Studies
on
Metaheuristics for
Jobshop and Flowshop Scheduling Problems

Takeshi YAMADA

Studies
on
Metaheuristics for
Jobshop and Flowshop Scheduling Problems

Takeshi YAMADA

Submitted in partial fulfillment of
the requirement for the degree of
DOCTOR OF INFORMATICS
(Applied Mathematics and Physics)

KYOTO UNIVERSITY
KYOTO, JAPAN
November, 2003

Preface

Scheduling has been a subject of a significant amount of literature in the operations research field
since the early 1950s. The main objective of scheduling isfiatient allocation of shared re-
sources over time to competing activities. Emphasis has been on investigating machine schedul-
ing problems where jobs represent activities and machines represent resources. The problem is
not only NP-hard, but also has a well-earned reputation of being one of the most computation-
ally difficult combinatorial optimization problems considered to date. This intractability is one

of the reasons why the problem has been so widely studied. The problem was initially tackled by
“exact methods” such as the branch and bound method (BAB), which is based on the exhaustive
enumeration of a restricted region of solutions containing exact optimal solutions. Exact meth-
ods are theoretically important and have been successfully applied to benchmark problems, but
sometimes they are quite time consuming even for moderate-scale problems.

With a rapid progress in computer technology, it has become even more important to find
practically acceptable solutions by “approximation methods” especially for large-scale prob-
lems within a limited amount of time. Stochastic local search methods are such approximation
methods for combinatorial optimization. They provide robust approaches to obtain high-quality
solutions to problems of realistic sizes in reasonable amount of time. Some of stochastic local
search methods are proposed in analogies with the processes in nature, such as statistical physics
and biological evolution, and others are proposed in the artificial intelligence contexts. They
often work as an iterative master process that guides and modifies the operations of subordinate
heuristics; thus they are also calletetaheuristics Metaheuristics have been applied to wide
variety of combinatorial optimization problems with great successes.

The primary focus of this thesis is applications of metaheuristics, especially Genetic Al-
gorithms (GAs), Simulated Annealing (SA) and Tabu Search (TS), to the jobshop scheduling
problem (and the flowshop scheduling problem as its special case) which is among the hardest
combinatorial optimization problems. The author hopes that the research in this dissertation will
help advance in the understanding of this significant field.

November, 2003
Takeshi Yamada

Acknowledgements

| wish to express my sincere gratitude to Professor Toshihide Ibaraki of Kyoto University for his
supervising this thesis. He read the manuscript very carefully and made many valuable sugges-
tions and comments, which improved the accuracy and quality of this thesis. | also thank Pro-
fessor Masao Fukushima, Professor Yutaka Takahashi, Professor Hiroyuki Kawano, Professor
Mutsunori Yagiura and Professor Koji Nonobe of Kyoto University for their useful comments.

The research reported in this thesis was supported by Nippon Telegraph and Telephone Cor-
poration (NTT). | am grateful to Professor Seishi Nishikawa, Professor Tsukasa Kawaoka, Dr.
Kohichi Matsuda, Professor Yoh’ichi Tohkura, Professor Kenichiro Ishii, former directors of
NTT Communication Science Laboratories, Dr. Noboru Sugamura and Dr. Shigeru Katagiri,
director and vice director of NTT Communication Science Laboratories, for their warm encour-
agement and for providing me the opportunity to study these interesting subjects.

| am deeply indebted to Professor Ryohei Nakano of Nagoya Institute of Technology. He had
been my supervisor for more than ten years since | first started my research career at NTT fifteen
years ago. This thesis would not have been possible without his support and encouragement. |
am also indebted to Professor Colin Reeves of Coventry University. Some of the work have been
done while | was working with him as a visiting researcher at the university in 1996. | wish to
express my many thanks to Professor Bruce Rosen of University of California. The collaboration
with him while he was visiting NTT in 1994 is very important especially for the early stage of
the work.

| am also grateful to Dr.Ueda and Dr.Saito of NTT Communication Science Laboratories for
their encouragement and long standing friendship.

Finally, I thank my parents for their endless support and encouragement, and my wife Kazumi
to whom | dedicate this work, for everything else.

Contents

1 Introduction

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5

Background.
Outlineofthe Thesis.

The Job Shop Scheduling Problem
The Problem Description
Active Schedules. oo
Disjunctive Graph Representation.
DG Distance and Binary Representation
Block Property e
The Shifting Bottleneck Heuristic.
The One-machine Scheduling Problem.
The Well-known Benchmark Problems

Genetic Algorithms
BasicConcepts.
A Simple Genetic Algorithm.,

A Simple Genetic Algorithm for the Jobshop Scheduling Problem
Genetic Encoding of a Solution Schedule.

Local harmonization.
Global harmonization
Forcing e
Simple GAfortheJSP. o
The Limitation of the Simple Approach

GT-GA: A Genetic Algorithm based on the GT Algorithm
Subsequence Exchange Crossover.
Precedence Preservative Crossaver.
GT CroSSOVEN . . . v v e e e s e e e e e e e e e e e
GT-GA . .
Computational Experiments

..... 45
. ... 48

CONTENTS

56 ConcludingRemarks 51
Neighborhood Search 52
6.1 The Concept of the Neighborhood Search 52
6.2 AvoidingLocal Optima. e 54
6.3 The Neighborhood Structure for the Jobshop Scheduling Problem 54
Critical Block Simulated Annealing for the Jobshop Scheduling Problem 57
7.1 Simulated Annealing. e e 57
7.2 Critical block Simulated Annealing. 59
7.3 Reintensification. e e e 61
7.4 Parameters. e e e e e 61
7.5 MethodologyandResults. o L oo 62

75.1 RandomSearch. 64

7.5.2 Low Temperature Greedy Search. 65
7.6 Performance on Benchmarks Problems. 67
7.7 ConcludingRemarks 70
Critical Block Simulated Annealing with Shifting Bottleneck Heuristics 71
8.1 Active Critical Block Simulated Annealing. 71
8.2 Active CBSA Enhanced by Shifting Bottleneck. 72
8.3 ExperimentalResults e 76

8.3.1 Muthand Thompson'sBenchmark 76

8.3.2 OtherBenchmarks, 76
8.4 ConcludingRemarks 78
Scheduling by Genetic Local Search with Multi-Step Crossover Fusion 79
9.1 Multi-stepcrossoverfusion. o e e 79
9.2 Schedulinginthereversedorder. 82
9.3 MSXF-GAforJob-shopscheduling 83
9.4 BenchmarkProblems. 83

9.4.1 Muth and Thompsonbenchmark 85

9.4.2 The Ten Tough Benchmark Problems. 85
Permutation Flowshop Scheduling by Genetic Local Search 89
10.1 The Neighborhood Structure ofthe FSP. 89
10.2 Representative Neighborhood 91
10.3 Distance MeasUres v v i i e e e e e e e e e e 92
10.4 Landscape analysSiS. o i i e e e 92
10.5 MSXF-GAforPFSP. e 95
10.6 Experimentalresults. L 96

10.7 ConcludingRemarks 98

CONTENTS %

11

12

13

Csum Permutation Flowshop Scheduling by Genetic Local Search 99
11.1 IntroducCtion. e 99
11.2 Representative Neighborhood 99
11.3 Tabu List Style Adaptive Memory. e 100
11.4 Experimental Results e 101
11.5 ConcludingRemarks e 101
Tabu Search with a Pruning Pattern List for the Flowshop Scheduling Problem 103
12.1 Introduction. e e e 103
12.2 TabuSearch e 103
12.3 Pruning Pattern. e e e 104
12.4 Pruning Pattern ListApproach 105
12.5 ExperimentalResults e 106
12.6 ConcludingRemarks 107
Conclusions 110

A List of Author’s Work 118

List of Figures

2.1 The job sequence matriX;} and the processing time matrp;} for the 3x
3 problem given in Tab21 Ty = r means thak-th operation for jobJ; is
processed on machirM, for py timewunits.00 6
2.2 A Gantt chart representation of a solution for the 3 problem given in Ta-
ble 2.1 OperationOs; can be shifted as early as at 5 time unit, as indicated by
dotted lines, without altering the order of operations on any machine, and the

new schedule becomes semi-active.. 8
2.3 The solution matrixs,, for the solution given in Figuz2 S, = j means that
thek-th operation on machinkl, isjob J;.. 8

2.4 An example of a permissible left shift, where in the upper pictOrg,can be
shifted to the front 0fOs, without delaying any other operations resulted in a
much improved schedule given in the lower picture. 9

2.5 Asnapshot in the middle of scheduling usingti®&r and Thompson'’s algorithm,
whereO;1, Oz, O31, Os3, O51 and Og4 are schedulableO,; is the earliest com-
pletable operation, an@;; andOz; are in conflict withO,;. Oz, is selected for
the next operation to be scheduled and t@enandOs; must be shifted forward
to avoid overlappingOsy, which is the next operation 10z, in the technological

sequence, now becomes schedulable.. 12
2.6 Adisjunctive graph representation of a3 problem. 13
2.7 The DG distance between two schedules: the distarkce. 15
2.8 Labelingdisjunctivearcs e 15

2.9 Anexample in which there are three critical blocks is illustrated. The biBgks
B, andBs; are on the critical pat#®(S) and are corresponding to thefdrent ma-
chinesM,,, M,, andM,, respectively. The adjacent critical blocks are connected
by a conjunctive arc. The last operation on machihe is not a critical block,
which must contain at least two operations.. 17

2.10 The condition that no operation in a blockSns processed before the first or
after the last operation of the block 81 implies that all the operations B are
processed prior to those By both inS andS’ if i < j, because each adjacent
blocks are connected by a conjunctive arc that cannot be altered. Hence, there
is a pathP(S’) in S’ that contains all the operations @{S) and the length of
P(S’) is greater thanthe length #%S). 18

2.11 A Schrage schedule represented by a conjunctivegraph. 22

Vi

LIST OF FIGURES vii

3.1 An example of the roulette wheel selection, where the roulette wheel is created
according to the fitness value of each individual shown in the upper left pictur83

4.1 An optimal schedule for the mt06 ¥66) problem (makespan55) 37
4.2 A binary representation of a solution schedule using the job-based ordering cor-
responding to the solution given in Figudel. The first line corresponds to the
precedence relation betwednandJ,. The first three digits of the bit-string on
the first line are 110. This corresponds to the fact thas processed prior td,
on J;’s first and second machin®4; andM,, but is not prior taJ, on J;’s third

machineM, and SO 0N.. v v i o e e e e e e e 37
4.3 An example of the local harmonization resolving cycles within six operations

011, 051, ..., 061 On the same machind; where the arc®z; — Og1, Or1 — Osq

andO;; — Og; are reversed in this order and a consistent ordeding— Og; —

Os; — Og; — O, — Ogpis eventually obtained. 39
4.4 An example of global harmonization where a cyolg — O,, — Oz, — O3; —
O33 — Oyzisresolved by reversing an a@®,—03,. 39

5.1 The solution given in Figur23 is converted to am-partitioned permutation for
m = 3, where the permutation in theth partition corresponds to the processing
orderof jobsonmachin®, 43
5.2 An example of subsequence exchange crossover (SXX), where each underlined
subsequence pair one frgspand the other fronp, on each machine is identified
as exchangeable and interchanged to gen&gatedk, 44
5.3 A job sequence (permutation with repetition) for x 3 problem defined in
Figure2.lis decoded to a schedule, which is equivalent to the one in FijGre 44
5.4 An example of the precedence preservative crossover (PPX), Wiegener-

ated frompgandpyusingh. L 45
9.5 GTCroSSOVEr. o o e e e e a7
5.6 The histgram of the best makespans obtained by the GT-GA after 200 generations

among 600 trials for the mtl0 problem. 50
5.7 relationship between various crossoveroperators. 51

6.1 AE(S), adjacent exchange neighborhoodSfconsists of schedules obtained
from S by exchanging a pair of adjacent operations within a same critical blockb

6.2 CB(S), critical block neighborhood db, consists of schedules obtained fr&n
by moving an operation in a critical block to the front or the rear of the block. 55

7.1 Generated Makespans of 10,@B@edy(mt10) Schedules. 66
7.2 Successive makesparfitdirences between the current and optimal solution of the

mt10 problem, without reintensification #R) and with reintensificationR =
3,000). . .. e e 67

8.1 The time evolution of CBSASB trial for the la27 problem 77

viii

LIST OF FIGURES

9.1 Asimple2x2problem. 82
9.2 Schedulereversaland activation., 82
9.3 Distribution of solutions generated by an application of (a) MSXF and (b) a

short-term stochastic localsearch 84
9.4 Performance comparison using the la3&1% problem 87

10.1 A grid graph representation of a solution to a problem of 8 jobs and 6 machingg.

10.2 The best move to the ngxtevious block is selected as a representative.. . . 91

10.3 1841 distinct local optima obtained from 2500 short term local search for the
ta011 (20x 10) problem and 2313 distinct local optima for the ta021 X22D)
problem are plotted in terms of (a) average distance from other local optima and
(b) distance from global optima+{axis), against their relative objective function
values (-axis). e e 93

10.4 The correlation between the precedence-based distance (PREC) and the approx-
imate number of steps (STEPS) 94

10.5 The correlation between the precedence-based distance (PREC) and the position-
based distance (POSN) e 95

10.6 Navigated local search by MSXF-GA: A new search is started from one of the
parents and while no other good solutions are found, the search ‘navigates’ to-
wards the other parent. In the middle of the search, good solutions would be
eventually found somewhere between the parents. That direction is then pursued
to the top of a hill (or a bottom of the valley, if it is a minimization problem) —

anew localoptimum. e 97
11.1 Representative neighborhood 100
11.2 The framework of the proposed methad. 102

12.1 Wherwv = (2,7) is applied tor, (7(2), 7(3)) = (X, y) is stored inT as tabu. Later,
V' = (1,6) is not allowed to apply t@ because it will restore the previously
banned precedence relationbetweery). L L. 104
12.2 The time evolutions of makespans for the ta041 (50 jobs and 10 machines) prob-
lem averaged over 30 tabu search runs with and without the pruning pattern list
(left). The time evolutions for the ta051 (50 jobs and 20 machines) problem av-
eraged over 10 tabu search runs and the computationally equivalent MSXF-GA
runs for comparison (right). L L L 108
12.3 The time evolutions for the other nine Taillard problems of 50 jobs and 20 ma-
chines (ta052 — ta060) averaged over 10 tabu search runs with (label&lLYS
and without (labeled TS) the pruning patternlist.. 109

List of Tables

2.1 Anexample of the jobshop scheduling problem with 3 jobs and 3 machines. Each
column represents the technological sequence of machines for each job with the

processing timesin parentheses.., 6
2.2 An example of the one-machine scheduling problem with 7 johs. 22
2.3 Muth and Thompson'ss6 problem(mto6) 27
2.4 Muth and Thompson’s 1010 problem (mt10). 27
2.5 Muth and Thompson's 205 problem. 28
2.6 The ten tough benchmark problems (status reported]ly 1991). 29
4.1 Experimental results of the simple GA for mt benchmark problems 40
5.1 Experimental results of the GT-GA for mt benchmark problems 49
7.1 Ten Trials using the Simulated Annealing Meth®d<3,000).. 63

7.2 Initial and Last Temperatures. Last temperature is the temperature when an op-
timal makespan was found, or the temperature after 1,000,000 iterations. . 64

7.3 TenHigh Temperaturdkandom Trials.. 65
7.4 Comparisons between CBSAand AESA.. 67
7.5 Ten dificult Benchmark Job Shop Scheduling Problems. 68
7.6 Performances of the 40 Benchmark Job Shop Scheduling Problems.. . . . 69
8.1 Comparisons between CBSA and CB&B using MT benchmarks 76
8.2 Resultsof 10toughJSPs. 77
8.3 Anoptimal solution of la27 problem 78
9.1 Performance comparison using the MT benchmark problems 85
9.2 Resultsofthe 10tough problems 86
9.3 Performance comparisons with various heuristic methods on the 10 tough pra®fems
10.1 Results of the Taillard benchmark problems 97
11.1 Taillard’s benchmark results (ta001 -ta030) 101
11.2 Taillard’s benchmark results (ta031—ta040) 102

Chapter 1

Introduction

1.1 Background

In late 1950s, B.Gller and G.L.Thompson first showed in their paper titled “Algorithms for
solving production scheduling problems”][that it is not necessary to search for an optimal
schedule over all possible schedules, but only over a subset of the feasible schedules, called
active schedules. They then proposed the GT algorithm, which is described later in Se&tion

to iteratively enumerate all active schedules for a given problem. H.Fisher and G.L.Thompson
proposed three well-known benchmark problems known as mt06 (6 jobs 6 machines), mt10 (10
jobs 10 machines) and mt20 (20 jobs 5 machineg)in a book titled “Industrial Scheduling”

edited by J.F.Muth and G.L.Thompson in 1963. [The “notorious” mt10 problem has been
unsolved for over 20 years. Their paper is also important in the sense that they first applied a
stochastic approximation method based on priority dispatching rules and active schedules.

