∑
m=0

α log λnm, (6)

where P (m|t) is the posterior probability of selecting speaker m given the
tth word. The derivation of Q is described in Appendix Appendix A. It
indicates the probability that the tth word is influenced by speaker m. In
the E-step, we compute the probability according to the Bayes rule:

P (m|t) =
λstmPC(wt|wt−1

t−τ ,m)∑M
m′=0 λstm′PC(wt|wt−1

t−τ , m
′)

, (7)
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where λnm is the prior term, and PC(wt|wt−1
t−τ ,m) is the likelihood term. In

the M-step, we obtain the next estimate of influences λn by maximizing Q
w.r.t. λn subject to

∑M
m=0 λnm = 1:

λnm =

∑T
t=1 I(st = n)P (m|t) + α∑M

m′=0

∑T
t=1 I(st = n)P (m′|t) + α(M + 1)

, (8)

where I(A) represents an indicator function, i.e. I(A) = 1 if A is true,
I(A) = 0 otherwise. Note that the speaker dependent preceding word dis-
tribution PC(wt|wt−1

t−τ ,m) can be calculated by (1) independent of estimating
parameters Λ = {λn}M

n=1. The general word distribution PC(wt|wt−1
t−τ ,m = 0)

is assumed to be given in advance. By iterating the E-step and the M-step
until convergence, we obtain a local optimum solution for influences Λ.

5. Online Inference

In the previous section, we described the inference procedures using all
the data in a conversation session. However, in some real applications, we
might need to estimate influences in the middle of the conversation session.
Then, we develop online inference procedures for the proposed model for
sequentially estimating influences based on the online EM algorithm [21,
22]. With the online inference, the proposed model is sequentially updated
using newly obtained data. This means that past conversation data are not
required to make the inference, and we can reduce the memory requirement
as well as computational time.

With the online inference, sufficient statistics are updated from previous
values using newly obtained data and the current estimated model as follows,

λ̄(t+1)
nm = γλ̄(t)

nm + I(st = n)P (m|t), (9)

where λ̄
(t)
nm is a sufficient statistic at t and γ is the forgetting factor. P (m|t)

can be calculated by (7). Using the sufficient statistics λ̄
(t)
nm, we can obtain

the estimate of influence as follows,

λ(t)
nm =

λ̄
(t)
nm∑M

m′=0 λ̄
(t)
nm′

. (10)

The forgetting factor γ represents how likely influences change over time. By
controlling γ, we can model the dynamics of influence relations. As an initial
value for the sufficient statistic, we can use λ̄

(0)
nm = α.
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We can also update the preceding word use in an online fashion. The
preceding word use of speaker m at position t of (1) can be rewritten as
follows,

PC(w|wt−1
t−τ ,m) =

N(t − 1, τ, w, m) + β∑
w′ N(t − 1, τ, w′,m) + βW

. (11)

This number N(t, τ, w, m) can be calculated using the preceding number
N(t − 1, τ, w, m) and data at t as follows,

N(t, τ, w, m) = N(t−1, τ, w, m)+I(wt = w∧st = m)−I(wt−τ = w∧st−τ = m).
(12)

By updating the model using (10) and (12), we can estimate influence rela-
tions sequentially.

6. Experimental Results

We demonstrate the importance of modeling influence in conversation
data with experiments. First, we visualize the influence relations inferred by
the proposed method. Second, we analyze influential and sensitive speakers,
and show it can be used to identify a chairperson in the conversation. Third,
we compare the proposed method with other methods quantitatively using
perplexity, which represents the performance of predicting word use. We
also analyze perplexities with different numbers of training utterances, with
different lengths of effective period, and with different forgetting factors in
online inference.

