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Abstract

We present a novel approach to embedding
data represented by a network into a low-
dimensional Euclidean space. Unlike exist-
ing methods, the proposed method attempts
to minimize an energy function based on
the cross-entropy between desirable and em-
bedded node configurations without directly
utilizing pairwise distances between nodes.
We also propose a natural criterion to ef-
fectively evaluate an embedded network lay-
out in terms of how well node connectiv-
ities are preserved. Experimental results
show that the proposed method provides bet-
ter layouts than those produced by some of
the well-known embedding methods in terms
of the proposed criterion. We believe that
our method produces a natural embedding
of a large-scale network suitable for analyz-
ing by manual browsing in a two- or three-
dimensional Euclidean space.

1. Introduction

In many scientific and engineering domains, compli-
cated relational data structures are frequently repre-
sented by networks or, equivalently, graphs. For exam-
ple, WWW (World Wide Web) sites are often repre-
sented by hyperlink networks, with pages as nodes and
hyperlinks between pages as edges, the interactions
between genes, proteins, metabolites and other small
molecules in an organism are represented by gene reg-
ulatory networks, and the relationships between peo-
ple and other social entities are characterized by social
networks. This is because network representations of-
ten provide important insights for researchers to un-
derstand the intrinsic data structure with the help
of some mathematical tools such as graph theory, as
well as by examining an embedded layout in a low-
dimensional Euclidean space.

However, when the size of the network grows large and
complicated, it becomes extremely difficult to obtain
relevant embedding of networks. Therefore, develop-
ing a network embedding algorithm that encourages
researchers to make scientific discoveries about under-
lying knowledge or principles from network data is a
quite challenging and important task in the field of
machine learning.

One of the most fundamental methods to study a net-
work and intuitively understand its inherent structures
is browsing over a network layout embedded in a low-
dimensional Euclidean space; to examine nodes man-
ually one by one by following their connections and by
comparing their connectivities with other nodes. Our
goal is to develop an algorithm that embeds a network
into a low-dimensional Euclidean space in a manner
that is suitable for browsing.

It is difficult to evaluate whether a given network lay-
out is suitable for browsing or not. Aesthetically pleas-
ing measures have been used in the literature, but they
depend on subjective concepts. In this paper, we start
from the following simple and basic principle:

Principle A: connectivity preserving principle
Each node attempts to place its adjacent (i.e.,
directly connected) nodes relatively more closely
than non-adjacent ones.

We propose an algorithm that fulfills this principle by
only using connectivity information between nodes as
a direct criterion, based on the cross-entropy directed
energy function for minimizing. On the other hand, a
large body of exiting work assumes pairwise distances
between nodes. For example, the spring method pro-
posed by Kamada and Kawai (1989) (hereafter re-
ferred to as the KK spring method) first calculates
graph-theoretic distances for each pair of nodes. The
graph-theoretic distance can be calculated using the
shortest path algorithm on a graph, such as the Floyd’s
algorithm (Floyd, 1962). It then embeds nodes into
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the low-dimensional Euclidean space such that these
graph-theoretic distances are most preserved. In other
words, the KK spring method attempts to fulfill the
following principle:

Principle B: distance preserving principle
Each pair of nodes attempts to place each other
such that their Euclidean distance restores their
graph-theoretic distance.

It is clear that the complete fulfillment of principle B
implies principle A, however the converse is not true.
We will show that an attempt to fulfill the stronger
principle B may often fail and end up with a biased
embedding that also fails to fulfill principle A, and is
not suitable for browsing, especially when the network
size is large.

When browsing a large and complex network, we often
want to focus our attention on some restricted por-
tion of the network by removing nodes and connec-
tions that are out of our focus, and by re-optimizing
that portion at full scale for more detailed browsing.
When this re-optimization does not change the basic
structure of the layout drastically, we describe that the
ebmedding algorithm has good clipping stability.

Removing a certain amount of nodes may change the
graph-theoretic distances between the remaining nodes
drastically, and therefore, completely change the em-
bedding results produced by the KK spring method
that is based on principle B. We will see that the pro-
posed approach performs quite well in this sense.