As a pioneering work in the jobshop scheduling research, G.H.Brooks and C.R.White first
proposed a branch and bound method, a tree-based exact method to solve the problem optimally,
based on the GT algorithno]. E.Balas first pointed out the fact that the adjacent pairwise
exchange of operations on a certain part of the schedule, called “critical path”, of a feasible
schedule will always results in another new feasible schedileThis fact will later play an
important role in metaheuristics context.

A great deal of &orts by Barker and McMahon/T and then Carlier{] among others have
contributed the progress of the exact approaches, which are mainly based on the branch and
bound method. They have commonly used the mt benchmark problems (especially the mt10
problem) as a computational challenge to demonstrateffaeti@eness of their algorithms, and
the best known solution for the mt10 problem has been improved. Finally in 1985, Carlier
and Pinson succeeded in solving the mt10 problem optimally by a branch and bound algorithm
[8]. Since then, Bruckerd, Martin and Shmoys10], and Carlier again]1] have improved the
performance of exact approaches. However, the NP-hardness of the problem barrigrsi¢ing e
application of exact methods to larger-scale problems.

In addtion to those exact methods, many approximation methods have been developed. Sim-
ulated annealing (SA) is one of the well-known stochastic local search methods, based on an

1

2 Chapter 1. Introduction

analogy with the physical process of annealingl; heating up a solid in a heat bath until it melts,
then cooling it down slowly until it solidifies into a low-energy state results in a pure lattice
structure. Laarhoven et al. proposed a simulated annealing algorithm for the jobshop scheduling
problem, using the pairwise exchange of operations on the critical path proposed by Balas, as
a transition operatorl[]. However, very similar idea had already been proposed by Matsuo et
al. [13].

Adams et al. proposed a very powerful method to find reasondlityemt schedules known
as shifting bottleneck heuristic in 19884. This method, as its name suggests, iteratively
identifies a bottleneck machine and optimize its job sequence. The details of the algorithm are
described in Sectiof.6. In 1991, Applegate have combined the “shifting bottleneck heuristic”
and a branch and bound method to develop a powerful algorithm and demonstrated that the mt10
problem is no more a computational challenge. Instead, they proposed a new set of benchmark
problems known as the “ten tough benchmarks”, which contained the fiezutfiproblems in-
cluding seven open problems that were not solved even by their apprijach [

In 1990s, Tabu Search (TS), proposed by Fred Glovey 6], has been used by many
researchers including Taillard], Dell’Amico, Trubian [L&], Nowicki and Smutnicki 1.9, 20].

TS adopts a deterministic local search, whereby a ‘memory’ is implemented by the recording of
previously-seen solutions. Instead of storing solutions explicitly, this record is often an implicit
one in a sense that it stores the moves, or the modifications of the solution, that have been
made in the recent past of the search, and which are ‘tabu’ or forbidden for a certain number of
iterations. This prevents cycling, and also helps to promote a diversified coverage of the search
space. Taillard also proposed a new benchmark set consisting of 80 jobshop and 120 flowshop
problems known as “Taillard benchmark”1].

Genetic Algorithms (GAs) model biological processes to optimize highly complex objective
functions. They allow a population composed of many individuals to evolve under specified
selection rules to a state that maximizes the “fithess”. The method was developed by John Hol-
land over the course of the 1960s and 197(%,[and popularized by one of his students, David
Goldberg who successfully applied a GA to the control of gas-pipeline transmission. He is also
well-known for a book titled “Genetic Algorithms in Search, Optimization, and Machine Learn-
ing” [23].

GAs have been used successfully in various fields of computer science, including machine
learning, control theory and combinatorial optimization. GAs can be uniquely characterized by
their population-based search strategies and their operators: mutation, selection and crossover.
Nakano and Yamada were among the first who applied a conventional GA that uses binary rep-
resentation of solutions, to the jobshop scheduling probla#h [Yamada and Nakanao’f]
proposed a GA that uses problem-specific representation of solutions with crossover and muta-
tion, which are based on the GT algorithm. The details of these approaches are described later in
Chapterst and 5.

Ulder and others first proposed Genetic Local Search (GLS), which is a hybridization of
GAs and local search’[]. In this framework, each individual, or search agent, performs local
search independently, while crossover is performed occasionally to the solutions of two selected
individuals and a new solution is produced, which is then used as an initial solution for the
subsequent local search performed by fisging. In this context, the embedded local searchis a

1.2. Outline of the Thesis 3

main search engine tdtectively improve solutions and crossover provides information exchange
between individuals who are performing independent local search in parallel.

1.2 Outline of the Thesis

This thesis is devoted to jobshop and flowshop scheduling by metaheuristics, especially by Ge-
netic Algorithms, Simulated Annealing and Tabu Search. In Chaptaesic concepts and nota-

tions of the jobshop scheduling problem are described such as the semi-active and active sched-
ules, the disjunctive graph representation and critical path and blocks. The main focus throughout
this thesis is theninimum-makespaproblem, in which makespan, maximum completion time

of all the operations, is used as an objective function to be minimized. This is dendigd,as

The sum of completion times of all operations, denote@€asg, is also considered as an alter-
native objective function of the flowshop scheduling problem. The GTgBi& Thompson’s)
algorithm for generating active schedules and the well-known shifting bottleneck heuristic that
generates moderately good schedules by repeatedly solving one-machine scheduling problems
are also reviewed as well as some well-known benchmark problems.

In Chapter3, Genetic Algorithms are reviewed with a major emphasis on conventional binary
models for combinatorial optimization, in which a solution is encoded into a binary string of fixed
length and binary genetic operators, such as one-point, two-point and uniform crossover and bit-
flip mutation, are used. In Chaptéra conventional GA using a binary representation is applied
to the jobshop scheduling problem. By converting a solution of the problem into a bit-string,
conventional GAs can be applied without major modification.

In Chapters, a more advanced GA approach is described as the GT-GA method, which in-
volves a non-binary representation of a solution schedule and domain knowledge, namely, active
schedules and the GT algorithm. GT-GA method consists of GT crossover and GT mutation
that are defined as simple modifications of the GT algorithm. One of the advantages of the GA
is its robustness over a wide range of problems with no requirement of domain specific adapta-
tions. From this point of view, the conventional GA approach with binary encoding and binary
crossover that is obviously domain independent is reasonable. However, it is often more de-
sireble to directly incorporate problem specific knowledge such as the GT algorithm into GA,
resulting the GT-GA method, from the performance point of view.

In Chapter6, the concept of neighborhood search is described as a widely used local search
technique to solve combinatorial optimization problems and is extended to include metaheuris-
tics. Especially, it is shown that Simulated Annealing (SA) and Tabu Search (TS) can be con-
sidered as advanced meta strategies for neighorhood search to avoid local optinfaciémnt e
neighborhood for the jobshop scheduling problem, called Critical Block (CB) neighborhood, that
is defined based on the critical path and blocks, is also described.

In Chapter7, a SA method for the jobshop scheduling problem that utilizes the CB neigh-
borhood is described, and then in Chageit is further extended by incorporating the shift-
ing bottleneck heuristic, which can be regarded as a problem specific deterministic local search
method.

In Chapter9, it is shown that Genetic Algorithms (GAs) can be reagarded as a variant of

4 Chapter 1. Introduction

neighorhood search, that is called Genetic Local Search (GLS), and an approach called Multi-
Step Crossover Fusion (MSXF) method is proposed. In the MSXF method, one of the parent
solutions is used as an initial point of the new local search, while the other is used to define an
orientation for the search. In other words, it is a local search that traces out a path from one
solution to another. The MSXF is applied to the jobshop scheduling problem in Cloagater
applied to theC,ax and Cg,, flowshop scheduling problems in Chapfigi and in Chapterd 1
respectively.

In Chapterl2, a TS method with a data structure called the Pruning Pattern List (PPL) for the
Cmaxflowshop scheduling problem is described. A pruning pattern is constructed from a solution
of the flowshop scheduling problem represented by a permutation of jobs numbers by replacing
some of its job numbers by a wild card. A list of pruning patterns generated from good schedules
collected in the course of a search process is used to inhibit the search to visit already searched
and no longer interesting region again and again and it is embedded into a TS method.

Finally, in Chapterl3, the study in this thesis is summerized and the future directions are
suggested.

Chapter 2
The Job Shop Scheduling Problem

Scheduling is the allocation of shared resources over time to competing activities. It is conve-
nient to adopt manufacturing terminology, wh@ybsrepresent activities andachinegepresent
resources, while the range of application areas for scheduling theory is not limited to computers
and manufacturing but includes transportation, services, etc. In this chapter, we restrict our at-
tention to deterministic jobshop scheduling, where all the data that define a problem instance are
knownin advance

2.1 The Problem Description

The nxm minimum-makespageneral jobshop scheduling problem, designated by the symbols
n/m/G/Cpax and hereafter referred to as the JSP, can be described by ars@iisf{J;}i<j<n
which is to be processed on a sehomachinegM; }1,<m. The problem can be characterized as
follows:

1. Each job must be processed on each machine in the order given in a pre-defined techno-
logical sequence of machines.

2. Each machine can process only one job at a time.
3. The processing of jold; on machineV, is called theoperationOj;.

4. OperationO; requires the exclusive use bf, for an uninterrupted duratiop;, its pro-
cessing time; the preemption is not allowed.

5. The starting time and the completion time of an operatignis denoted as;, andc;

S SILASNS

satisfies above constraints.

6. The time required to complete all the jobs is called thakespanwhich is denoted as

SN ASNS

5

6 Chapter 2. The Job Shop Scheduling Problem

The problem is “general”’, hence the symli®lis used, in the sense that the technological se-
guence of machines can befdrent for each job as implied in the first condition and that the
order of jobs to be processed on a machine can be afferetit for each machine. The pre-
defined technological sequence of each job can be given collectively as a (iayix which
T = r corresponds to thieth operatiorO;; of job J on machineM,. The objective of optimiz-
ing the problem is to find a schedule that minimiggg,.

An example of a % 3 JSP is given in Tabl2.1 The data include the technological sequence
of machines for each job with the processing times in parentheses. In the table, operations
for job 1, for example, are processed in the ordeOgf — O, — Os3; I.e., job 1 is first
processed on machine 1 with its processing time 3, and then processed on machine 2 with its
processing time 3, and then processed on machine 3 with its processing time 3. The problem
is equivalently represented by the job sequence méEi} and processing time matr{pj} as
given in Figure2. 1.

Table 2.1: An example of the jobshop scheduling problem with 3 jobs and 3 ma-
chines. Each column represents the technological sequence of machines for each
job with the processing times in parentheses.

job machine (processing time)
1 1(3) 2(3) 3(3)
2 1(2) 3(3) 2(4)
3 2(3) 1(2) 3(2)
1 2 3 3 3 3
{Tjk}: 1 3 2, {pjk}: 2 3 4
213 321

Figure 2.1:The job sequence matr{X ;} and the processing time matrfp;} for
the 3x 3 problem given in Tab&1 Ty = r means thak-th operation for jobJ; is
processed on machiné, for pjc time units.

Instead of minimizing the makesp&h,.x other objectives such as minimizing the sum of
and is designated by the symbalan/G/Csym,

The Gantt chart is a convenient way of visually representing a solution of the JSP. The Gantt
chart shows time units at the abscissa and machine numbers at the axis of ordinate. An example
of a solution for the 3 3 problem in Table.1is given in Figure2.2. In the figure, each square
box represents an operati@), with its left edge placed aj as itsx coordinate and with its
horizontal length representing processing tipje The makespan of this scheduledgay = 19
time unit.

2.2. Active Schedules 7

A schedule is calledemi-activavhen no operation can be started earlier without altering the
operation sequences on any machine. Oper&igin Figure2.2, for example, can be started as
early as at 5 time unit, as indicated by dotted lines, without altering the order of operations on any
machine, and the new schedule is semi-active. By definition, a semi-active schedule is uniquely
obtained by specifying the operation sequences for all machines. In other words, an semi-active
schedule is represented byrax n matrix S = {S;c} whereS,x = | corresponds that thieth
operation onV, is job J;. Figure2.3 shows the matrix representation of a solution for the3
problem in Table2.1 In the figure, operations on machine 2, for example, are processed in the
order ofOy3 — O, — Oy, Given a matridXS = {S}, itis straightforward to obtain an associated
semi-active schedule. Each operatiOrhas two predecessor operations: job predecessor and
machine predecessor. Tjob predecessoof O, denoted byPJ(0), is the direct predecessor of
Ointhe technological sequence. Timachine predecessof O, denoted by M(O), is the direct
predecessor dD in the solution matrix. For example, if we have a problem as given in Talje
we havePJ(O;,) = Oy; and if the solution is given as in Figu&e3, thenPM(Oy,) = Oy. An
operationO is scheduled at time unit O if it has no job and no machine predecessors. If only one
of job and machine predecessors exists, fBaa scheduled immediately when the predecessor
is completed. Otherwise it is scheduled when both job and machine predecessors are completed
such that: S(O) = maxc(PJ(O)), c(PM(0))}, wheres(O) andc(O) are the starting time and
completion time of operatio® respectively. The solution given in Figu?e3 corresponds to the
Gannt chart representation given in Figar@ except thaDs, is started at 5 time unit.

Throughout this thesis, we assume that a schedule is always semi-active if not stated oth-
erwise. By this formulation, jobshop scheduling can be interpreted as defining the ordering
between all operations that must be processed on the same machine, i.e., to fix precedences be-
tween these operations. In short, the jobshop scheduling problem is formulated as an ordering
problem.

As a special case, when the technological sequence of machines is the same for all jobs
and the order in which each machine processes the jobs is also same for all machines, then a
schedule is uniquely represented by a permutation of jobs. This simplified problem is called the
permutation flowshop scheduling problem and it is designated by the symbn/&/C,,.« (Or
n/m/P/CgqymWhen the objective is minimizinGQsyn).

2.2 Active Schedules

The makespan of a semi-active schedule may often be reduced by shifting an operation to the left
without delaying other jobs. Consider a semi-active schefidad two operation®; andOy,

in S that use the same machiig. If Oy, is processed prior t@; and the machin®, has an

idle period longer thamp; before processin@y, then reassignment is possible so that operation

O is processed prior t@y, without delaying any other operations. Such reassignment is called

a permissible left shifand a schedule with no more permissible left shifts is calleacive
scheduleFigure2.4shows an example of permissible left shift. The schedule in the upper picture
of Figure2.4is identical to the one given in Figu&3 but Os; which is started at 5 time unit and

its makespars 19. On machinév, in the schedule);,, the operation of jold;, can be shifted to

Chapter 2. The Job Shop Scheduling Problem

0 2 4 6 8 10 12 14 16 18 time

Figure 2.2:A Gantt chart representation of a solution for th& 3 problem given
in Table2.1 OperationO3z; can be shifted as early as at 5 time unit, as indicated by
dotted lines, without altering the order of operations on any machine, and the new

schedule becomes semi-active.

1 2 3
321
2 1 3

{Srk} =

Figure 2.3: The solution matrixS,, for the solution given in Figu22 Sy = |
means that th&-th operation on machink, is job J;.

2.2. Active Schedules 9

the front ofOs,, the operation 083, without delaying any other operations. Operatiygis then
shifted to the pointimmediately after the completion of its job and machine predec€gsargd
O,3. O33 0n machine 3 is also shifted. The resulting schedule with improved makesparis
shown in the lower picture of Figuiz4. Because there always exists an optimal schedule that is
active, it should be safe andfigient to restrict the search space to the set of all active schedules.

0 2 4 6 8 10 12{jme

Figure 2.4:An example of a permissible left shift, where in the upper pict@g,
can be shifted to the front @s, without delaying any other operations resulted in a
much improved schedule given in the lower picture.

An active schedule can be generated by usingGhealgorithmproposed by Giler and
Thompson §]. The algorithm is described in Algorithra.2.1. In the algorithm, the following
notations are used:

e As in the previous section, an operatiGnhas job and machine predecessors. The job
predecessor denoted ByJ(O) is the direct predecessor Ofin the technological sequence.
The definition of the machine predeces8iv(0O) is slightly modified and defined as the
last scheduled operation on the machine, that is, an operation with the largest completion
time among already scheduled operations on the same machine as

e AnoperatiorOthatis not yet scheduled is callsdhedulablevhen both its job predecessor
PJ(O) and machine predecesgeM(O), if they exist, have already been scheduled. The
set of all schedulable operations is denotetas

e Theearliest starting timeeS(O) of O is defined as the maximum of the completion times
of PJ(O) andPM(0O): ES(O) := maxc(PJ(O)), c(PM(O))}, wherec(O) is the completion

10 Chapter 2. The Job Shop Scheduling Problem

time of O. Theearliest completion tim&C(O) is defined a€S(O) plus its processing
time p(O).

e Theearliest completable operatioD,; in D with its machineM,, is an operation whose
earliest completion tim&C(O,,) is the smallest iD (break ties arbitrarily) :

O, = arg miEC(O) | O € D}. (2.1)

e Given an earliest completable operati@y, and if there ara —1 operations that have
already been scheduled &y, a conflict setC[M,,i] is a set of candidate operations for
the next (i.ei-th) processing o, defined as:

C[M;,i] = {Ok € D | ES(Ok) < EC(Oy)}. (2.2)
Note thatO,, € C[M,, i].