We evaluated the proposed method using the following two real meeting
transcription data sets: NTT [23] and RT07 [24]. The NTT data set consists
of six sessions in Japanese. In each meeting, one participant mainly talked
about a technical topic using slides, and the other participants asked ques-
tions spontaneously. RT07 data set is an English corpus of eight conference
room meetings, which consists of primarily goal-oriented, decision-making ex-
ercises and can vary from moderated meetings to group consensus-building
meetings. Four sites contributed two meeting recordings for eight total meet-
ings. For both of the data sets, speakers in a session are different from other
sessions. Table 1 shows a summary of the NTT and RT07 data sets, and
includes the number of sessions, vocabulary size, and the minimum and max-
imum number of speakers and utterances for a session. With the proposed
model, we used α = 1 and β = 10−8 for the hyperparameters, and mod-
eled the preceding word use by using all preceding utterances in the session,
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Table 1: Summary of NTT and RT07 meeting data sets.
#session #speakers #utterance #vocabulary

min max min max
NTT 6 4 4 560 918 2,098
RT07 8 4 6 337 749 3,113

or τ = ∞. The general word distribution PG(w) is learned by using other
sessions in each data set.

We estimated the influences between speakers using the proposed model.
Figure 2 shows the result. Each node represents a speaker, and the width
of the arrow represents the strength of the influence, where only influences
with λnm ≥ 0.1 are shown. The self influence is generally strong, which
indicates that the word use depends strongly on the speaker’s own preceding
word use. This is an intuitive result. There are also many influences between
speakers. Some speakers are influential, e.g. speaker 1 in Session 7 in RT07,
and some speakers are sensitive to other speakers, e.g. speaker 2 in Session
6 in RT07. Most of the influences are asymmetric. This result indicates that
it is important to model the direction of the influences.

In all the NTT sessions, speaker 4 was appointed chairperson, and there-
fore, speaker 4 was influential and not sensitive. The result obtained with
the proposed model reveals the influential and non-sensitive characteristics
of speaker 4 as shown in Figure 2 (a), where there are more than three arrows
from speaker 4 in five out of six sessions, and there is no arrow pointing to
speaker 4 from others in all the sessions. Figure 3 shows its quantitative
analysis. The influence to other speakers of speaker n in Figures 3 (a) is cal-
culated by summing up the influences to others

∑
m6=n λmn. In the same way,

the influence from other speakers of speaker n in Figures 3 (b) is calculated
by
∑

m6=n λnm. The influences to others of speaker 4 are the highest in five
sessions, and the influences from others of speaker 4 are the lowest in all six
sessions. This result represents influential and non-sensitive characteristics
of speaker 4. In this way, the proposed model can use conversation data to
analyze the influences between speakers.

For a quantitative evaluation, we compared the following six models:

• CC has a common cache that is shared by all speakers, and a common
parameter that control the influence of the common cache. The word
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Figure 2: Estimated influences by the proposed model.

distribution is described as follows:

P (w|wt−1
t−τ , n) = λPC(w|wt−1

t−τ ) + (1 − λ)PG(w), (13)
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Figure 3: Quantitative analysis with NTT data. The x-axis represents the speaker.

where

PC(w|wt−1
t−τ ) =

N(t − 1, τ, w) + β∑
w′ N(t − 1, τ, w) + βW

, (14)
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is the common cache. Here, N(t − 1, τ, w) represents the number of
times word w is spoken from t− τ to t− 1. The CC is the same as the
standard cache language model.

• OC has the speaker’s own caches, and a common parameter that con-
trols the influence of the speaker’s own cache. The word distribution
is as follows:

P (w|wt−1
t−τ , n) = λPC(w|wt−1

t−τ , n) + (1 − λ)PG(w). (15)

This model assumes that the word use depends only on the speaker’s
own preceding word use.

• IC has individual caches for each speaker, and a common parameter
that controls the influence of the speaker dependent caches. The word
distribution is as follows:

P (w|wt−1
t−τ , n) =

M∑
m=1

λmPC(w|wt−1
t−τ ,m) + (1 −

M∑
m=1

λm)PG(w), (16)

where λm represents the influence of speaker m on all speakers including
speaker m himself/herself. This model assumes that the strength of the
influence depends on the speaker, but the sensitivity does not differ
among speakers.

• CI has a common cache, and individual parameters that control the
influence of the common cache for each speaker as follows:

P (w|wt−1
t−τ , n) = λnPC(w|wt−1

t−τ ) + (1 − λn)PG(w). (17)

This model assumes that the word use depends on all speakers’ word
use and the degree of dependence differs among speakers.