2. Cross-Entropy Approach

2.1. Objective Function

Consider a network (graph) with N nodes (vertices),
where its adjacency matrix is denoted by A = (ai,j).
In this paper, we focus on undirected graphs, i.e.,
ai,j ∈ {0, 1}, ai,i = 1, and ai,j = aj,i, but our approach
can be easily extended to directed ones. For a given
network, our objective is to compute a K-dimensional
embedding of the N nodes such that principle A stated
in Section 1 is fulfilled in terms of the K-dimensional
Euclidean norm.

Let x1,x2, · · · ,xN be the positions of the N nodes in a
K dimensional space. As usual, the Euclidean distance
between xi and xj is defined as follows:

di,j = ‖xi − xj‖2 =
K∑

k=1

(xi,k − xj,k)2. (1)

We now introduce a monotonic decreasing function
ρ(u) ∈ [0, 1] with respect to u ≥ 0, where ρ(0) = 1

and ρ(∞) = 0. Here ρ(di,j) can be regarded as a con-
tinuous similarity function between xi and xj . The
basic idea is to consider a modified version of principle
A using the concept of similarity; each node attempts
to place other nodes such that the similarities between
the node and its adjacent nodes are higher than those
between the node and its non-adjacent nodes. This
again can be reformulated in a slightly relaxed form in
terms of ai,j and ρ(di,j); each node attempts to place
other nodes such that the continuous similarity func-
tion ρ(di,j) becomes the closest approximation of the
discrete similarity measure ai,j as possible.

To approximate ai,j by ρ(di,j), a cross-entropy func-
tion between ai,j and ρ(di,j) is introduced as follows:

Ei,j = −ai,j ln ρ(di,j)− (1− ai,j) ln(1− ρ(di,j)). (2)

Equation (2) attains its minimum when ρ(di,j) = ai,j
with respect to xi and xj ; i.e., when the discrete sim-
ilarity measure and the continuous measure become
identical. Keeping the symmetric nature of Ei,j in
mind, we consider the following total energy function
to be minimized with respect to x1, · · · ,xN :

E =
N−1∑

i=1

N∑

j=i+1

Ei,j . (3)

When node i is fixed, ai,j can be viewed as a binary
class label of node j; i.e., if ai,j = 1, then node j has
label 1, and, because ai,i = 1, this means that node j
belongs to the same class with node i. Otherwise, if
ai,j = 0, then node j has label 0 and belongs to a dif-
ferent class from node i. The problem can be viewed as
a set of N binary classification tasks, and Equation (3)
as a standard cost function of classification problems
with parameters x1, · · · ,xN . Namely, the main char-
acteristic of our approach is to solve the embedding
problem the same way we would train a classification
function.

In this paper, we use ρ(u) = exp(−u/2) as the simi-
larity function. Note that our approach is not limited
to this particular type of ρ(u). The energy function
corresponding to Equation (2) can be reformulated as
follows:

Ei,j = ai,j
1
2‖xi − xj‖2

−(1−ai,j) ln(1−exp(− 1
2‖xi − xj‖2)). (4)

Finally, we define the following objective function with
a regularization (weight-decay) term that controls the
size of the resultant embeddings:

J =
N−1∑

i=1

N∑

j=i+1

Ei,j +
µ

2

N∑

i=1

‖xi‖2, (5)



N ×N adjacency matrix A = (ai,j), embedding di-
mensionality K, and the convergence precision ε are
given as inputs.

1. Set t = 1, and initialize points x1, · · · ,xN ran-
domly.

2. Calculate gradient vectors J (1)
x1 , · · · , J (1)

xN .
3. Select xi such that i = arg maxj{‖J (t)

xj ‖2}.
4. If ‖J (t)

xi ‖2 < ε, output x1, · · · ,xN and terminate.
5. Calculate modification vector ∆xi.
6. Update gradient vectors J (t+1)

x1 , · · · , J (t+1)
xN from

J
(t)
x1 , · · · , J (t)

xN .
7. Update xi by xi = xi + ∆xi.
8. Set t = t+ 1 and go to Step 3.

Figure 1. CE Learning Algorithm for Network Embedding

where µ is a predetermined constant. Hereafter,
our method is referred to as the CE (Cross-Entropy)
method.

2.2. Learning Algorithm

The basic structure of our CE learning algorithm in-
herits the fundamental idea of the KK spring algo-
rithm. More specifically, instead of all theN points be-
ing moved simultaneously, a point xi having the max-
imum gradient vector norm is selected and is moved
using the Newton-Raphson method, while the other
points are fixed. This learning scheme, together with
the objective function, can be interpreted as on-line
learning of a classification problem using cross-entropy
with a weight-decay term, which is well-known in the
field of artificial neural networks.