The essence of GT algorithm is scheduling operations while avoiding an idle period that
is long enough to allow a permissible left shift. For this purpose, one has to carefully select
the next operation that does not introduce such a long idle period among the set of schedulable
operation®d. Hence the conflict s&&[M;,i] c D is maintained. As long as the next operation is
selected from the conflict set, an idle period is kegfisiently short and the resulting schedule
is guaranteed to be active.

An active schedule is obtained by repeating Algorithr.1until all operations are sched-
uled. In Stept, instead of choosing one operation randomly, if all possible choices are consid-
ered, all active schedules will be generated, but the total number will still be very large. Practi-
cally, random choice is replaced by the application of so-calkeafity dispatching ruleqd27],
which are the most popular and simplest heuristics for solving the JSP. For example, a rule called
SOT (shortest operation time) @PT (shortest processing time) selects an operation with the
shortest processing time from the conflict set, a rule ca8 KR (most work remaining) se-
lects an operation associated with the job with the longest total processing time remaining, a rule
calledFCFS(first come first serve rule) selects the first available operation among operations on
the same machine. Dorndorf and Pes¢f] proposed a priority rule-based GA for the JSP using
twelve such priority dispatching rules.

In the notations above, if the definition of the conflict 8¢M;, i] is simplified asC[M,, i] =
G, then the generated schedule is an semi-active schedule. Otherwise, if the definition of
C[M,,i] is altered asC[M,,i] = {Ok € G, | ES(Ox) < ES(O,)}, then the generated sched-
ule is called anon-delayschedule. Unlike active schedules, an optimal schedule is not always a
non-delay schedule.

Figure2.5 shows how the GT algorithm works. The figure shows a snapshot in the middle
of scheduling where operatio¥ ;, O,,, Os1, O43, Os; andOg,4 are schedulable and constitie
The earliest completable operation is identifiedQsg, which results inG; = {Oj3, O3y, Os1}.

In Gy, only O;; andOg; satisfy the inequality in4.2), thereforeC[My,i] = {Oy1, O31}. If O
is selected fronC[M, i], then O,; and Os; are shifted forward according to Stépn Algo-
rithm 2.2.1.

2.2. Active Schedules 11

Algorithm 2.2.1 (GT algorithm)
A scheduling problem represented B}, the technological sequence matrix, &}, the
processing time matrix is given as an input.

1. Initialize G as a set of operations that are first in the technological sequences i=.,
{O11,,, O2r,ys - - ., Oo1,,). FOr each operatio® € G, setES(O) := 0 andEC(O) := p(O).

2. Find the earliest completable operatiOn € G by (2.1) with machineM,. A subset ofG
that consists of operations processed on mackines denoted a6, .

3. Calculate the conflict se&Z[M;,i] c G, by (2.2), wherei—1 is the number of operations
already scheduled o, .

4. Select one of operations @M, i] randomly. Let the selected operation®g.

5. ScheduleQy, as thei-th operation onV,; i.e. S := k, with its starting and completion
times equal td=S(Oy,) andEC(Oy,) respectively:s(Oy,) = ES(Ok;), ¢(Ok) = E(COy).

6. For allO; € G, \ {O}, UpdateES(O;;) as
ES(Oy) := maxES(Oy), EC(Oy)} andEC(O;;) asEC(Oy,) := ES(O) + p(Oxr).

7. RemoveOy, from G (and therefore front,), and add an operatioDys that is the next to

Ok in the technological sequence @®if such Oy exits; i.e., ifr = Ty, andi < m, then
S:= Tkir1 andG := (G \ {Oy}) U {Oxs}.

CalculateE S(Oys) andEC(Oys) as:
ES(Oxs) := maxEC(Oy,), EC(PM(Oys))} andEC(Oys) := ES(Oks) + p(Oks) respectively.

8. Repeat from Stefh to Step7 until all operations are scheduled.

9. Output the solution matri§S;,} as the active schedule obtained with the set of starting and
completion timegs(O;;)} and{c(O;)} respectively wherg = S.

12

Chapter 2. The Job Shop Scheduling Problem

Ou

O3 |

Os1

Figure 2.5: A snapshot in the middle of scheduling usingf@r and Thompson’s
algorithm, whereD;;, O,;, O31, O43, Os1 andOg4 are schedulablel,; is the earliest
completable operation, art@h; andOs; are in conflict withO,;. Os; is selected for
the next operation to be scheduled and tgn and Os; must be shifted forward
to avoid overlapping.Os;, which is the next operation tQs; in the technological
sequence, now becomes schedulable.

2.3. Disjunctive Graph Representation 13

2.3 Disjunctive Graph Representation

The Gantt chart representation and the matrix representation described in the previous section
are simple and straightforward to identify a schedule. However it is not obvious to see whether
the resulting schedule is feasible or not: i.e., whether the job sequence on each machine does not
contradict with the pre-defined technological sequence of machines. A more informative problem
formulation based on a graph representation is first introduced by Roy and Sussinam this
section, we review a graph representation for the JSP using disjunctive graph formulation. The
following descriptions and notations are due to Adams et.1d]. [

The JSP can be described by a disjunctive g@gph(V,C U D), where

e V is a set of nodes representing operations of the jobs together with two special nodes, a
source(0) and asink x, representing the beginning and end of the schedule, respectively.

e C is a set of conjunctive arcs representing technological sequences of machines for each
job.

e D = |J., D;, whereD; is a set of disjunctive arcs representing pairs of operations that
must be performed on the same macHihe

The processing time for each operation is the weighted vpjustached to the corresponding
nodev, and for the special nodeg, = p. = 0. Figure2.6 shows a disjunctive graph representa-
tion of the problem given in Tabl2. L

» conjunctive arc (technological sequences))
- » disunctivearc (pair of operations on the same machine)

pu=3 p= 3 Ps= 3

source (@%@\4/» sink
4 <

P= 3 Pa= 2 =
0”- : an operation of job i on machine j
pij : processing time of Q;

Figure 2.6:A disjunctive graph representation of &3 problem

Let s, be the starting time of an operation corresponding to nodgy using the disjunctive
graph notation, the jobshop scheduling problem can be formulated as a mathematical program-
ming model as follows:

minimize: s,

subjectto: sy —S/ = py, (v,w) € C, (2.3)
s, >0, VeV, '
Sv=SSZpPVS—-Sv=pPw (vWWeD,1l<r<m

14 Chapter 2. The Job Shop Scheduling Problem

The formulaA v B means that eitheA or B is to be satisfied (but not both), thus it is called
disjunctive constraint. Note thatis the dummy sink node that has a zero processing time. This
means thas, is equal to the completion time of the very last operation of the schedule, which
is therefore equal t€,ax. The first inequality in 2.3) ensures that when there is a conjunctive

arc from a node’ to a nodew, w must wait at leasp, time period aftew is started, thus the pre-
defined technological sequence of machines for each job is not violated. The second condition is
equivalent tosy > 0. According to the third constraints, when there is a disjunctive arc between a
nodev and a nodev, one has to select eitheto be processed prior t@ (andw waits for at least

p, time period) or the other way around. This avoids any pair of operations on the same machine
to overlap in time. In the disjunctive graph, the selection corresponds to fixing the undirected
(disjunctive) arc into a directed one.

To summarize, jobshop scheduling is to define the ordering between all operations that must
be processed on the same machine, as described in the previous section. This corresponds to the
third constraints in4.3), and this is done by fixing all undirected (disjunctive) arcs into directed
ones: thus the disjunctive graph is turned into a conjunctive grageléctions defined as a set
of directed arcs selected from the set of disjunctive &rcBy definition, a selection isomplete
if all the disjunctions inD are selected. It isonsistentf the resulting directed graph is acyclic.
When a complete selection is consistent, one can define a unique and consistent ordering of
operations on the same machine, namely a solution m@&pikand this matrix corresponds to a
feasible (semi-active) schedule. Hence a consistent complete selection, the obtained conjunctive
graph, and the corresponding (semi-active) schedule are all identified and represented by the
same symboB without confusion. Given a selection, a path starting from a notie any
destination node is defined by following directed arcs fromto w (if they exist), and the length
of the path is defined as the sum of the weights of all the nodes on the path incluainaiyv.

It is clear that the makesp&h,ax Of @ schedulé is given by the length of the longest weighted
path from source to sink in the graph of the corresponding complete selection. Thi8 aih
necessarily unique) is callectatical pathand is composed of a sequencenfical operations

By using the disjunctive graph model, we can easily show a well-known fact known as fea-
sibility property for adjacent exchanges of operations on a critical path: any exchange of two
adjacent operations on a critical path will never lead to an infeasible schedule. Based on this
fact, Laarhoven et al. have proposed a simulated annealing algorithm using the pairwise ex-
change of operations on the critical path as a transition operathr Taillard has proposed a
Tabu Search method by using the same transition operatpr [

Theorem 1 (feasibility for adjacent exchange)Let S be a consistent complete selection and
P(S) be a critical path inS. Consider a pair of adjacent critical operatiorgs, v) on a same
machine orP(S), i.e.,there is an arc selected fromto v. Then a complete selecti@t" ob-
tained fromS by reversing the direction of the arc betweeandv is always acyclic (thus the
corresponding schedule is always feasible).

Proof: Assume the contrary, then the exchange introduces a cy8®.mhis means that there
is a pathP“¥ from u to v in S, and thisP*" also exists inS. P(S) can be represented as
PS) = (,...,t,u,v,w,...,«)and (Q...,t,P*,w,...,*) is also a path from source to sink in

2.4. DG Distance and Binary Representation 15

S but clearly longer thaP(S). This contradicts the assumption of the theorem #@&) is a
critical path ofS. O

2.4 DG Distance and Binary Representation

The distance between two scheduandT can be measured by the number dfeliences in
the processing order of operations on each machirie In other words, it can be calculated
by counting the directed (originally disjunctive) arcs whose directions dfereint betweers
andT. We call this distance thdisjunctive graph(DG) distance Figure?2.7 shows the DG
distance between two schedules. The two directed arcs marked by thick lines in sdhaduée
directions that dfer from those of schedul®, and therefore the DG distance betwe&eandT

is 2.

Figure 2.7:The DG distance between two schedules: the distarize

As described in the previous section, a (semi-active) schedule is obtained by turning all undi-
rected disjunctive arcs into directed ones. Therefore, by labeling each directed (originally) dis-
junctive arc of a schedule as 0 or 1 according to its direction, and rearrange them as a one dimen-
sional vector, a schedule can be represented by a binary string of langith- 1)/2. Figure2.8
shows a labeling example, where an arc conne@@in@ndQy; (i < k) is labeled as 1 if the arc is
directed fromO;; to Oy; (S0 G;;j is processed prior t@y;) or 0, otherwise. It should be noted that
the DG distance between schedules and the Hamming distance between the corresponding bi-
nary strings can be identified through this binary mapping. Nakano and Yamada have proposed a
simple Genetic Algorithm based on this binary coding and using standard genetic operdtors [

Figure 2.8:Labeling disjunctive arcs

By using the notion of DG distance, the following so calbethnectivity propertyor adjacent
exchanges on the critical path can be derived easily from Theb@sfollows:

16 Chapter 2. The Job Shop Scheduling Problem

Theorem 2 (connectivity for adjacent exchange)Let S and £(S) be an arbitrarily schedule
and its critical path, then it is possible to construct a finite sequence of adjacent exchange on the
critical path that will lead to an optimal schedule.

Proof: Let S* be an optimal schedule. Becauseas not optimal,Cr,ax(S) > Chad(S*), and the

DG distance, denoted lay betweers andS* isd(S, S*) > 0. Moreover, there is at least one pair
of consecutive critical operations,{) in S such that, v) is processed i% in this order but in

S*, vis processed prior to. This is true because if such pair does not exist, then the critical path
P(S) in S exists also i5* as a path and this means tl@&{.(S) < Cmax{(S*) which contradicts

the assumption the&* is optimal. Reverse the direction ai,{) and obtainS". Theoreml
guarantees th&" is feasible. It is clear thal(S", S*) = d(S, S*) - 1, i.e.,S" is closer toS*
thanS by one step. Replacg by S and repeat this process at mdés, S*) times until there is

no such g, v), thenS becomes identical witB*, or at least the critical paths &andS* become
identical, therefor€,(S) = Crad{S*) and soS is optimal. O

2.5 Block Property

As described in the previous section, an operation on a critical path is called a critical operation.
A sequence of more than one consecutive critical operations on the same machine is called a
critical block. More formally, letS be a feasible schedule associated with a disjunctive graph
G(S) = G(V,C u D) with all the disjunctive arcs iD being directed. LeP(S) be a critical path

in G(S) andL(S) be the length of this critical path, which is equal to the makespan. A sequence
of successive nodes Riis called acritical block or justblockif the following two properties are
satisfied:

1. The sequence contains at least two nodes,

2. The sequence represents a maximal number of operations to be processed on the same
machine.

The j-th block on the critical path is denoted IBf. Figure2.9 shows an example of critical
blocks on a critical path. The following so-call&tbck propertygives us crucial information

in improving a current schedule by simple modifications and thus forms a basis for many of the
jobshop scheduling solvers().

Theorem 3 (Block property) LetS, P(S), L(S) be a complete selection, its critical path, and
the length of the critical path respectively. If there exists another complete sel&ttmich that
L(S’) < L(S), then at least one operation of some bldglof G(S) has to be processed
before the first or after the last operation Bf

Proof: Assume the contrary tha(S’) < L(S) and that there is no operation that satisfies the
conclusion of the theorem; i.d@here is no operation of any block 8fthat is processed before

2.5. Block Property 17

M M, M, M,
O-0000-00
By B B

Figure 2.9:An example in which there are three critical blocks is illustrated. The
blocks B;, B, and B; are on the critical patkP(S) and are corresponding to the
different machine$/,,, M,, and M,, respectively. The adjacent critical blocks are
connected by a conjunctive arc. The last operation on madfijnés not a critical
block, which must contain at least two operations.

the first or after the last operation of the corresponding blotken, there is a patR(S’) from
source to sink irs’ that contains all the operations &(S):

{P(S")} > {P(S)} (2.4)
where{P(S)} denotes a set of all nodes &(S) (See Figure2.10. Let|(P) be the length oP,
then from (2.4) we have:

[(P(S")) > L(S) (2.5)
The definition of the critical path indicates:

L(S") > I(P(S")) (2.6)

From 2.5 and @.6), we have:
L(S) > L(S) (2.7)
This contradicts the assumption of the theorem. O

The theorem gives us an important criterion about how to improve a current schedule. Namely,
if we wish to improve a schedulg, then either one of the following two situations must happen:

1. At least one operation in one blodk that is not the first one iB, has to be processed
beforeall the other operations iB.

2. Atleast one operation in one blo& that is not the last one iB, has to be processeadter
all the other operations iB.

Let S be a complete selection, A critical paf(S) in G(S) defines critical block®,, ..., By.
Roughly speaking, thhefore-candidatijB is defined as a set of all but the first operationBjn

andafter-candidateB? a set of all but the last operations®#). More precisely, the first and the

18 Chapter 2. The Job Shop Scheduling Problem
g P"O
0-A850-00
Bl BZ BS

Figure 2.10:The condition that no operation in a block$is processed before the

first or after the last operation of the block®1 implies that all the operations B

are processed prior to those) both inS andS’ if i < j, because each adjacent
blocks are connected by a conjunctive arc that cannot be altered. Hence, there is a
pathP(S’) in S’ that contains all the operations @{S) and the length oP(S’) is
greater than the length &f(S).

last blocksB; and By need special treatment. If the first operat'uimf the first blockB; is also
the very first operation of the critical pa#X(S), then we seBf as empty. Likewise, if the last
operatioruﬁ,‘ of the last blockBy is also the very last operation of the critical p&(5), then we
setBy as empty.

0 if j =1 andu! is the first inP(S)
B _ . 1
) { Bj\{u;} otherwise. (2.8)
0 if j =kanduk, is the last inP(S)
A | K
K { B\ {un} otherwise. (2.9)

whereu; anduy, are the first and the last operationsBp Note thatB; contains at least two
operations, and sB? U B} is always non-empty.

Brucker et al. have proposed affieient branch and bound method based on the block
property P]. It is natural to consider generating a new schedule by moving an operatB;fh in
(or Bf) to the front (or rear) oB; aiming for possible improvements. The adjacent exchange of
critical operations discussed in the end of Secfidhis a special case of this kind of transition.
Many metaheuristics approaches have been proposed based on this transition ogexatejs [
Note that unlike the simpler adjacent exchange of critical operations, in which the feasibility is
guaranteed by Theorefin applying this transition may result in an infeasible schedule.