• OI has the speaker’s own caches, and individual parameters that con-
trol the influence depending on the speakers as follows:

P (w|wt−1
t−τ , n) = λnPC(w|wt−1

t−τ , n) + (1 − λn)PG(w). (18)

• II has individual caches for each speaker, and individual influence pa-
rameters. This is our proposed model in (2).
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The first letter of a method’s name C/O/I represents common/own/individual
caches, respectively, and the second letter of the method’s name C/I repre-
sents common/individual parameters, respectively. Only the proposed model
(II) takes the asymmetricity of influences into account. With all the models,
we used α = 1, β = 10−8 and τ = ∞.

In each session, we used data until the jth word as training data to learn
the parameters, and used words after the (j + 1)th word as test data. We
evaluated the performance of each model using the perplexity of held-out
words:

exp

(
−
∑T

t=j+1 log P (wt|wj
1, si)

T − j

)
. (19)

A lower perplexity represents higher predictive performance.
Table 2 shows the average perplexities for the NTT and RT07 data sets,

in which the number of training utterances ranges from j = 10 to j = 300.
Here, an utterance consists of a set of words that are consecutively spoken
by a speaker. The proposed model achieved the lowest perplexities in all
sessions. This result indicates that it is important to estimate the asymmet-
ric influences between speakers, which only the proposed model considers.
Figure 4 show the perplexities with different numbers of training utterances
for NTT and RT07 data sets. Generally speaking, the perplexity decreased
as the number of training utterances increased because the estimation accu-
racy of the influences and preceding word use improves. In some sessions,
for example Session 3 in the NTT data set, the perplexity increased because
of the change of topics. Except when the number of training utterances was
small, the perplexity of the proposed model (II) steadily achieved the low-
est perplexities. When the number of training utterances is very small, the
perplexity of the proposed model (II) was higher than a few other models
in some sessions because the number of parameters in the proposed model
is more than that of other methods. However, the proposed model achieved
the lowest perplexity with small addition of training utterances.

The average computational time for learning parameters in the proposed
model with 300 training utterances was 0.01 and 0.02 seconds for the NTT
and RT07 data sets, respectively. The proposed model is very efficient, and
it can be used in real time applications [25]. Figure 7 shows the log likelihood
over iterations with the proposed model. The log likelihood, which is to be
maximized, quickly converged.

Figure 8 shows the average perplexities with different lengths of effective
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Table 2: Average perplexities for each session.
(a) NTT

session# CC OC IC CI OI II
1 259.2 251.4 256.5 259.4 249.9 247.7
2 279.1 263.2 280.0 278.9 264.7 261.4
3 297.1 287.7 298.9 298.3 288.1 284.4
4 321.3 307.9 314.9 320.8 309.7 294.4
5 332.8 322.6 328.1 332.5 320.3 313.8
6 274.4 260.9 277.7 275.9 267.5 254.9

average 294.0 282.3 292.7 294.3 283.4 276.1

(b) RT07
session# CC OC IC CI OI II

1 395.7 411.8 396.7 397.1 412.7 395.6
2 304.3 308.5 308.6 301.6 309.4 296.1
3 322.6 330.6 324.4 322.9 333.6 313.2
4 373.0 386.1 369.0 377.2 390.7 368.7
5 300.5 301.9 299.9 303.2 304.4 293.4
6 342.5 343.7 368.2 350.4 352.3 340.4
7 340.6 350.7 345.4 355.8 357.4 332.3
8 340.7 346.7 345.7 344.9 357.9 340.3

average 340.0 347.5 344.8 344.1 352.3 335.0

period τ . As the effective period gets longer, the perplexities decreases. This
result implies that the speakers in theses data sets were influenced for a long
time.

We evaluated the proposed online inference procedures. Figure 9 shows
the average perplexities with different forgetting factors γ. The lowest per-
plexity was achieved at around γ = 0.1, which indicates that the tuning of γ
is important in the online inference. The perplexities achieved by the online
inference were higher than those by the batch inference in the both data sets
even though the online inference is more efficient than the batch inference.