The CE algorithm can be summarized as shown in Fig-
ure 1. Here, Jxi is the gradient vector of the objective
function J with respect to xi calculated as follows:

Jxi =
∂J

∂xi
=
∑

j 6=i

∂Ei,j
∂xi

+ µxi, (6)

where the derivative of Ei,j is

∂Ei,j
∂xi

=
ai,j − exp(− 1

2‖xi − xj‖2)
1− exp(− 1

2‖xi − xj‖2)
(xi − xj). (7)

Step 2 initially calculates the gradient vectors for all
points by using Equation (6). Assuming that dimen-
sionality K is much smaller than N , the computational
complexity for this calculation is O(N2). However,
when updating the gradient vectors in Step 6, only
the gradient vector for the selected point xi must be
calculated from scratch, and those for the other points

can be efficiently updated by only calculating the dif-
ferences as follows:

J
(t+1)
xj = J

(t)
xj −

∂E
(t)
i,j

∂xj
+

∂E
(t+1)
i,j

∂xj

= J
(t)
xj +

∂E
(t)
i,j

∂xi
− ∂E

(t+1)
i,j

∂xi
.

(8)

This is because of the following equalities:

∂E
(t)
j,i

∂xj
= −∂E

(t)
i,j

∂xi
and

∂E
(t+1)
j,h

∂xj
=
∂E

(t)
j,h

∂xj
, (9)

where h denotes an index such that h 6= i, j. Thus,
Step 6 can be performed in O(N).

In Step 5, according to the Newton-Raphson method,
∆xi is calculated using the Hessian matrix H as fol-
lows:

∆xi = −H−1J (t)
xi , where H =

∂2J (t)

∂xi∂x′i
. (10)

Here, x′ denotes a transposed vector of x. The KK
spring method also uses Equation 10. However, be-
cause the Hessian matrix H is not always positive def-
inite, either in the KK spring method whose energy
function is described later in Equation 16 or in the CE
method, we cannot guarantee that J (t+1) < J (t) for
all t. Therefore, in the CE method, if J increases after
Equation 10 is applied, we undo it and instead resort
to Equation 11 as follows:

∆xi = λJ (t)
xi , (11)

where the step-length λ is chosen so that J (t+1) < J (t).
Note that since J (t)

xi is the gradient direction, J always
decreases as long as a sufficiently small λ is chosen and
thus, the algorithm is guaranteed to converge. J can
be updated in O(N) by only calculating the differences
as follows:

J (t+1)−J (t) =
∑
j 6=i(E

(t+1)
i,j −E(t)

i,j )
+µ

2 {‖xi+∆xi‖2−‖xi‖2}.
(12)

In our experiments, the regularization term added in
Equation 10 is observed to encourage H being positive
definite as much as possible, and resorting to Equa-
tion 11 happens only occasionally. In such cases, each
iteration of the above algorithm can be performed in
approximately O(N).

3. Evaluations by Experiments

3.1. Embedding Methods

In our experiments, we compared our method with
three representative conventional methods: the clas-
sical Multidimensional Scaling (MDS) developed by



Torgerson (1958), the spectral clustering method (Ng
et al., 2002), and the KK spring method. In the fol-
lowing, we briefly review each method.

Let G = (gi,j) be a pairwise graph-theoretic distance
matrix, and O = (oi,j) be a matrix defined by oi,j =
g2
i,j . Let X = [x1, · · ·xN ]′ be the N × K matrix of

coordinates in a K dimensional Euclidean space. The
classical MDS has the following objective function to
be minimized:

JCMDS = trace{(−1
2
YOY −XX′)2}. (13)

Here, Y denotes the N -dimensional Young-
Householder transformation matrix.