2.6 The Shifting Bottleneck Heuristic

The shifting bottleneck heuristic (SB) proposed by Adams, Balas and Zawétks[one of

the most powerful heuristic methods for the jobshop scheduling problem. Assume we have a
partial schedule or corresponding select®yy in which only some of the machines are already
scheduled and the ordering of operations on those machines has been determined and fully fixed.

2.6. The Shifting Bottleneck Heuristic 19

For this partial schedule, a critical path is defined exactly the same way as in the complete case;
the longest path from source to sink in the graph of the corresponding sel>idthence the
makespark(Sy) is also defined as the length of the critical path.

Given a partial schedul8, then we focus on a machiridy not yet scheduled. When we
schedule operations on machiik, we have to take into accounts the constraints imposed by
the already scheduled operations on other machines. For example, assume that we have a prob-
lem given in Figure2.6 as a disjunctive graph, and that operations on mackipand M; are
scheduled and their starting and completion times are fixed. Then, ope@tidor job J; on
machineM,, which is not yet scheduled, has to be started at least after the completidn of
and ended before the start©fs. In short we have to start and complete the processir(@, of
within a given limited time interval. Similar constraints are impose®49andO;; as well, and
we have to determine the order ©f,, O,, andO3, on machineM, such that these constraints
are not violated.

In general, we definbead andtail for each unscheduled operation. lidie an operation
on machineMy not yet scheduled. Operatiortan be identified as a nodeén the graph corre-
sponding to selectioB,. Letr; be the length of the longest path from source to the node.,
ri = L(0,1), whereL(i, j) is the length of the longest path from nod® nodej. r; is called the
release timeor theheadof operationi. In a similar fashion, let; be the length of the longest
path fromi to the sink minus processing timeipf.e.,q = L(i, *) — p;, wherep; is the processing
time ofi. q; is called thetail of operationi. Thedue dated; is defined asl, = L(0, *) — g;. Note
thatL (0, #) is the makespan @&,.

When the head, tail g and the processing timg, summarized a§, p;, g} are given for
each operationon a machiné, and letC as a set of operations on machixg, we have a one
machine scheduling problem formulated as a mathematical programming model as follows:

minimize the makespan: max{s + pi + G}
subject to: S > ieC (2.10)
and the disjunctive constraintssj—s > pvs—-s;>p; (i,j€C)

Starting from a partial scheduf,, which is initially set as empty, we solve a one-machine
scheduling problem for each machine not yet scheduled to optimality, and find a bottleneck
machine: a machine with the longest one-machine makespan. The algorithm to solve the one-
machine scheduling problem will be described in the next section. The bottleneck machine is
regarded as scheduled afdis updated using the job sequence on the bottleneck machine ob-
tained above. Every time a new machine has been scheduled, the job sequence on each previously
scheduled machine is subject to reoptimization. The original SB consists of two subroutines: the
first one (SBI) repeatedly solves one-machine scheduling problems; the second one (SBII) builds
a partial enumeration tree where each path from the root to a leaf is similar to an application of
SBI.

The rough outline of SBI can be summarized as follows:

1. For each of unscheduled machines, solve the one-machine scheduling problem and obtain
the best makespan and corresponding job sequence.

20 Chapter 2. The Job Shop Scheduling Problem

2. ldentify the most bottleneck machine which has the longest one-machine makespan ob-
tained above.

3. Make the most bottleneck machine scheduled using the job sequence obtained above.
4. Reoptimize all the scheduled machines.

5. Repeat the above until all the machines are scheduled.

The more complete SBI algorithm is given in AlgoritHir5.1

Instead of considering the most bottleneck machine in StefpAlgorithm 2.6.7, if we con-
sider the nth highest bottleneck machines and apply the remaining steps of SBI for each bottle-
neck candidate, we have SBII.

2.7 The One-machine Scheduling Problem

In the SBI heuristic, we have to repeatedly solve the one-machine scheduling problem. Although
the problem isvVP-hard, Carlier has developed afieient branch and bound methadl]. In this
section, we focus on the one-machine problem and describe the algorithm proposed by Carlier.
In the one-machine case, each job has only one operation, so an operation and corresponding job
is identified. Furthermore, a simplified notation is used to identify job number and corresponding
job; i.e., we just say “joh” instead of saying “operatio®; of job J; ”. The disjunctive graph of
the problem is defined just as a special case of the jobshop scheduling problem. A schedule is
obtained by determining the starting (or completion) times of all jobs, or equivalently, turning
all undirected disjunctive arcs into directed ones, resulting in a conjunctive graph, or simply, a
job sequence.

Consider a one-machine scheduling probRmvith njobs| = {1, 2, ..., n} characterized by
{ri, pi, G}, wherer;, p; andq; are the head, processing time and tail of eachijodspectively.
Hereafter, we omit a set afjobs| when it is obvious and just say*is defined byr;, pi, q}".
The formal definition of the one-machine scheduling problem was already givenliy &nd we
do not repeat it here. Tabie2 shows an example of the one-machine scheduling problem with
7 jobs and Figure.11shows an example of a schedule represented by a conjunctive graph for
this problem. Note that the conjunctive graph is simplified such thatmnlyarcs are presented
between adjacent job nodes instead of drawifig- 1)/2 arcs between all job node pairs, which
are apparently redundant. The number on each arc from source to a job isathe head;
and the numbers on each arc from a job nottesink is the processing timg “+” the tail g.
The schedule presented in the figure is called a Schrage schedule, the definition of which will be
presented shortly.

A lower bound of the makespan for a one-machine scheduling problem definéd=by
{J1,...,Jdn} @and{ri, p;, g} is calculated as follows:

Theorem 4 Letl; be a subset df, then

h(ly) = Minia,ri + > pr + Minia, g (2.11)

i€|1

2.7. The One-machine Scheduling Problem 21

Algorithm 2.6.1 (SBI heuristic)

A scheduling problem given as a set of technological sequences of machines for each job with
processing times (preferably represented by a disjunctive graph) are given as inputd.bleet

the set of all machinesM = {Mq, ..., M,}.

1. A partial schedul&, and a set of already scheduled machingin S, are initialized as
Sp = {} and My := {} respectively.

2. For eachMy € M\ My, do the following
(a) Compute head; and tail g; for each operation on My given S,. Let p; be the
processing time af.

(b) Solve one-machine scheduling problémq;, pi} to optimality for machineMy and
obtain the best one-machine makesp@¥iy) and corresponding job sequence (more
precisely, corresponding selectidBy, .

3. Let M* be the bottleneck machine such thé¥1*) > v(M) for all M € M\ My
4. SetMgy := Moy U {M*} andS; := Sp U Sy-.

5. Order the elements of1y as{M1, My, ..., M} (I = [Mo|) in the order of its inclusion to
M, above.

6. [local optimization of S, with already scheduled machinesMy = {M1, Mo, ..., Mi}]
do
(@) Form=1,2,...,1, do the following:
I. Reset the sequence of operationd\bp i.e., letS,” = Sy \ Sy,

ii. Compute head, and tailg; for each operationon M, of S'.

iii. Solve one-machine scheduling probldm g;, pi} and obtain new(M,,) and
Sm,-

iv. LetS,” =S," U Sy, and compute makesp&aiS,”) for partial schedul&,”. If
L(Sp”) < L(Sp), then sel5, := S,”, otherwise keep the origin&l,.

(b) ReordefMq, M, ..., M;} according to decreasing order of the ngm,,,)s.
while any improvements are made in St&g
7. Repeat from Stefd to Step5 until My = M.

8. OutputS, as a obtained complete selection.

22 Chapter 2. The Job Shop Scheduling Problem

Table 2.2:An example of the one-machine scheduling problem with 7 jobs

i (=jobno.) 1 2 3 4 5 6 7
ri (head) 10 13 11 20 30 0 30
pi (processing time) 5 6 7 4 3 6 2
g (tail) 7 26 24 21 8 17 0

is a lower bound on the optimal makespan.

Proof: In the conjunctive graph associated with the optimal schedule, there is ®@pdtbm
source to sink, passing through every jolqnlt is clear that the length of the pakh, is longer
than or equal td(I;). Whereas, by definition of the critical path, the length of the gaths
shorter than or equal to the length of the critical path and which is equal to the makespan of the
optimal schedule. Thus(l,) is a lower bound. O

There is a method to generate a reasonably good schedule callkxhgjest tail heuristic
in which a job with the longest tad;, therefore with the earliest due date, among ready jobs,
is regarded as the mostgentand scheduled first. The resulting schedule is called a Schrage
schedule. An algorithm to generate a Schrage schedule is described in Algaritim The
name “longest tail” heuristic stems frora.(3.

Figure2.11shows a Schrage schedule obtained by the longest tail heuristic to the problem
given in Table2.2. The starting times of each job is; = 10,5, = 15,5 = 21,5, = 28,55 = 32,
S =%=0,5 =35,s, = 53. The critical path is 0, 1, 2, 3, 4 and the makespan is equal to
53. This example is taken fromi {].

Figure 2.11:A Schrage schedule represented by a conjunctive graph

2.7. The One-machine Scheduling Problem 23

Algorithm 2.7.1 (longest tail heuristic)
A one-machine scheduling problem definedbyp, g} foreachjob € | = {1,2,...,n}isgiven
as input

1. Initialize a set of scheduled joldg := {}, and the most recently scheduled job= 0.
The starting times and processing times of the two dummy nodes & and defined as
S =Sk := 0 andpg := p,. := 0 respectively.

2. ldentify R, asetof ready jobs @& :={ie | \ U | r; < s+ px}.
3. If Ris empty, therk’, the next job to be scheduled, is selected as
K':=arg Min_ i (2.12)
and schedul& ass. = r.. Otherwisek’ is selected as
K" := arg Max_z0i (2.13)
and schedul& ass¢ = s¢ + px. Updatek := k'.
4. UpdateU := U U {k} and updates, ass, := maxs,, S + px + G/}
5. Repeat Steg to Step4d untilU = 1I.

6. Output the set of obtained starting times, S, ..., S, S}

24 Chapter 2. The Job Shop Scheduling Problem

The following theorem implies that the Schrage schedule is in a sense “close” to the optimal
schedule, and to improve it, a particular jobas to be rescheduled.

Theorem 5 LetL be the makespan of the Schrage schedule.
(a) If this schedule is not optimal, there is a critical joland a critical sety such that:

h(J) = Miniejri + Z pi + Miniejqi >L-—rg
ieg
(b) If this schedule is optimal, there exisfssuch thath(J) = L.

Proof: Let G be the directed graph associated with the Schrage schedule and consider a critical
path ofG that contains maximal number of jobs. By renumbering jobs if necessary, the critical
pathP is denoted a® = (0,1, 2,...,1, x) without loss of generality.

The length of the critical path is:

L=s+ Z pi + Q. (2.14)
i=1,...|

If job 1 was scheduled immediately when its predeceksdrexists, was just finished; i.e.,
if s+ px equals tos;, thenk must be on the critical path, too. This is in contradiction with the
maximality of P. Hences, + px < S1, and this meanR was empty and 1 is selected ®/12) in
Algorithm 2.7.1 Therefore,

Sy =1 = Minj_1_ 1. (2.15)

.....

.....

is a lower bound from Theorer the schedule is optimal.
Otherwise, there exists {1, ...,1} such that; < q,. Letc be the greatest number among such
andlety ={c+1,...,l}, then:

J. < gk forallke (2.16)

and

a = Minkejqk. (217)

From (2.16), c has the “shortest” tail among} U 7 the least urgent job in the “longest” tail
heuristic. This means that whenwvas scheduled; was not selected by?(13 but selected by
(2.12, meaning:

s=rc<reforallke J. (2.18)

Because is on the critical path ang, = r; from (2.15),

S=S+P1+...Pcc1=r1+pP1+...Pc1- (219)

2.8. The Well-known Benchmark Problems 25

From 2.18 and .19, we have

i+ p1+...pc1 <rgforallke 7. (2.20)
Together with 2.17) and @.20), we have:

h(T) = MinkesTic+ D P+ MiNieg G > T+ Pr+ o Poa+ P+) P+ Q=P (221)
keg keJ

The right hand side ofX21]) is equal toL — p O

As a corollary of this theorem, it can be seen that in an optimal schedule, eithgrocessed
before all the jobs iy or after all the jobs iryy. By using this fact, we consider two new one-
machine scheduling problen$ and Sgr by modifying head or tail of the original proble®.
Let P be a one-machine scheduling problem correspondirig,tp;, gi}. Apply the longest tail
heuristic toP and obtain a Schrage sched8land the critical jolz and critical sety. P, requires
job ¢ scheduled before all jobs . ThusP, is obtained fronP using the sam¢r;, p;, g;} but
only modifyingq. as follows:

G = Max(Ge,) Pr +). (2.22)
keg
Likewise Py requires jobc scheduled after all jobs ify’. ThereforePg is obtained fromP by
modifyingr. as follows:

re := Max(re, Minge sy + Z Pr). (2.23)
keg

Now we are ready to describe the branch and bound algorithm. In the branch and bound algo-
rithm, we consider a search tree in which each node is associated with a one-machine scheduling
problemP defined by{ri, pi, gi}. The root nodeP, corresponds to the original problem to be
solved. The active node, is initialized asPy. The upper boung is initialized asu := .

We apply the longest tail heuristic to the active nd®leand obtain the Schrage schedule
and its makespahs(P,), the critical operatiort and the critical setf. The upper bound is
updated ag = min{u, Ls(Ps)}. ThenP_ andPg are generated by using.2 and ¢.23.The
lower bounda of the two new nodes will ba(P.) := maxLs(P.), h.(7),h.(J U {c})} and
A(PR) := maxXLs(P,), hr(7), hr(T U{c})} respectively, wherla_ andhg correspond tdin (2.171)
but calculated with modifiedr;, p;, g} by (2.22 and .23 respectively. A new node will be
added to the tree only if its lower bound is less than the upper bauitie next active node is
identified as a node with the lowest bound.

2.8 The Well-known Benchmark Problems

The three well-known benchmark problems with sizes ef@ 10x 10 and 20x 5 (known as
mt06, mt10 and mt20) formulated by Muth and Thomps@rafe commonly used as test beds to

26 Chapter 2. The Job Shop Scheduling Problem

Algorithm 2.7.2 (Carlier's branch and bound algorithm)
A one-machine scheduling problefg defined by{r;, pi, i} is given as input

1. Initialize P, = Py andu := .

2. Apply the longest tail heuristic t®, and obtain the Schrage schedule and its makespan
Ls(P,), the critical operatiom and the critical seyf.

3. If Ls(Pa) < u, then storeP, as the best schedule obtained soRgar:= P,, and update
u = Ls(Ps). Make P, visited.

4. GenerateP, and P defined by(r-, p-, g-} and{rf, p&, ot} respectively using4.22) and
(2.23.

5. CalculateA(P.), the lower bound foP., asA(P.) := maxLs(Pa), h.(J), h (T U {c})},
whereh, is calculated byZ.11) with hy = hand{r;, pi, g} = {r-, p-, g-}. Calculatei(Pg)
in the same way ag(P,).

6. Add the new nodé®, to the search tree as a child nodeRyfif A(P.) < u and addPx, if
ﬂ(PR) < u.

7. UpdateP, as a node with the lowest bound among nodes not yet visited.
8. Repeat Step to Step7 until there is no node that is not yet visited.

9. OutputPy, as the optimal schedule &Y.

2.8. The Well-known Benchmark Problems 27

measure theffectiveness of a certain method. Figir8 shows the mt06 problem, which is the
easiest in size and structure. Indeed, it employs only 6 jobs and 6 machines, and the technological
sequence of jobs on each machine is similar to each other.

Table 2.3:Muth and Thompson’s & 6 problem (mt06)

job machine (processing time)
1 3(2) 1(3) 2 (6) 4 (7) 6 (3) 5(6)
2 2 (8) 3(5) 5(10) 6 (10) 1 (10) 4 (4)
3 3(5) 4 (4) 6 (8) 109 2(2) 5(7)
4 2(5) 1(5) 3(5) 4 (3) 5(8) 6 (9)
5 3(9) 2(3) 5(5) 6 (4) 1(3) 4 (1)
6 2 (3) 4 (3) 6 (9) 1(10) 5(4) 3(2)

Table 2.4:Muth and Thompson’s 18 10 problem (mt10)

machine (processing time)
1(29) 2(78) 3(9) 4(36) 5(49) 6(11) 7((2) 8(56) 9(44) 10(21)
1(43) 3(90) 5(75) 10(11) 4(69) 2(28) 7(46) 6(46) 8(72) 9(30)
2(91) 1(85) 4(39) 3(74) 9(90) 6(10) 8(12) 7(89) 10(45) 5(33)
2(81) 3(95) 1(71) 509 709 9(52) 8(85) 4(98) 10(22) 6(43)
3(14) 1(6) 2(2) 6(61) 4(26) 59 9(21) 849 10(72) 7(53)
3(84) 2(2) 6(52) 4(95) 9(48) 10(72) 1(¢47) 75 5(6) 8(25
2(46) 1(37) 4(61) 3(13) 7(32) 6(21) 10(32) 9(89) 8(30) 5(55
3(31) 1(86) 2(46) 6(74) 5(32) 7(88) 9(19) 10(48) 8(36) 4(79)
1(76) 2(69) 4(76) 6(51) 3(85) 10(11) 7(40) 8(89) 5(26) 9(74)
2(85) 1(13) 3(61) 7(7) 9(64) 10(76) 6(47) 4(52) 5(90) 8(45)

= e}
Boo~Nooswnkg

The mt10 and mt20 problems are like brothers. They are processing the same set of operations
and technological sequences are similar, but in the mt20 problem, the number of machines avail-
able is reduced to half of that of the mt10 problem. For example, the first operation of each job
in mt10 is exactly same as the first operation of each of the first 10 jobs in mt20 and the second
operation of each job in mt10 is exactly same as the first operation of each of the second 10 jobs
in mt20.