Figure 10 shows the average perplexities with different numbers of train-
ing utterances in online inference with γ = 0.1. The perplexities decreased
as the training utterances increased because the model can use more training
data for the inference.
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Figure 4: Average perplexities with different numbers of training utterances for NTT and
RT07 data. The horizontal axis represents the number of training utterances.

7. Conclusion

We have proposed a probabilistic model for learning influences from con-
versation data with multiple speakers. We have confirmed experimentally
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Figure 5: Perplexities with different numbers of training utterances for NTT data. The
horizontal axis represents the number of training utterances.

that the proposed model can extract influences between speakers and learn
conversation’s word use.

Although our results have been encouraging to date, our model can be
further improved in a number of ways. First, we would like to estimate in-
fluences using other behaviors, such as nonverbal speech acts, posture and
eye movement, as well as word use. Second, we would like to extend the
proposed model. The proposed model can be extended so that it can incor-
porate the dynamics of topics by combining it with dynamic models, such
as dynamic topic models [26] and topic tracking language models [27]. The

15



 380
 385
 390
 395
 400
 405
 410
 415
 420

 50  100  150  200  250  300

pe
rp

le
xi

ty

j

 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330

 50  100  150  200  250  300

pe
rp

le
xi

ty

j

Session 1 Session 2

 305

 310

 315

 320

 325

 330

 50  100  150  200  250  300

pe
rp

le
xi

ty

j

 330
 340
 350
 360
 370
 380
 390
 400
 410
 420
 430

 50  100  150  200  250  300

pe
rp

le
xi

ty

j

Session 3 Session 4

 275

 280

 285

 290

 295

 300

 305

 310

 50  100  150  200  250  300

pe
rp

le
xi

ty

j

 300
 310
 320
 330
 340
 350
 360
 370
 380

 50  100  150  200  250  300

pe
rp

le
xi

ty

j

Session 5 Session 6

 260
 280
 300
 320
 340
 360
 380
 400
 420
 440

 50  100  150  200  250  300

pe
rp

le
xi

ty

j

 330
 332
 334
 336
 338
 340
 342
 344
 346
 348
 350

 50  100  150  200  250  300

pe
rp

le
xi

ty

j

Session 7 Session 8
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Figure 7: Log likelihoods over iterations.
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Figure 8: Average perplexities with different lengths of effective period τ .

proposed model assumes that topics do not change over time in a session.
The word use can be changed by topics as well as influences. Therefore,
we can estimate influences more clearly by modeling topic dynamics. The
proposed model can also be extended by using the speaker-specific general
word distribution, which can help to estimate influences. Third, we would
like to extend the estimation procedure. We must determine the period of
the influence automatically. In the proposed model, we used a mixture mod-
els with a fixed number of components, where we assumed that all speakers
can influence on a speaker. We can extend the model by selecting a model
with an arbitrary number of components using model selection techniques.
Fourth, we would like to quantitatively evaluate the accuracy of estimated
influences by using a mesure that correlates to the actual influences such as
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Figure 9: Average perplexities with different forgetting factors γ in online inference.
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Figure 10: Average perplexities with different numbers of training utterances in online
inference.

the result of questionnaire. We showed that the proposed model achieved
better perplexities than other models. However, the perplexity is a measure
for evaluating language models, and not a measure for evaluating influence
estimation. Finally, we would like to evaluate the proposed model in an
automatic speech recognition system.
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Appendix A. Derivation of (6)

The lower bound of the posterior probability of parameters given the data
to be maximized can be obtained as follows,

L =
T∑

t=1

log
M∑

m=0

λstmPC(wt|wt−1
t−τ , m) +

M∑
n=1

log P (λn|α)

=
T∑

t=1

log
M∑

m=0

P (m|t)
λstmPC(wt|wt−1

t−τ ,m)

P (m|t)
+

M∑
n=1

log P (λn|α)

≥
T∑

t=1

M∑
m=0

P (m|t) log
λstmPC(wt|wt−1

t−τ ,m)

P (m|t)
+

M∑
n=1

log P (λn|α)

= Q −
T∑

t=1

M∑
m=0

P (m|t) log P (m|t), (A.1)

where we used Jensen’s inequality. Therefore, Q in (6) is the lower bound of
the objective function with respect to parameters λnm.
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