Let B = (bi,j) be an affinity matrix defined by bi,j =
exp(−gi,j/2) if i 6= j and bi,i = 0. The spectral clus-
tering method has the following objective function to
be minimized:

JSC = trace{(D−1/2BD−1/2 −XX′)2}. (14)

Here, D denotes a diagonal matrix whose (i, i)-element
is the sum of the i-th row of B. In this method, the
final embedded points are obtained by re-normalizing
each row of X to have unit length, i.e.,

x̂i,j =
xi,j√∑N
j=1 xi,j

. (15)

The KK spring method has the following objective
function to be minimized:

JKK =
1
2

N−1∑

i=1

N∑

j=i+1

(gi,j − ‖xi − xj‖)2

g2
i,j

. (16)

3.2. Experimental Data

Three different types of networks assembled from real
data are used to evaluate the proposed method. The
first network data, denoted as E.Coli, is biology orig-
inated. E.Coli is the gene regulatory network of the
bacterium Escherichia Coli as described by Shen-Orr
et al. (2002). The second data, denoted as NIPS,
is human relation data generated by assembling a co-
authorship relations in the conference papers appeared
in NIPS (Neural Information Processing Systems) vol-
umes 1 to 12, obtained from the web site of Roweis
(2002), in which two persons who have at least one
joint paper are directly linked. The third data, de-
noted as NTT, is a WWW hyperlink network. NTT
is generated by collecting all WWW pages that are lo-
cated in NTT (Nippon Telegraph and Telephone Cor-
poration) domain and have “www.ntt.co.jp” in com-
mon in their URL (Universal Resource Locator).

Table 1. Summary statistics of networks.

Name N L L̄ L◦ Ḡ G◦ C N2

E.Coli 328 456 2.78 72 4.83 13 29 12
NIPS 1061 2080 3.92 45 7.23 17 235 37
NTT 3870 9337 4.83 279 6.41 17 76 54

In our experiments, we first transform these networks
into undirected ones, extract the maximally connected
components, and then apply embedding methods to
them. If we need to embed the whole network, then
we can treat each connected component separately.

Table 1 shows the statistics of the extracted connected
networks. In the table, N denotes the number of
nodes, and L, L̄ and L◦ denote total, average and
maximum number of links respectively. Let Li be the
number of links connected with i. They are then cal-
culated as follows:

L=
1
2

N∑

i=1

Li, L̄=
1
N

N∑

i=1

Li and L◦= max
i
{Li}. (17)

Ḡ and G◦ denote the average and maximum value of
pairwise graph-theoretic distances in each graph re-
spectively. Let gi,j be the graph-theoretic distances
between nodes i and j. They are then calculated as
follows:

Ḡ=
2

N(N−1)

N−1∑

i=1

N∑

j=i+1

gi,j and G◦= max
i,j
{gi,j}. (18)

Here, we emphasize that these networks are all sparse
in terms of the adjacency matrices, but have different
statistics to some degree. C denotes total number of
connected components in the original networks and
N2 denotes the number of nodes in the second largest
component, which is much smaller than N .

3.3. Evaluation Measure

In Section 1, we claimed that network embedding
should fulfill principle A and proposed an embedding
algorithm based on cross-entropy and local connectiv-
ities in Section 2. In this section, we attempt to eval-
uate the embedded results in a strictly quantitative
fashion.

Assume we have an embedding of a network with N
nodes, with x1,x2, · · · ,xN as their corresponding em-
bedded positions in aK-dimensional space. Consider a
K-dimensional ball Bi(ri) with its center xi and radius
ri. From principle A, it is expected that in an ideal



embedding, each node i can maintain Bi(ri) with an
appropriately chosen radius ri such that it includes all
the points corresponding to the adjacent nodes (i.e.,
nodes directly connected with i) and excludes all the
non-adjacent ones. In reality, however, especially when
K is small, there may not exist such ri for each i. How-
ever, it may be still possible to find an optimal ri in
terms of some relevant criterion.

In a sparse network, where there are many more non-
adjacent nodes than adjacent ones, the standard ac-
curacy measure that counts the number of correctly
included points and correctly excluded points is not
appropriate to determine the optimal radius. This is
because high accuracy can be achieved even if it ex-
cludes all the points regardless of their connectivities.
Instead, we adopt the idea of the F-measure that is
widely used in the field of information retrieval.

The F-measure is defined as the weighted harmonic
average of precision and recall. Let #X be the number
of elements in set X. The precision Pi(ri) for the i-
th ball Bi(ri) corresponding to xi and ri is defined as
follows:

Pi(ri) =
#{j|xj ∈ Bi(ri), ai,j = 1, j 6= i}

#{j|xj ∈ Bi(ri), j 6= i} , (19)

while the recall Ri(ri) is defined as:

Ri(ri) =
#{j|xj ∈ Bi(ri), ai,j = 1, j 6= i}

#{j|aij = 1, j 6= i} . (20)

Roughly speaking, high precision favors a small ri and
high recall favors a large ri; the optimal ri should be
found in between. We choose the optimal radius r̂i for
each i that maximizes the following F-measure with
weight α. (α = 1/2 is used throughout our experi-
ments.)