The mt10 and mt20 problems had been a good computational challenges for a long time.
Indeed, the mt10 problem has been referred as “notorious”, because it remained unsolved for
over 20 years. The mt20 problem has also been considered as dhdeltdiHowever they are
no longer a computational challenge.

Applegate and Cook proposed a set of benchmark problems called the “ten tough problems”
as a more diicult computational challenge than the mt10 problem, by collectiffgcdit prob-
lems from literature, some of which still remain unsolvéfl [The ten tough problems consist of

28

Chapter 2. The Job Shop Scheduling Problem

Table 2.5:Muth and Thompson’s 28 5 problem
job machine (processing time)

1(29) 2(9) 3(49) 4(62) 5(44)
1(43) 2(75) 4(69) 3(46) 5(72)
2(91) 1(39) 3(90) 5(12) 4 (45)
2(81) 1(71) 50 3(85 4(22)
3(14) 2(22) 1(26) 4(21) 5(72)
3(84) 2(52) 5(48) 1(47) 4(6)
2(46) 1(61) 3(32) 4(32) 5(30)
3(31) 2(46) 1(32) 4(19) 5(36)
1(76) 4(76) 3(85) 2(40) 5(26)
2(85) 3(61) 1(64) 4(47) 5(90)
11 2(78) 4(36) 1(11) 5(56) 3(21)
12 3(90) 1(11) 2(28) 4(46) 5(30)
13 1(85) 3(74) 2(10) 4(89) 5(33)
14 3(95) 1(99) 2(52) 4(98) 5(43)
15 1(6) 2(61) 5(69) 3(49) 4(53)
16 2(2) 1(95 4(72) 5(65) 3(25)
17 1(37) 3(13) 2(21) 4(89) 5(55)
18 1(86) 2(74) 5(88) 3(48) 4(79)
19 2(69) 3(51) 1(11) 4(89) 5(74)
20 1(13) 2(7) 3(76) 4(52) 5(45)

Bq3m~4mo1bunup

2.8. The Well-known Benchmark Problems 29

abz7, abz8, abz@ndla21, la24, la25, la27, 1a29, 1a38, la40 heabzproblems are proposed by
Adams in [L4]. la problems are parts of 40 problena®1-la40originally from [37]. Table?2.6,
which is taken from I], shows for each of the ten tough benchmark problems, the problem size,
best solution reported inl] and best lower bound. Those gaps between the best solution and
the best lower bound suggest théidulties of the problems and no gap means the problem is
solved The more recent status of the best solutions will be reported in the later sections.

Table 2.6:The ten tough benchmark problems (status reported]apn [L991)

Prob size fixm) Best Solution Best Lower Bound
abz7 215 668 654
abz8 215 687 635
abz9 215 707 656
la21 15<10 1053 1040
la24 15¢10 935 935
la25 20<10 977 977
la27 20<10 1269 1235
la29 20<10 1195 1120
la38 1515 1209 1184
la40 15¢15 1222 1222

Taillard proposed a set of 80 JSP and 120 FSP benchmark problems. They cover various
range of sizes and filiculties. They are randomly generated by a simple algorithm. It has
become more common to use the ten tough problemaiidillard benchmark than to use the
mt10 and mt20 problems as benchmark problems.

Chapter 3

Genetic Algorithms

Genetic Algorithms (GAs) are search strategies designed after the mechanics of natural selec-
tion and natural genetics to optimize highly complex objective functions. GAs have been quite
successfully applied to optimization problems including scheduling. In this chapter, the basic
concepts of GAs are reviewed.

3.1 Basic Concepts

Genetic Algorithms use a vocabulary borrowed from natural genetics. We have aisdi-of
vidualscalledpopulation An individual has two representations calfgtenotypendgenotype

The phenotype represents a potential solution to the problem to be optimized in a straightforward
way used in the original formulation of the problem. The genotype, on the other hand, gives an
encodedepresentation of a potential solution by the form ahaomosomeA chromosome is

made ofgenesarranged in linear succession and every gene controls the inheritance of one or
several characters or features. For example, a chromosome consists of a sequence of 0 or1 (i.e. a
bit string), and the value at a certain position corresponds {the value= 1) or off (the value=

0) of a certain feature. More complicated forms such as a sequence of symbols and a permutation
of alphabets are chosen for chromosomes depending of the target problem.

Each individual has itéitness which measures how suitable is the individual for the local
environment. The Darwinian theory tells us that among individuals in a population, the one that
is the most suitable for the local environment is most likely to survive to have greater numbers
of offspring. This is called a rule of “survival of the fittest.”

The objective functiorf of the target optimization problem plays the role of an environment,
therefore, the fitness of an individukl measures how “good” is the corresponding potential
solution in terms of the original optimization criteria. When the target optimization is the maxi-
mization of the objective function, then fithess may be identical to the objective function value:

F(X) = f(x) (3.1)

wherexis an individual in the current populatidh When the target is the minimization, then the
objective function must be converted so that an individual with a small objective function value

30

3.2. A Simple Genetic Algorithm 31

has a high fithess. The most obvious way to deal with it is to define the fitness as the maximum
of objective function over the current population minus its own objective function value:

F(X) = maxep{f(y)} — f(X). (3.2)

Another method is known as ranking. In the ranking method, each individual in the current
populationP is sorted in the descending order of its objective function value so that the worst
individual is numbered ag;, and the best ag,, wheren is the size ofP. Then the fithes§ of an
individual x;, thei-th worst individual, is defined as

F(x) = i. (3.3)

3.2 A Simple Genetic Algorithm

Meanwhile, let us consider a simple case in which the genotype is a bit string of lendth
simple genetic algorithm is composed of the following three operators:

1. Crossover
2. Mutation
3. Reproduction

Crossover and Mutation are genetic recombination operators. Each individual in a population is
coupled to pairs which is called parents at random. Each pair of individuals undergessver
described as follows.

Crossoveroperates on genotype (i.e. chromosomes) of two individuals called parents. It
generates new (usually two) individuals calldtspring whose genes are inherited from either
parents. This can be done by splitting each of the two chromosomes into fragments and recom-
bining them again to form new chromosomes.

Now we assume that the genotype is a bit string of lemgtiihe 1-point crossover sets one
crossover point on a string at random and takes a section before the point from one parent and
takes another section after the point from the other parent and recombines two sections to form
a new bit string. For example, consid& andA, being bit strings of length = 5 as parents as
follows:

A; = 0000]0
A, = 11111

The symbol indicates a crossover point, and in this case it is set after the fourth bit. The resulting
1-point crossover yields two new individuad$ andA;, as follows:

(3.4)

0000| 1
1111]0.

Ay

A (3.5)

32 Chapter 3. Genetic Algorithms

The two-point crossover sets two crossover points at random, and takes a section between the
points from one parent and other sections outside the points from the other parent and recombines
them. In the following example, the two crossover points are set after the first and fourth bits
respectively.

A; = 0]000|0

A, = 1]111)1 (3.6)
The resulting two-point crossover yields the following two individuals:

Al = 0]111]0 (3.7)

A, = 1]000]1.

The uniform crossover is a generalization of the two above. A random mask bit vector of
lengthn is given, and the positions where the mask bit is zero are taken from one parent and the
other positions where the mask bit is one are taken from the other. In the following example, the
mask bit vectoM’ is given asM = 01010.

M = 01010
A; = 00000 (3.8)
A, = 11111

The resulting uniform crossover yields the following two individuals:

A, = 01010
A, = 10101

Mutation operates on genotype of single individual. It corresponds to an error occurred
when chromosome is copied and duplicated. When exact copies are always guaranteed, then the
mutation rate is zero. However in real life, copy error can happen under some circumstances
such as the presence of noise. Mutation changes values of certain genes with small probability.
An example of a typical bit-flip mutation is shown ir3.9), where the third gene from the left in
Ais selected with a small probability and its bit is flipped resulting\in

(3.9)

A 00000
A" = 00100

(3.10)

Reproductionis a process in which individuals in a population are copied according to their
fitness values to form a new population. The individualslve through successive iterations
of reproduction, calledenerations Each individual makes number of its copies proportional to
its fitness, therefore, an individual with higher fitness makes more copies than that with lower
fithess.This is an artificial version of natural selection; a Darwinian survival of the fittest among
string creatures.

A simple reproduction operator is calledr@ulette wheekelection where each individual
in a population has a roulette wheel slot sized in proportion to its fithess. To reproduce, we

3.3. The Procedure of a Simple Genetic Algorithm 33

simply spin the weighted roulette wheel and obtain a reproduction candidate with probability
proportional to its fithess. Each time we require anothspoing, a simple spin of the weighted
roulette wheel yields the reproduction candidate. An example of the roulette wheel selection is
shown in Figure3.1. In the upper left picture in the figure, there are total seven individuals, ID 1

to ID 7, with fitness value assigned. A roulette wheel is created and shown in the right picture.
The number in each wheel slot corresponds to the individual ID. The first individual with ID 1,
for example, has fitness value 9, which is the highest and therefore the largest slot is assigned.
We spin the roulette wheel seven times to select seven individuals. Individual ID 1 and ID 2 are
likely to be selected more than once but individual ID 4 and ID 6 are not likely to be selected
resulting in the seven individuals with some duplicates shown in the lower picture.

ID Individuals fitness
10101101001110

01100010100011 roul ette wheel
10011001100101
10001001100011
11011100010010
00110011101111
10111011010111

l
10011001100101

10101101001110
01100010100011
10101101001110
11011100010010
01100010100011
10111001010111

~No ook wWNPRE

~NDNDOITEFE WN

Figure 3.1: An example of the roulette wheel selection, where the roulette wheel
is created according to the fitness value of each individual shown in the upper left
picture

3.3 The Procedure of a Simple Genetic Algorithm

The general procedure of a simple GA can be summarized as in Algo&trm In the algo-
rithm, we start from a random initial populati®t{0). P(t) is a population at generatidrwith N
individuals.R; x N members are randomly selected fréift) and crossover is applied to gener-
ate newR; x N individuals that join into a new populatid?i(t) in Step2, whereR. < 1 is called

34 Chapter 3. Genetic Algorithms

Algorithm 3.3.1 (Simple Genetic Algorithm)
1. Initialize P(t) as a random populatid®(t = 0)

. RecombineP(t) to yield P’(t) by crossover and mutation

. EvaluateP’(t)

.Sett —t+1

2

3

4. ReproduceP(t + 1) from P’(t) by selection

5

6. repeat fron to 5 until some termination condition is met.
7

. Output the best individual iR(t).

a crossover ratio. The rest 8{t) is just copied toP’(t). R, x N members are then randomly
selected fronP’(t) and mutation is applied to generate new individuals that replace the original,
whereR,, < 1 is call a mutation ratio. When the best individualH(t) is preserved and copied

to P’(t) without modification, it is calleelitist strategy

P’(t) is evaluated in Step and the new populatioR(t + 1) is obtained after the reproduction
using, for example, the roulette wheel selection in 4teéphe termination condition is usually
given as: whert is suficiently large, when the best or average fithes®(t) exceeds certain
value, or when the variation of the fitnessH(t) is small.

While the process described above is repeated forffecunt number of generations, the
recombination operators keep producing possibly new individuals with new fitness where some
of them are possibly better than those of ever existing ones. The reproduction phase focuses
on such good individuals and replicate them as occurred in the natural evolution. Eventually an
individual with a high fitness value is expected to emerge in a population. The natural evolution
process requires enormous amount of time. However, dinsilatedevolution process on a
computer runs much faster.

Chapter 4

A Simple Genetic Algorithm for the
Jobshop Scheduling Problem

In this chapter, the simple GA described in the previous chapter is applied to the jobshop schedul-
ing problem. The approach described in this chapter was proposed by Nakano and Yafhada [

An advantage of this approach is that conventional genetic operators, such as one-point, two-
point and uniform crossovers can be applied without any modification. However, one drawback
is that a new individual generated by crossover may not represent a feasible schedule. In other
words, such genotype is calléatal or illegal. There are two approaches to solve this situation:
one is to repair a fatal genotype to a normal one, and the other is to impose a penalty for the
fatality and to lower the fithness. One example of the former approach will be elaborated in this
chapter.

4.1 Genetic Encoding of a Solution Schedule

We have anxm jobshop scheduling problem (JSP). As described in Chaptarsolution of a

JSP can be represented as a directed graph. Therefore, by labeling each directed arc as O or 1
according to its direction, it can be represented as a bit string of lemgtin—1)/2. For example,
consider a 3« 3 problem given in Tabl€.1 and a solution given in Figurg2.2 in Chapter2.
According to Figure?2.8, each arc of the graph has a labelling 0 or 1. The only thing we need to

do is to specify the order of arcs. Note that each arc represents the precedence relation between
two jobs J; and J; on the same machink!,; hence an arc is specified by a tripletj(r). An

intuitive ordering between two arcs {,r) and ', j’,r’) is a machine-based ordering defined as:

(,,n)<@,j,rYyes @ <ror(r=randj) <(@i,j)) (4.1)

where,
iL,)<@, Y= (i<ior(=iandj<) (4.2)

The solution schedule given in Figu2e2 and Figure?.8is encoded as follows:
111/100|011 (4.3)

35

36 Chapter 4. A Simple Genetic Algorithm for the Jobshop Scheduling Problem

The encoding from a schedule to a bit string based on the machine-based ordering of arcs in the
disjunctive graph corresponding to the schedule is called machine-based encoding and decoding.
Another ordering is called a job-based ordering defined as follows:

(..r) <@.j.r)
= ((1,)) < (", 1) or ((, J) = (", J') andoj(r) < 0;(r"))) *.4)

whereo;(r) < oj(r’) indicates that; is processed oM, prior to M,.. In other words, two arcs
corresponding to the same job pair, ;) are ordered according to the processing order of the
first job J;. If we use the job-based ordering, then solution schedule given in Fiydrand
Figure2.8is encoded as follows:

100| 101 101 (4.5)

where the vertical bars are inserted as job-pair delimiters; the partitions correspond to job pair
(1,2), (1, 3) and (23) from left to right respectively. The encoding from a schedule to a bit string
based on the job-based ordering of arcs in the disjunctive graph corresponding to the schedule is
called job-based encoding and decoding.

As another example, Figure1l shows a simplified Gantt chart representation of an optimal
schedule for the mt0O6 problem defined in TaBl& In the figure, the number indicates job
number and consecutive sequence of the same number represents an operation for the job. The
repetitions of the same number represents the processing time. For example, the left most se-
guence 111 on machir; represents an operation for jdpon machinevl; with processing of
3 time units and it starts at time unit 7. Figute shows a binary representation of the optimal
solution given in Figurel.1 using the job-based ordering. For the ease of understanding, one
long bit string is partitioned and divided per each job pair. For example, the first bit substring
represents thal; is processed prior td, on M3z and also orM; but J; is prior toJ; on M,. Note
that in the optimal schedule, like the one in this example, there is a tendency that the same bit
continues in each substring of the same job pair. This confirms a heuristic that the processing
priority for each job pair tends to be unchanged. This is especially true for easy problems in
which each technological sequence of jobs on each machine is similar to each other.

As described in the previous chapter, the simple one-point or two-point crossover exchange
chunks of bit sequences between parents. By using the job-based ordering, the consecutive same
bits are likely to be exchanged together and thus this tendency, once acquired, is not destroyed
easily.

4.2 Local harmonization

In the previous section, we have seen a couple of encoding methods to convert a solution schedule
into a bit string. In those methods,fidirent solution schedules are mapped intdedent bit

strings. However, an arbitrary bit string generated by hand or crossover or mutation may not
necessarily mapped back into a feasible solution schedule. In fact, the directed graph obtained
from any bit string by selecting each arc’s direction according to zero or one of corresponding bit

4.2. Local harmonization 37

My: 111 44444333333333 66666666662222222222555

My: 2222222244444666111111555 3

M3: 333331 2222255555555544444 6

My: 3333 666 4441111111 22225

Ms: 2222222222 555553333333444444446666111111
Me: 33333333 66666666622222222225555111444444444

Figure 4.1:An optimal schedule for the mt06 ¢66) problem (makespaa 55)

(J1, J) : 110100
(J1, Js) : 011000
(J1, Ja) : 110010
(Jl, J5) :111100
(31, J¢) : 110000
(35, Js) : 101000
(35, Ja) : 111100
(35, Js) : 111111
(Jz, Je) » 111000
(Js, Ja) : 111001
(J3, Js) : 111100
(Js, Jg) : 111101
(Ja, Js) : 110100
(Ja, J6) : 111010
(Js, Jo) : 101000

Figure 4.2: A binary representation of a solution schedule using the job-based ordering corre-
sponding to the solution given in Figudel. The first line corresponds to the precedence relation
betweenJ; andJ,. The first three digits of the bit-string on the first line are 110. This corre-
sponds to the fact thak is processed prior td, on J;’s first and second machiné4; and My,

but is not prior toJ, on J;’s third machineM, and so on.

38 Chapter 4. A Simple Genetic Algorithm for the Jobshop Scheduling Problem

value may contain cycles. In such cases, the bit string, i.e. genotype, isfeddibat illegal, and
a bit string is calledeasiblewhen it corresponds to an executable schedule with corresponding
directed graph being acyclic.

A repairing procedure that generates a feasible bit string, as similar to an illegal one as pos-
sible, is called thdarmonization algorithnj24]. The Hamming distance is used to assess the
similarity between two bit strings. The harmonization algorithm goes through two phases:
cal harmonizatiorandglobal harmonization The former removes the ordering inconsistencies
within each machine, while the latter removes the ordering inconsistencies between machines.
This section explains the former and the next section will explain the latter harmonization.

The local harmonization works separately for each machine and resolves the cycle within
each machine by changing directions of arcs. Assume that we are resolving cycles on machine
M,. A set of node<s; of machineM, is initialized asG, = {Oy, Oy, ..., Oy} (Operations and
nodes are identified here). First the least priority n@gjec G; is identified as a node that has
the highest number of incoming arcs fragp \ O, (break ties arbitrarily). If this node has any
outgoing arc to any node i@, \ Oy, then the direction of the arc is reversed so thathas only
incoming nodes frong; \ O, andG; is updated a&, := G, \ O. This process is repeated until
G: becomes empty, and as a result, the local inconsistensy is completely removed. 4Eigure
shows an example of the local harmonization for machMreln the figure O3, is first identified
as the least priority node, and the &g, — Og; is reversed such thdds;; becomes the last
operation on machinkl;. Oy, is then identified as the second least priority node, and th@arc
— Oy, Is reversed such th&,, becomes the second last operation on macMaend so on.

The obtained consistent orderingds; — Og; — Os; — Oq1 — Oy — Oz,

4.3 Global harmonization

The global harmonization removes ordering inconsistencies between machines. Even after the
local harmonization, there may exist cycles in the graph. In Figutefor example, there is a

cycle connecting),; — O,, — O3, — O3; — Os3, and again— O,3. The global harmonization
changes the directions of minimum number of arcs so that there exists no cycles. It is not always
guaranteed that the above harmonization will generate a feasible bit string closest to the original
illegal one, but the resulting one will be reasonably close and the harmonization algorithms are
quite dficient.

4.4 Forcing

An illegal bit string produced by genetic operations can be considered as a genotype, and a
feasible schedule generated by any repairing method can be regarded as a phenotype. Then the
former is an inherited character and the latter is an acquired one. Note that the repairing stated
above is only used for the fithess evaluation of the original bit string; that is, the repairing does
not mean the replacement of bit strings.

Forcing means the replacement of the original string with a feasible one. Hence forcing can

4.4. Forcing 39

Figure 4.3:An example of the local harmonization resolving cycles within six oper-
ationsOi1, Oy, . .., Og1 0N the same machind; where the arc®3; — Og1, 01 —

041 andO;; — Og; are reversed in this order and a consistent orde@ng— Og;

— 051 — 017 — 0,7 — O3, is eventually obtained.

Figure 4.4:An example of global harmonization where a cyOlg — Oy, — O3, —
031 — O33 — Oy3is resolved by reversing an a@,— Os,.

40 Chapter 4. A Simple Genetic Algorithm for the Jobshop Scheduling Problem

be considered as the inheritance of an acquired character, although it is not widely believed that
such inheritance occurs in nature. Since frequent forcing may destroy whatever potential and
diversity of the population, it is limited to a small number of elites, usually the best 5% in the
population. Such limited forcing brings about at least two merits: a significant improvement in
the convergence speed and the solution quality.

4.5 Simple GA for the JSP

Using the job-based encoding, standard crosgowdation, globalocal harmonizations and
forcing, a simple GA for the JSP can be constructed. Because the JSP is a minimization prob-
lem, the fitness is defined by the ranking meth8dl)(and standard roulette wheel selection

is utilized. The outline of the simple GA for the jobshop scheduling problem is described in
Algorithm 4.5.1

4.6 The Limitation of the Simple Approach

The simple GA approach described in this chapter can be applied to small problems sudh as 6
problem given in Tabl€.3. Table4.1summarizes the experimental results for the mt benchmark
problems. The column labeled SGA shows the best makespans obtained by the SGA and the
column labeled Optimal shows the known optimal makespans. In fact, the optimal schedule
shown in Figuret.lis obtained by the GA. However, larger problems such as 1@and 20< 5

are not tractable by this simple approach.

Table 4.1:Experimental results of the simple GA for mt benchmark problems

Prob. mt06 mt10 mt20
(size) (6<6) (10x10) (20x5)

SGA 55 965 1215
Optimal 55 930 1165

4.6. The Limitation of the Simple Approach 41

Algorithm 4.5.1 (Simple GA for the JSP)

A nxmscheduling problem is given as an input. The GA paramebérghe population sizeR,
crossover ratiolR,,, mutation ratio are also given.

1.

© N o o

Initialize P(t) as a random populatid®(t = 0) of sizeN, where each random individual is
a bit string of lengtmx n x (n - 1)/2.

. Modify P(t) by applying one-point3.2), two-point (3.2) or uniform 3.2) crossover to the

randomly selecte®. x N members oP(t) and obtainP’(t).

Modify P’(t) by apply bit-flip mutation 8.2) to the randomly selectdg,, x N members of
P’(t) and obtainP”(t).

. EvaluateP” (t) by the following steps;

(a) Decode each individugb in P”(t) by using the job-based decoding based 41)(
into S, with the local and global harmonization methods to repair illegal bit strings.

(b) Calculate the objective functiohof p asf(p) = ChaxS)
(c) Calculate fitnes§ of p by using the ranking method shown iB.9).

(d) Apply forcing to retain the phenotype of small number of elitest individuals to the
next generation.

ReproduceP(t + 1) from P”(t) by the roulette wheel selection
Sett —t+1
repeat fron2 to 5 until some termination condition is met.

Output the best individual iR(t).

Chapter 5

GT-GA: A Genetic Algorithm based on the
GT Algorithm

As seen in the previous section, conventional GAs can be applied to the jobshop scheduling
problem in a rather straightforward way without majoffidulties; a solution is represented as a

bit string and conventional genetic operators such as 1-point, 2-point and uniform crossover and
bit-flip mutation are applied. Because of the complicated constraints of the problem, however,
an individual generated by such genetic operators is often infeasible; its phenotype does not
represent an executable solution, and requires several steps of repairing process such as local and
global harmonizations.

Obviously one of the advantages of the GA is its robustness over a wide range of problems
with no requirement of domain specific adaptations. Hence genetic operators deal with geno-
type, which is domain independent, and are separated from domain specific decoding process
from genotype to phenotype. However from the performance viewpoint, it is often rfiore e
cient to directly incorporate domain specific features into the genetic operators and skip wasteful
intermediate decoding steps. Thus the GT crossover and the genetic algorithm based on GT
crossover, denoted as GT-GA, has been proposed by Yamada and Naklawod has the fol-
lowing properties.

e The GT crossover is a problem dependent crossover operator that utilizes the GT algorithm.
e The crossover operates directly on phenotype.

¢ Inthe crossover, parents cooperatively give a series of decisions; as which operation should
be processed next, to build a new schedule. These decisions are made based on their own
scheduling orders.

e The dfspring represent active schedules, so there is no repairing process required.

Before describing the GT crossover, let us review some other crossover operators based on
non-binary encodings for comparisons and discuss their advantages and disadvantages in the
following sections.

42

5.1. Subsequence Exchange Crossover 43

5.1 Subsequence Exchange Crossover

As shown in Figure2.3in Section2.1, a schedule of the JSP can be represented by a solution
matrix, in other words, the set of permutations of jobs on each machine. When the matrix is
expanded in one dimensional array as shown in Figuteit is called anm-partitioned permu-
tation, where the permutation in ttketh partition (from the left) corresponds to the processing
order of jobs on machin®. A solution represented byra-partitioned permutation is regarded

as genotype to which a crossover operator is applied.

M3 M, M3
1 2 3 3 1 2 2 1 3

Figure 5.1:The solution given in Figur@.3 is converted to am-partitioned per-
mutation form = 3, where the permutation in theth partition corresponds to the
processing order of jobs on machihk

The Subsequence Exchange Crossd@XX) was proposed by Kobayashi, Ono and Yama-
mura [33]. The SXX is a natural extension of the subtour exchange crossover for TSPs presented
by the same author${]. Let two m-partitioned permutations kg andp,, which correspond to
two feasible solution schedules. A pair of subsequences, onegdgand the other fronp, on
the same machine, is calleschangeabld@ and only if they consist of the same set of job num-
bers. The SXX first identifies exchangeable subsequence paigsimd p; on each machine and
interchanges each pair to produce navpartitioned permutationk, andk;. Figure5.2 shows
an example of the SXX for a % 3 problem. In the figure, each underlined subsequence pair is
identified as exchangeable and interchanged.

The SXX ensures thd andk; are always validn-partitioned permutations and therefore,
there are no inconsistencies within each machine to be resolved by the local harmonization de-
scribed in the previous section. However, there may exist inconsistencies between machines that
must be resolved by the global harmonization.

5.2 Precedence Preservative Crossover

Another representation that usesusapartitioned permutation afjob numbers witlm-repetitions

has been proposed by Bierwirthd]. In this representation, we consider a permutation jafb
numbers but each identical job number occortimes. When such a permutation with repe-
titions is given, it is decoded into a feasible schedule by scanning the permutation from left to
right and referring th&-th occurrence of a job number to tkeh operation in the technological
sequence of this job. Figute3 shows an example of this decoding process. In the figure, a per-
mutation of three job numbers with three repetitions is given in the top and there are three rows
labeledM,, M, and M3 in the bottom. We consider decoding this permutation into a solution
schedule of X 3 problem given in Tabl@.1and Figure?.1. From the job sequence matfiXi}

given in Figure2.1, we see that jold;, for example, is first processed &M, therefore, the first

44 Chapter 5. GT-GA: A Genetic Algorithm based on the GT Algorithm

My Mo M3
Po 123456 321564 235614

P1 621345 326451 635421

-
ky 213456 325164 263514

k, 612345 326415 356421

Figure 5.2: An example of subsequence exchange crossover (SXX), where each
underlined subsequence pair one frpprand the other fronp; on each machine is
identified as exchangeable and interchanged to geneyatelk,

occurrence of 1 in the permutation should be moved straight down to the rbiy.dfikewise,
J, is then processed dvl, andM; in this order, so the second and third occurrences of 1 should
be moved down to the rows &fl, and M3 respectively. By moving all the job numbers down to
one ofMy, M, or M3 rows, a solution schedule is obtained. In this case the schedule obtained is
identical to the one given in Figu3,

The advantage of this representation is that an arbitrary permutation with repetitions can be
decoded into a feasible schedule. Therefore, no repairing processes such as local and global
harmonizations are required.

Ajobpermutaon 1 3 2 1 3 2 2 1 3

is decoded
to Mli) 2) 3 i
aschedule My 3 1 2
M3 2 13

Figure 5.3:A job sequence (permutation with repetition) for a 3 problem defined
in Figure2.1is decoded to a schedule, which is equivalent to the one in FiyGre

A crossover operator calld@recedence Preservative CrossoyBPX) is proposed for this
representation inj6]. The PPX perfectly respects the absolute order of genes in parental chro-
mosomes as follows. Assume we have two parggtand p; encoded in permutation with
repetitions representation and consider generating a new indiicalab represented in a per-
mutation with repetitions. First, a template bit strimgf lengthmnis given that determines from
which parentpy or p;, should genes to be drawn to generate a new individual. The bit value is
zero means that the corresponding gene should be copieddgand one fromp;. When a
gene is drawn from one parent and then appended tofteprmg chromosome, it is deleted
from the parent and the corresponding gene is also deleted from the other parent. This step is
repeated until both parent chromosomes are empty andi$@iog contains all genes involved.

5.3. GT Crossover 45

Figure5.4shows an example of this crossover. Starting from the top left picture, the first two bits
of h are both zero, so the first and second job numbers 3 anét 2r@ copied fronpy as shown

in the round boxes. The leftmost occurrences of job numbers 3 and 2 are deleted fropg both
and p; in the top right picture. The first two bits in are deleted as well. Then the leftmost
non-deleted bits itn become four ones shown in the square box, which means that the next four
job numbers should be copied frops. The leftmost non-deleted four job numberspnare

1121 which are copied tk as shown in the square boxes. In the bottom picture, the leftmost
non-deleted occurrences of job numbers 1121 are then deletedofraswell as fromp;. The

four ones in the square box are also deleted frofihe remaining non-deleted bitslrare three
zeros, which indicates that the remaining job numbers should be copiedpf¢however the
remaining non-deleted permutation 233 is identical botpyiand p, in this example).

Po 322231113 Po 2 2i2i2 31113

“<r
hfO®1111000 h 0 0L 111000
<>

[0
pl113221233 91\3A2233
k @2 k @32A 121

2

Po 2222317113
h 0027722000
Pp2232721233
k @201 121233

Figure 5.4:An example of the precedence preservative crossover (PPX), ki®@re
generated fronpg and p; usingh

5.3 GT Crossover

Unlike other crossover operators described in the previous two sections, the GT crossover, GTX
in short, directly operates on the solution matrix representation of a schedule given inEigure

In this sense, we have no distinction between genotype and phenotype here. Assume we have two
parentsp, andp; both represented by solution matrices and consider generating a new individual

k also represented in a solution matrix. ltbe a binary matrix of sizen x n,whereH; = 0

means that thieth operation on machineshould be determined by the first parggandH,; = 1

by the second pareqy [25, 37]. H is called a inheritance matrix. The role Hf; is similar to

that ofh described in Sectioh.2 In fact, the idea of the GT crossover including the usélpf

is first proposed and later adopted to the precedence preservative crossover.

46 Chapter 5. GT-GA: A Genetic Algorithm based on the GT Algorithm

Algorithm 5.3.1 (GT crossover)

A scheduling problem represented B}, the technological sequence matrix, &}, the
processing time matrix as well as two solution schedylgsnd p; represented by solution
matricesS® = {S% } andS* = {S}, } respectively, are given as inputs.

1. Initialize G as a set of operations that are first in the technological sequences i.,
{O11,,, O2rsys - - -, Oo1,,). FOr each operatio® € G, setES(O) := 0 andEC(O) := p(O).

2. Find the earliest completable operatiOn € G by (2.1) with machineM;. A subset oG
that consists of operations processed on mackine denoted a&;.

3. Calculate the conflict s&Z[M,,i] c G; by (2.2), wherei-1 is the number of operations
already scheduled oM, .

4. Select one of the paren{go, pi} as p according to the value ofi;, that is,p = pu,
andSP := S, For eachO; € C[M,,i] with job numberj, there exists an indexsuch
thatS, = j. Letl, be the smallest index number among them; l,g..= min{l | S, =
j and O; e C[M,,i]} and letk := Sy,. This results in selecting an operati@, €
C[M,, i] that has been scheduledprearliest among the members@fM,, i].

5. ScheduleQy, as thei-th operation onV; i.e. S;; := k, with its starting and completion
times equal t&ES(Oy,) andEC(Oy,) respectively:s(Ok;) = ES(Oy), ¢(Ox) = E(COy).

6. For allO; € G, \ {O}, UpdateES(Oj;) as
ES(Oj) := maxES(Oj), EC(Ok)} andEC(O;) asEC(O,) := ES(Ok) + p(Ok).

7. RemoveOy, from G (and therefore fronG,), and add operatio®ys that is the next to

Ok in the technological sequence ®if such Oys exits; i.e., ifr = Ty andi < m, then
s := Tiir1 andG := (G \ {Okr}) U {Oks}-

CalculateES(Oys) andEC(Oyy) as:
ES(Oxs) := maxEC(Oy,), EC(PM(Oys))} andEC(Oys) := ES(Oks) + p(Oks) respectively.

8. Repeat from Stefh to Step7 until all operations are scheduled.

9. Output the solution matrifS,«} as the active schedule obtained with the set of starting and
completion timegs(O;;)} and{c(O;)} respectively wherg = Sy.