Fi(ri) = 1/
{
α

1
Pi(ri)

+ (1− α)
1

Ri(ri)

}
. (21)

The proposed measure, denoted as the connectivity F-
measure, to evaluate an embedded network layout is
defined as the average over all N points as follows:

F =
N∑

i=1

Fi(r̂i)
N

. (22)

It may be arguable to straightforwardly apply our
criterion to the embeddings produced by the other
methods based on principle B, because their objective
functions do not directly incorporate this F -measure.
However, the complete fulfillment of principle B im-
plies principle A. In fact, when principle B is fulfilled,

F = 1 is achieved by setting the optimal radius r̂i = 1
for each i. Therefore, our criterion can be thought of
as a reasonable measure for evaluating any embedding
method.

3.4. Comparisons Using the Connectivity
F -measure

We applied our method together with the three con-
ventional methods, the classical MDS, the KK spring
method, and the spectral clustering method, to the
three different kinds of networks mentioned above, and
obtained embedding results in K-dimensional spaces.
We then quantitatively evaluated these results accord-
ing to the proposed connectivity F-measure. In the
experiments, we changed K from 2 to 25 for E.Coli
and from 2 to 9 for NIPS and NTT respectively.

Figure 2 summerizes the experimental results. The
axis of ordinates shows the values of the connectivity
F-measure and the axis of abscissas shows the dimen-
sionalities of the embedded space. For the CE and
the KK spring methods, the results of five trials with
different random initializations are plotted to see if
these methods suffer from the local optimality prob-
lem. One can see that variances are very small for all
networks, and therefore the local optimality problem
is almost negligible in our experiments. The perfor-
mances of all methods are monotonically improved as
the dimensionality K, and thus the degree of freedom,
increases.

As expected, the performance of the CE method is bet-
ter than those of the other methods, especially in the
lower dimensions, where embeddings are more diffi-
cult. In particular, the experiments using NTT, which
is the largest in size and the most complicated, most
impressively demonstrate that the CE method signif-
icantly outperforms the others. Figure 2 only shows
the F-measure, but more detailed analysis reveals that,
in low dimensions, all the methods show high recall
values, more or less 90%, but poor precision values,
except for the CE method.

3.5. Two Dimensional Visualizations

Each of the pictures on the left of Figure 3 shows a two-
dimensional embedding result obtained by the classical
MDS, the KK spring method, and the CE method for
NTT, the WWW network data. The results of the
spectral clustering method are not included here be-
cause it embeds on the surface of a sphere, as described
in Equation 15.

As discussed earlier, it would be difficult to evaluate
these results in the sense of the aesthetically pleasing
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Figure 2. Experimental comparisons of the connectivity F-measure between the classical MDS (labeled CMDS), the spec-
tral clustering method (labeled SC), the KK spring method (labeled KK) and the proposed CE method (labeld CE) using
the E.Coli, NIPS and NTT networks.

measure. Nevertheless, some characteristic features of
each method can be observed below. The result of
the classical MDS shown in Figure 3(a) is problematic
for visualization: many nodes are collapsed to a single
point, which is not desirable for a browsing purpose.
This seems to be a limitation of the linear projection
methods.

In contrast, the result of KK spring method shown
in Figure 3(b) and the result of the proposed CE
method shown in Figure 3(c) do not suffer from the
node collapse problem. Looking at Figures 3(b) and
3(c) carefully, one can observe that in the former
picture, many nodes tend to be arranged densely in
semi-circles, which is characterized as a dandelion ef-
fect (Buja et al., in press), while in the latter picture,
nodes are laid more uniformly in a radial manner. The
CE method appears to exploit the space more effi-
ciently than the KK spring method. This agrees with
the quantitative evaluation results using the connec-
tivity F-measure, and also agrees with the fact that
the KK spring method tries to preserve the pairwise
graph-theoretic distances that take only discrete val-
ues. Besides, it appears that it is harder for the former
to follow links, especially in a relatively congested area,
than for the latter.