5.3. GT Crossover 47

The GT crossover can be defined by modifying Steg Algorithm 2.2.1, where the choice
of the next operation from the conflict S€fM,,i] was at random. In the GT crossover, the
choice is made by looking at the processing order in one of the parents specifit¢ciiny an
operation that has been scheduled in the parent earliest among the members of the conflict set
is selected. By doing so, it tries to reflect the processing order of the parent schedules to their
offspring. Note that if the parents are identical to each other, the resulting new schedule is also
identical to those of the parents. In general the new schedule inherits partial job sequences of
both parents in dierent ratios depending on the number of zeros and ones contaikied in

Algorithm 5.3.1describes the GT crossover. For the purpose of self-completeness, it is pre-
sented as a complete form, but th&eliences between the GT algorithm and the GT crossover
are only the inputs and Step The other steps are just the exact copies of the GT algorithm.
The GT crossover generates only one schedule at once. Another schedule is generated by using
the sameH but changing the roles gy and p;. Thus two new schedules are generated that
complement each other.

Figure5.5shows an example of the GT crossover applied to the two papgiatisd p; repre-
sented by solution matrices with an inheritance matriand generating as an éspring when a
problem is given as shown in Figuge3. For better understanding, correspondig solutions repre-
sented by the simplified gantt chart introduced in Figufeare also shown in the square boxes.
Each number with an arrow pointing to an operation indicates the order of the corresponding
operation selected in Stepof Algorithm 5.3.1 This order is dynamically assigned in the algo-
rithm. For example, the first operation on machMe should be first determined in this case.
The corresponding bit ikl is consulted and here, we skle; = 1 which means the operation
should be determined from,. Because the first operation on machMe in p; is O3, Oy; iS
also scheduled as the first operation on macMnén k. The next operation to be determined is
the first operation on machirid, andH,; = 1 indicates that this operation should be determined
again frompy, thusOs; is selected ik. In the similar way, the next operation to be determined is
the second operation on machiklke andH,, indicates that this operation should be determined
this time frompy, thusO,; is selected irkk. Repeating this process, the complete schedule shown
in the right is finally obtained ds One can see, for example, that the whole job sequenédson
is consequently copied from, because corresponding bitskhare all zeros.

12 3 1 m7 33111
R=|3 2 1|7[333 2222111
231 2223 111 1 35
A [/ F
100 1112233/ 123
H=]111 |::> 333111 2222 |::>k:3 1 2
I
13 2| [1113322 6 78
B=|3 1 2|=|333111 2222
312 3111222

Figure 5.5:GT crossover

48 Chapter 5. GT-GA: A Genetic Algorithm based on the GT Algorithm

While applying the GT crossover, simulated randoopy erroris incorporated as mutation
builtinto the GT crossover. More precisely, in Stepf Algorithm 5.3.1, then-th (n > 1) smallest
index numbet",, is selected instead &f, = 1%, and the corresponding operationGfiM, ., i] that
is then-th earliest scheduled operation pramong the members @[M-, i] is selected with a
small probabilityR,, When the two parents, andp, are identical, then theffspringk generated
by the GT crossover is also identical pg and p;, however, with the mutation incorporatdd,
can be slightly dierent from the parents.

5.4 GT-GA

A Genetic Algorithm based on the GT crossover is straightforward. The general procedure de-
scribed in SectiorB.3 is used without major modifications. The following points should be
mentioned.

1. Inthe GT-GA, each individual is always a feasible schedule represented by a solution ma-
trix. In fact, each individual is not only feasible but also an active schedule. As described
earlier, we have no distinction between genotype and phenotype here.

2. Because the problem is a minimization problem, the rank-based roulette wheel selection
method is used.

3. An elitest strategy to preserve the best individual in the current population to the next
generation is used.

5.5 Computational Experiments

GT-GA is applied to the mt benchmark problems to explorefiigiencies and limitations. Ta-
ble5.1shows the best solutions obtained by the GT-GA for each problem. For the mt0O6 problem
the optimal schedule with makespan 55 is immediately obtained even with small population. For
the mt10 and mt20 problems, 600 trials are performed wiffedint random number seeds in
each trial.

For the GA parameters, the population dize: 100 is used for the mtO6 probleiN,= 1000
andN = 2000 are used for the mt10 and mt20 problems respectively with high crossover rate
R. > 0.9 and low mutation rat&, < 0.01. Each GT-GA run is terminated after 200 generations.
Figure5.6 shows the histgram of the obtained best solutions of the mt10 problem for 600 trials.
For example, the optimal schedule of the mt10 problem with makespan 930 was obtained four
times among 600 trials.

From the experimental results, we can observe that notorious mt10 problem can be solved
to optimally even with this simple algorithm. The success is limited in a sense that the optimal
makespan for the mt10 problem is obtained only occasionally among many trials and for the
mt20 problem, the optimal makespan cannot be obtained. However, considering the simplicity
of the algorithm, the results are still interesting.

5.5. Computational Experiments 49

Algorithm 5.4.1 (A Genetic Algorithm using the GT crossover)

As always, we are given a jobshop scheduling problem representedpythe technological
sequence matrix, angy}, the processing time matrix. Besides, the following GA parameters
are given: population sizd, crossover rat®. and mutation rat&,.

1. A random initial populatiorP(t = 0) of sizeN is constructed in which each individual is
generated using the GT algorithm with randomly selecting operations indASt€pglgo-
rithm 2.2.1 The makespan of each individual is automatically calculated as an output of
the GT algorithm.

2. Select randomlyN x R. individuals fromP(t) and pair them randomly. Apply the GT
crossover (with built-in mutation of probabilifg,) to each pair and generate n&wx R,
individuals that are inserted ini(t). The rest ofP(t) members are just copied B(t). As
a result of the GT crossover, the makespan of each individual is automatically calculated.

3. If the best makespan i (t) is not as good as that it), then the worst individual i’ (t)
is replaced by the best individual R(t) (elitest strategy).

4. ReproduceP(t + 1) from P’(t) by using the rank-based roulette wheel selection, in which
each individual inP’(t) is sorted in the descending order of its makespan so that the worst
individual is numbered as and the best ag,. Then the roulette wheel selection is applied
with the fitnessf of an individul x; defined asf(x;) = i to obtainP(t + 1).

5. Sett«~t+1
6. Repeat from Stef to 5 until some termination condition is met.

7. Output the best individual iR(t) as the obtained best solution.

Table 5.1:Experimental results of the GT-GA for mt benchmark problems

Prob. mt06 mt10 mt20
(size) (6<6) (10x10) (20<5)
SGA 55 965 1215
GTGA 55 930 1184
Optimal 55 930 1165

Chapter 5. GT-GA: A Genetic Algorithm based on the GT Algorithm

Schedules

80

70

50

40

30

20

10

0 | I|||.||.”. ‘ IIH | ”
60

940 96

930 1000 1020
Makespan

Figure 5.6: The histgram of the best makespans obtained by the GT-GA after 200
generations among 600 trials for the mt10 problem

5.6. Concluding Remarks 51

5.6 Concluding Remarks

Figure 5.7 summarizes the relationship between various crossover operators discussed in this
and previous chapter. The ordinate indicates the level of problem independence of each solution
representation. The SGA described in the previous chapter uses the binary codings and does not
use any domain knowledge of the scheduling problem, therefore, gives the most general repre-
sentation. The SXX uses the property that the scheduling problem can be represented by the
permutation problem but does not incorporate the fact that permutations on each machine are not
mutually independent. The PPX utilizes this fact but does not directly use the fact that in the
makespan minimizing scheduling problem, the optimal schedules are always active schedules,
therefore, we can restrict the search for the optimal schedule within the set of all active sched-
ules. The GT crossover denoted as GTX in the figure incorporates all these domain knowledges
therefore the mostficient but still simple enough.

genera
4 (any problem)

domain knowledges
SGA with one-point crossover
(genotype is represented by a bit string) /

@% permutation problem
SXX

(genotype is represented by am-
partitioned permutaion)

iﬁ jobshop scheduling problem
PPX

(genotype is represented by a
permutation with m repetitions)

makespan-minimizing jobshop
scheduling problem in which
active schedules make sense

GTX

(genotype and phenotype are identical
and represented by a solution matrix)

v

problem specific

Figure 5.7:relationship between various crossover operators

Chapter 6

Neighborhood Search

As is now universally appreciated, it is not really likely that optimal solutions to large combinato-
rial problems will be found reliably by any exact method, although it is possible to find classes of
instances where problem-specific methods can achieve good results. However, for problems that
are NP-hard{d], it is now customary to rely on the application of heuristic techniqGés40].

These techniques include what some call the ‘metaheuristics’—simulated annealing (SA) and
tabu search (TS)—as well as genetic algorithms (GAs) which are already discussed in the ear-
lier chapters. Central to most heuristic search techniques is the concept of neighborhood search
(NS). In this chapter, the general concept of the neighborhood search is first reviewed and the
well-known instances of metaheuristics, SA, TS, and GAs are formulated in this context so that
the diferences and characteristics of those methods become clear.

6.1 The Concept of the Neighborhood Search

If we assume that a solution is specified by a vegtaihat the set of all (feasible) solutions is
denoted byX (which we shall also call theearch spacdg and the cost of solutior is denoted

by f(x), then every solutiorx € X has an associated set méighbors N(x) c X, called the
neighborhood ok. Each solutiorx’” € N(x) can be reached directly fromby an operation

called amove a single perturbation at. Many diferent types of move are possible in any
particular case, and we can view a move as being generated by the application of a transition
operatorw. For example, ifX is the n-dimensional binary hypercub&), a simple transition
operator is the bit fligs(k)

. 7N n Z—1-7
oK) : Z) > Z) {ZHZ o (6.1)

wherez is a binary vector of length
As another example, we can take the forward shift operator for the case ¥hei&,—the

52

6.1. The Concept of the Neighborhood Search 53

space of permutationsof lengthn. The operato# SH(i, j) (where we assumie< j) is

Tk > k-1 |f|<k§]
FSH(,) : I, - I, i & 7T (6.2)
m— m otherwise

The permutation flowshop scheduling problem witjpbs andm machines and with any objec-
tive function, such aa/m/P/Cpax 0r n/m/P/Cgymintroduced in Chapte? can be considered as
a typical example of this permutation space.

An analogous backward shift operatBSH (i, j) can similarly be described; the composite
of BSH and ¥ SH is denoted bySH. Another alternative for such problems is an exchange
operatoiEX(i,) which simply exchanges the elements in itheand jth positions.

Algorithm 6.1.1 A general structure of Neighborhood Search
A cost function ofx € X is given asf(x) and neighborhood of asN(x). Certain criteria are
given to selecy € N(x) based on the valug(y).

1. Select a starting poingy € X at random and set = Xpest = Xo.
2. do

(a) a candidatey is chosen fromN(x) and is accepted or rejected according to the given
criteria based on the valudy). Setx =y if y is accepted, otherwise repeat this step
until somey is accepted .

(b) If f(X) < f(Xpes) then seKpest = X.
until termination conditions are satisfied.

3. Outputxpest as the best solution obtained.

A typical neighborhood search (NS) heuristic procedure is shown in Figyré As shown
in the figure, NS operates by generating neighbors in an iterative process where a move to a new
solution is made whenever certain criteria are fulfilled in Steprhere is a great variety of ways
in which candidate moves can be chosen for consideration, and in defining criteria for accepting
candidate moves. Perhaps the most common case is thatentin which the only moves ac-
cepted are to neighbors that improve the current solud@epesascent corresponds to the case
where all neighbors are evaluated before a move is made—that move being the best available.
Nextascent is similar, but the next candidate (in some pre-defined sequence) that improves the
current solution is accepted, without necessarily examining the complete neighborhood. Nor-
mally, the search terminates when no moves can be accepted.

54 Chapter 6. Neighborhood Search

6.2 Avoiding Local Optima

The trouble with NS is that the solution it generates is usually odgal optimum—a point in

the search space none of whose neighbfies an improved solution and NS does not guarantee

to find theglobal optimum, the very best solution in the entire search space. In recent years many
techniques have been suggested for the avoidance of local optima. At the most basic level, we
could usdterative restartof NS from many diferent initial points, thus generating a collection

of local optima from which the best can be selected. There are more popular and intelligent
principles. For completeness, We refer here briefly to some of the most populaSimesated
annealinguses a controlled randomization strategy—inferior moves are accepted probabilisti-
cally, the chance of such acceptance decreasing slowly over the course of a search. By relaxing
the acceptance criterion in this way, it becomes possible to move out of the basin of attraction
of a local optimum.Tabu searcladopts a deterministic approach, whereby a ‘memory’ is im-
plemented by the recording of previously-seen solutions. This record could be explicit, but is
often an implicit one, making use of simple bufextive data structures. These can be thought

of as a ‘tabu list’ of moves which have been made in the recent past of the search, and which
are ‘tabu’ or forbidden for a certain number of iterations. This prevents cycling, and also helps
to promote a diversified coverage of the search sp@edurbation methodsnprove the restart
strategy: instead of retreating to an unrelated and randomly chosen initial solution, the current
local optimum is perturbed in some way and the heuristic restarted from the new solution. Per-
haps the most widely-known of such techniques is the ‘iterated Lin-Kernighan’ (ILK) method
introduced by Johnsori] for the travelling salesman problem. On reaching a local optimum,

a set of links is randomly chosen for removal and re-connection, in such a way that a new search
can start relatively close to a new local optimum. Such techniques can perhaps best be described
asperturbationmethods Genetic algorithmsgliffer in using a population of solutions rather than
moving from one point to the next. Furthermore, new solutions are generated from two (or,
rarely) more solutions by applying a ‘crossover’ operator. However, they can also be encom-
passed within an NS framework, as we shall discuss later in this thesis.

6.3 The Neighborhood Structure for the Jobshop Scheduling
Problem

As shown in Sectiob.1 and5.2, the jobshop scheduling problem withjobs andm machines

can be considered itself as a permutation problem; namely we have a permutatigabsf

on each machine, which resultsnmpartitionedn-job permutations. However, the simp#sH

and&X operators, for example, are ndtieient because of the two reasons: (1) the size of the
neighborhood becomes too large and (2) the resulting new permutation does not always corre-
spond to a feasible schedule. One way to resolve these problems is to construct a neighborhood
structure based on Theoreiin Chapter2. Namely, given a schedul8, a transition opera-

tor that exchanges a pair of adjacent critical operations (i.e., operations on a critical path) on a
same machine i® as shown in Figuré.1 forms a neighborhood which we call tihdE (adja-

cent exchange) neighborhoaehd denoteAE(S). Theoreml guarantees thaAE(S) members

6.3. The Neighborhood Structure for the Jobshop Scheduling Problem 55

are always feasible and Theoréhguarantees that an optimal schedule is reachable from any
initial schedule by applying finite number of transitions. The transition operator was originally
proposed by Balas in his branch and bound appragehid has been used as a neighborhood
structure for SAin17] and for TS in [L7].

AE neighborhood

oo

critical block

Figure 6.1: AE(S), adjacent exchange neighborhoodf consists of schedules
obtained fromS by exchanging a pair of adjacent operations within a same critical
block.

Another very powerful transition operator was proposedinuging the notions obefore
candidateandafter candidatentroduced in Sectio.5 of Chapter2. Let a schedule b8 and
let its critical blocks beB4, . .., By, thenbefore candidatijB andafter candidater in a critical
block B; are defined by Equatio.5. Let NB®i(S) and N APi(S) be sets of (maybe infeasible)
schedules obtained by moving each operati(BjBil(or Bf) to the front (or rear) oB; respectively
as shown in Figuré.2. Because we have Theoréhy, it is tempted to define the CB neighorhood
as a set of all the shedules obtained from before and after candidates as follows:

CB(S) = | JINB¥(S) UNAPI(S)} (6.3)
Bj
However unfortunately, there is no theorem similar to Theotidimat guarantees the feasibility
of CB members. In factC B may contain infeasible schedules. Therefore the CB neighborhood
is given as follows:

———~. CB neighborhood

N
7 /@
/4

critical block

Figure 6.2:CB(S), critical block neighborhood d, consists of schedules obtained
from S by moving an operation in a critical block to the front or the rear of the block.

CB(S) ={S' € CB(S) | S’ is a feasible schedule (6.4)

56 Chapter 6. Neighborhood Search

In the next chapter, we will see that using the CB neighorhoodffanest simulated annealing
algorithm can be constructed.

Chapter 7

Critical Block Simulated Annealing for the
Jobshop Scheduling Problem

7.1 Simulated Annealing

Consider that we have a nonlinear optimization functi¢x) defined over a continuous variabie

in multi-dimensional Euclidean spa&e Such a nonlinear optimization function may be likened

to a mountainous state space landscape, with the algorithm’s objective being to locate the lowest
valley. Simulated Annealing (SA) methddare analogous to searching a state space landscape
by bouncing a rubber ball around the terrain. The ball bounces around the landscape, in and
out of different valleys, probabilistically samplingfiéirent locations. As the degree of bounce

is reduced it becomes moréfiiltult for the ball to bounce out of low valleys into higher ones,
than vice versa. Finally, when there is no bounce left in the ball, the ball will settle in the lowest
valley. This is mathematically guaranteed given time and a proper bounce (annealing) reduction
schedule{7].