As mentioned earlier, we may want to look into some
portions of the network in detail. For this purpose, the
sub network shown in the dotted circle in the left of
each picture in Figure 3 is clipped out by removing the
nodes and connections outside this circle, and is re-
embedded. Note that each clipped region corresponds
to the same sub network. The re-embedded results
are shown on the right of Figure 3. It can be seen
that the embedded network layouts before and after
the clipping are quite different from each other in the

case of the classical MDS and KK spring methods,
although the layouts in the dotted circles shown on the
left and right of each picture correspond to the same
sub network. In contrast, the CE method is much more
stable with the clipping than the classical MDS and
the KK spring method, and thus has better clipping
stability. We believe that the clipping stability is an
important property for browsing nodes and discovering
knowledge from given networks.

4. Related Works and Discussion

Several other embedding methods based on the
eigenvector analysis other than the classical MDS
and the spectral clustering methods exist, including
Isomap (Tenenbaum et al., 2000) and LLE (Roweis
& Saul, 2000). These methods assume high dimen-
sional coordinates or at least pairwise distances be-
tween nodes. In contrast, our method only assumes
the adjacency matrix. Stochastic embedding, recently
proposed by Hinton and Roweis (in press), also as-
sumes pairwise distances.

Eades (1984) first proposed a spring-directed graph
embedding algorithm. In his algorithm, each pair of
adjacent nodes is linked by a spring of length one, and
each non-adjacent pair by a spring of infinite length.
He claims that the linear spring that obeys Hooke’s
law is too strong and that a logarithmic version should
be used. Eades’ algorithm was the basis for the sub-
sequent spring methods. The KK spring method has
extended Eades’ idea and proposed an algorithm in
which each pair of nodes is linked by a spring of length
equal to the graph-theoretic distance between those
nodes. This method is much more popular than its
ancestor and is widely refered to as the spring method.



The well-known state-of-the-art graph drawing pro-
gram called “NEATO” in the graph-viz software pack-
age (North, 1992) includes an almost literal implemen-
tation of the KK spring method.

Many of the existing algorithms, including the classi-
cal MDS and KK spring methods utilize the pairwise
distances between nodes. Because the distance matrix
is not sparse (even if the network is sparse), they need
to deal with a huge non-sparse matrix, especially for a
large network. In such cases, it is possible to modify
the matrix sparse by thresholding large distances to
infinity (or, equivalently, small affinities to zero), but
still necessary to find an appropriate threshold. Our
CE approach only deals with the sparse adjacency ma-
trix when the network is sparse, and needs no such
thresholding.

5. Directions for Future Research

Although we have been encouraged by our results to
date, there remain a number of directions in which
we must extend our approach before it can become a
useful tool for scientific discovery. One promising di-
rection might be to combine our method with existing
discovery systems such as the IPM (Inductive Process
Modeler) proposed by Langley et al. (2002). For in-
stance, we can regard a process model as relational
data, with processes as nodes and shared variables be-
tween them as links. Our method can be directly in-
corporated as an interface to support the browsing of
large scale process models obtained by the IPM using
empirically observed data.

The WWW is a complex system that changes over
time. It would be more difficult than any other dy-
namic system, but still highly expected, to understand
its inherent structures in scientific terms and to re-
veal regularities in its complicated behavior. Thus,
another direction would be to develop a discovery sys-
tem for the WWW. To this end, we need to extend
our method by incorporating a number of important
characteristics of the Web networks, such as network
motifs (Shen-Orr et al., 2002). As the first step, we
are planing to evaluate our method by using a wider
variety of the Web networks.

In this paper, we have newly proposed the connec-
tivity F-measure based on the connectivity preserving
principle. However, it seems quite difficult to develop
an algorithm for obtaining results by direct optimiza-
tion on this measure due to its non-smoothness. On
the other hand, our method based on the cross-entropy
energy function works reasonably well on this measure,
as shown in our experiments. From these results, we

believe that the cross-entropy approach is suitable for
preserving the principle. However, we need to perform
further experiments to confirm this claim.
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(a) CMDS

(b) KK

(c) CE

Figure 3. 2-dimensional layouts of the NTT Web network data produced by the classical MDS (a), the KK spring method
(b) and our CE method (c). Each picture on the left shows the whole network and the sub network in the dotted circle
is re-embedded and shown on the right.