Thus, SA algorithms emplogoiseto choose new parameter values. They generate a new
statex’ in the neighborhood of, probabilistically. Wherx is a continuous variable, there are
infinite number of candidate states in the neighborhoadanid thus, a new staie is generated
using a given distribution functiog() which will be described shortly. The algorithms calculate
the value of the function coff = f(x’), and then probabilistically decides &asceptor reject it.

If accepted, the new state becomes the current state. The new state may be accepted even if it
has a larger function cost than the current state. The criteria for acceptance is determined by an
acceptance functioh(), the temperature paramefer and the difterence in the function values

of the the two states. InitiallyT is large, and a new state is accepted quite frequently. As the
algorithm progressegq, is reduced, lowering the probability that the acceptance function will
accept a new state if it's functional cost is greater than that of the current state.

The general SA proceduré] is defined below.

1. Choose an initial (high) temperatufg and a random state).

LAnnealing (as in metallurgical annealing) refers to the process involving the slow reduction of a temperature.

57

58 Chapter 7. Critical Block Simulated Annealing for the Jobshop Scheduling Problem

Ty < To, X < Xo

2. Calculate the cost function value of the starting state.

Ex-0 < f(Xo)
3. For each iteratiol, k = 1. ..k do the following:

(a) Choose a new staté, using a generating function.
X'« g(x)
(b) Calculate the cost of'.
E « f(X)
(c) Setx « x” andE « E’ with probability determined by the acceptance functign
(d) Reduce the temperatufeby annealing
(. 9.Tyor « yTk, 0<y <)
(e) WhenT is lower than a sfticiently small valu€T ¢, exit the loop.

4. Returnx andE as the (near) optimal state and function cost value.

Because the algorithm occasionally chooses staibsl from its current state (i.e. chooses states
with higher functional values than the current states), it can escape from local minima and more
effectively search the function space to find the global minimum.

The Simulated Annealing method in general consists of a systemxstate the following
functional relationships:

1. f(x): a cost function to minimize,
2. g(x): a generating probability density function of new states.

3. P(x): an acceptance function that decides if a new state should become the current state,
and

4. T(k): an annealing temperatur€)(schedule.

For numeric optimization problems,is often defined as an integer or real parameter vector,
x = {X;i = 1...D}, and Boltzmann Annealing is used to generate new states. Boltzmann
Annealing employs a Gaussian probability density function,

1 "2
n _ —(X—x")°/(2T)
g(X) - (2 T)D/Ze

whereg(x’) is the probability of generating from the currently accepted stateand where the
temperaturd is a measure of the fluctuations of the Boltzmann distribution.

7.2. Critical block Simulated Annealing 59

A Gaussian probability density distribution is not applicable for the generation of new states
for combinatorial optimization problems including the job shop scheduling problem. Instead, a
uniform random distribution is often used

g(x’) = 1/n,x" € N(x) (7.1)

wheren is the number of states that can be directly generated by the generating function, i.e.
is the number of states in the neighborhood ,afi = [IN(x)|.

The acceptance probability functi®{x) is based on the chances of accepting a new gtate
relative to the current state i.e. the diference of their function values

e fO)/T 1

PX) = Fem s e m0m = 15 i T (7.2)

If lower cost states are always accepted, as!ij, [the acceptance function above can be rede-
fined as
, 1 if f(x)<f(x)
P(x) = { gl fe)=FeO/T otherwise. (7.3)

The practical annealing schedulg, most often used to find the global minimum is of the form

T = Toe (7.4)

wherec is a positive constant.

7.2 Ciritical block Simulated Annealing

For the JSP, a stateis defined by a particular schedule and the cosf (x) is defined by the
makesparC,,{S). A neighborhood\(S) of a schedulé&S can be defined as the set of feasible
schedules that can be reached fr@nby exactly one transition (a single perturbationS)t
We use the critical block neighborho@B(S) defined by 6.4) in the previous chapter as the
neighborhood structure.

The algorithm begins by setting the annealing temperature to an initial value and generat-
ing a random schedul8. The makespan and critical path $fis then calculated. Next, a new
schedules’ in the neighborhood o6 is randomly generated. The new schedsilés compared
with the current schedul®, and probabilistically accepted according to the makesp&erednce
between the two schedules, and the annealing temperature. The temperature, initially quite high,
is decreased according to a given annealing schedule. This process is repeated until 1) the tem-
perature is sfficiently low, 2) a given number of iterations have occurred, or 3) a schedule having
a (near) optimal makespan is found. Finally, the best generated schedule and its makespan are
printed. The algorithm is described in2.1

60 Chapter 7. Critical Block Simulated Annealing for the Jobshop Scheduling Problem

Algorithm 7.2.1 (The Critical Block Simulated Annealing Algorithm)
We are given a jobshop scheduling problem to optimize, and the initial tempefgture

1. SetS = Sy a randomly generated initial schedule, iteration step nurkbe®, andT,_, =
To the initial temperature.

2. do

(a) do
I. PickS" € CB(S)
il. AcceptS’ probabilistically according to the Metropolis Criterion distribution,
i.e. chooses’” with probability one ifCa(S’) < Crnaxd(S), ande CmadS)-CmadSH/T
otherwise, i.e., the probabilitly to acceptS’ is defined as follows:

(1 it ConadS') < Cna(S)
P(S) :{ o CrnanS)~Cona S)/T otherwise. e (7.5)

until S’ is accepted.
(b) SetS =&/, increase, and decreas€ according to the annealing schedule.

until termination (i.e. T is suficiently small ork is suficiently large or the minimal
makespan or lower bound is found).

3. Print the best schedule found and its makespan.

7.3. Reintensification 61

7.3 Reintensification

Often during the search process 1) the system state wanders far from states that are leading to
the global minima, or 2) the system state may become trapped in a deep local minima. Then
all schedules generated from the current schedule will have longer makespans. If the acceptance
temperature is low, it may be feiicult for the system to escape from this local minimum and
continue the search.

Occasionally a reintensification strategy may be applied to improve the search. This reinten-
sification is similar to reannealing {], [46] which is used in numerical function optimization
to occasionally reset the system temperature and the state of the system affierentiy long
period of time without finding a new global minima.

It is useful to reintensify the search when a large number of acceptances have occurred with-
out improving the problem makespan, or when the reeeceptance to generated rat{@dG
ratio) becomes lower than a prescribed threshold, indicating that the system is caught in a mini-
mum. The reintensification process replaces the current state (schedule) with the best state found
so far, removing the system state from a local minimum if it has become trapped in a basin
of attraction. Reintensification also alters the annealing temperature to a more current and ap-
propriate value. A new annealing temperature is calculated from the standard deviation of the
functional cost of states in the best neighborhood. If the new resulting temperature is greater than
the current temperature, then the current temperature is reset to the new temperature.

7.4 Parameters

Simulated annealing algorithms often require some parameter specific values be determined
priori. These annealing scheduling parameters include the initial and final temperag,ies,(
and the number of annealing steps)(Reasonable values for the reintensification frequency
and theAG threshold must be chosen as well. For the annealing schedule, appropriate choices
of both the initial and final (lower bound) temperatures, and the maximum number of annealing
steps, must be determined.

An appropriate temperature reduction function is also needed. Since both inverse logarithmic
and inverse linear annealing schedules are too slow for practical consideration, it is useful to
apply the exponential annealing schedule given in equatigrwith constant determined by

¢ = —log(T+/To)/ks. (7.6)

For example, if the annealing schedule is defined soThat 1, T; = 10°2° andk; = 10000,
thenc = —log (1072°)/10000= 0.0046.

Since scheduling problems havetdrent characteristics, constraints, anfieding degrees
of difficulty, different annealing schedules must be chosen tofférént problems. Because the
initial and final lower bound temperatures are problem dependent parameters, thefiark di
to determinea priori. By defining these temperatures in terms of the desipddll AG ratios, the
temperatures can be determined adaptively from problem independent values. The initial uphill
AG ratio should be relatively large so that a large number of uphill transitions are accepted.

62 Chapter 7. Critical Block Simulated Annealing for the Jobshop Scheduling Problem

Later, at the end of the annealing schedule, the final uptiliatio should be small forcing most
schedules having inferior makespans to be rejected.

The adaptive determination of the initial or final temperature can be incorporated in a short
warmupsequence at the beginning of a simulation. A desired upl@lthreshold is chosea
priori which is used to adaptively determine the annealing temperatures. The reverse annealing
process is implemented by starting at #isiently low temperature such that no uphill states are
accepted, and increasing the temperature by a small percentage (e.g. 5%) until the actual uphill
AG ratio is greater than or equal to the desired threshold. This approach is similar to that defined
by Aarts [7] (p59), however onlyphill generated and accepted states determiné@atio.

For the initial temperaturel,, an uphill AG threshold of 50% of the makespans generated
that were larger than the current schedule’s makespan was found to be appropriate. For the
final (lower bound) temperaturdy, an uphill AG threshold of 0.2% proved mosftfective. T
provides a lower bound for the final temperature. This value would only be arrived at if all
generated states would be accepted. Realistically this never occurs.

The total number of annealing stekscan be chosen empirically, but should be governed
by the desires 1) to have reasonable smdfedences between successive temperatures, and 2)
to have non-excessive trial run times, i.e. at most one or four hour per trial, and 3) to generate
as many potential schedules as possible within the time limits. Concerning to 1), the acceptance
temperature is assumed to be lowered according to equatisuticiently slowly such that a
detailed balancés maintained, and that the resulting distribution of the inhomogeneous Markov
chain generated using this schedule between temperdtwréandT -6, (6§ < 1) approximates
the stationary distribution of a finite length homogeneous Markov chain at tempefature

If reintensification is to be used, two parameters must be specified to determine when it
must be performed. The first parameter, the reintensification frequrastermines how often
reintensification should be performed. Reintensification can be applied after a set number of new
schedules are accepted without finding an improved makespan. The second paramei& is an
threshold limit. Reintensification is performed when the curfgatatio falls below this value.

7.5 Methodology and Results

The performance of the CBSA algorithms was tested by running several simulation trials with
and without reintensification. For the reintensification trials, two reintensification frequencies
R = 3,000 andR = 10,000 were tested, both with an AG ratio threshold of*10Although
reintensification violates the theoretical ergodicity of simulated annealing by resetting the state
of the system, performances were found to be improved when reintensification was incorporated
into the system.

Table 7.1 shows the minimum makespans of the first ten trials when the CBSA algorithm
(with reintensification every 3,000 acceptances) was initially applied to the mt10 problem. Dif-
ferent random number seeds were used in each trial, resulting in each trial starting from a dif-
ferent randomly generated schedule. The CBSA algorithm was executed for a warm up period
to generate new schedules and to gather acceptance rate statistics. The statistics were used to
adaptively determine appropriate values Tgrand T¢. T; given in equation/.6 was used to

7.5. Methodology and Results 63

Run Min Evaluations Generations Initial Temp Last Temp Time
1 *930 481429 548175 51.837858 6.194249 38m Os
2 *930 510050 537087 44.833024 10.612196 41m 28s
3 *930 507396 579957 47.036501 6.203178 40m 8s
4 *930 344341 331749 49.404748 17.333848 28m 45s
5 *930 366680 403856 44.760441 7.891267 28m 40s
6 *930 459323 472286 47.085840 14.834713 37m 59s
7 *930 371984 405170 38.693533 9.067814 29m 8s
8 *930 649431 711167 38.756278 9.568809 51m 39s
9 *930 316954 352034 36.828203 8.406492 25m Os
10 938 459372 1000000 54.385611 0.500000 36m 6s

Table 7.1:Ten Trials using the Simulated Annealing Meth&d 3, 000).

determine reasonable values or

The table also shows the number of actual schedules evaluated, the number of new schedules

generated, and the cpu time for each of the tfials

Since new schedules are often regenerated from the same current schedule, their makespans
need not be reevaluated. Hence the actual number of schedules evaluated is always less than or
equal to the number of generations. Optimal schedules are indicated by’a star

Table7.2shows the initial and final temperatures of the ten trials. The last temperature of the
successful runs shown can vary considerably depending upon when the algorithm terminated. In
table7.2the algorithm was terminated when an optimal solution was found, or Whes equal
to ki. SinceT; was determined from accepted, rather than generated states, any solution found
on or before the last generati@n will have an actual final temperature larger than the initially

determinedr ;.

20One test simulation performed during the initial programming of the mt10 problem found an optimal schedule

in 47 seconds on a Sparcstation 2, however this was not to be representative of other trials.

64 Chapter 7. Critical Block Simulated Annealing for the Jobshop Scheduling Problem
Run Initial Temp Last Temp
1 51.837858 6.194249
2 44.833024 10.612196
3 47.036501 6.203178
4 49.404748 17.333848
5 44.760441 7.891267
6 47.085840 14.834713
7 38.693533 9.067814
8 38.756278 9.568809
9 36.828203 8.406492
10 54.385611 0.5

Table 7.2:Initial and Last Temperatures. Last temperature is the temperature when
an optimal makespan was found, or the temperature after 1,000,000 iterations.

Although the last mt10 trial did not find the optimal solution, it did terminate with a makespan
of 938. Trial ten’s initial temperature, which was adaptively determined, was the highest of all of
the trials. Hence it is likely that the system spent excessive amounts of annealing time perform-
ing random search at high temperatures. The cpu time and the number of function evaluations
performed during the execution of trial ten was quite comparable with those of the successful
trials. Itis likely that the the system state became caught in a deep local minimum, allowing few
if any new states to be explored.

7.5.1 Random Search

The dfects of randomly searching the schedule space was investigated to determine if the tran-
sition operations were solely responsible for the generation of the high quality schedules shown
in table7.1 Ten trials of the simulated annealing algorithm were performed by setting the initial
and final temperatures to large values, ilg.= 1000 andT; = 99.0. Results of this random
search are shown in table3,

7.5. Methodology and Results 65

Run Min Generations Time Acceptances
1 994 1000000 1h41m 16s 844798
2 998 1000000 1h 39m 34s 845644
3 997 1000000 1h40m 9s 846223
4 999 1000000 1h39m 13s 847081
5 993 1000000 1h 39m 15s 846005
6 998 1000000 1h39m 13s 846835
7 992 1000000 1h 39m 30s 845302
8 995 1000000 1h40m 33s 846163
9 989 1000000 1h41m 19s 845688

10 1010 1000000 1h40m 36s 846533

Table 7.3:TenHigh Temperaturd&kandom Trials.

Approximately 84% of all schedules generated were accepted. Schedules with shorter makespans
were always accepted, i.e. from equatioh, S’ is always accepted whd(S’) < L(S). Since
high temperatured;, ~ T > 1, result in a large numbers of inferior schedules being accepted,
the method essentially performs like a random search with the critical block transition operators
being used to generate the new schedules. Performances of these random searches was noticeably
poorer than those in tablé L

7.5.2 Low Temperature Greedy Search

Searching with a very low temperature for a small number of generations essentially implements
a greedy(downbhill only) search. When the critical block transition operators are applied with
this greedy algorithm, many of the generated schedules of poor quality were observed. Ten
thousand schedules were generated by randomly generating initial schedules and applying the
CBSA algorithm to them for 1,000 iterations at very low temperatures,Tige= 0.01, T; ~

0.001, andk; = 1000. Figure/.1shows the a histogram of the 10,000 makespans generated. Itis
clear from those performances that the low temperature greedy algorithm is not solely responsible
for the performances in table 1

66 Chapter 7. Critical Block Simulated Annealing for the Jobshop Scheduling Problem

10000 Greedy Trials (MT10x10)

Trids

100.00 —
95.00 —
90.00 —
85.00 —
80.00 —
75.00 —
70.00 —
65.00 —
60.00 —
55.00 —
50.00 —
45.00 —
40.00 —
35.00 —
30.00 —
25.00 —
20.00 —
15.00 —
10.00 —

5.00 —
000 — '1n HJ

Mm T T v

‘ Makespan x 103

| | |
1.00 110 1.20 1.30 1.40

Figure 7.1:Generated Makespans of 10,08€edy(mt10) Schedules.

Van Laarhoven et. al.1]/] describe a similar method called iterative improvement that con-
sists of repeated generation of random schedules using the same neighborhood structure. They
tested that method using the previously described Balas transition operator and the best makespan
they found over 5 macro runs (averaging 9441.2 trials each) was 1006. In contrast, the best cost
makespan found during the ten thousand greedy CBSA trials was 944. The relfgvertdie is
indicative of the power of the respective transition operators.

Figure7.2 shows the time evolution of the makespans of two typical trials with and without
reintensification. The abscissa shows the number of schedules generated, and the ordinate shows
the makespan fferences between the current and optimal schedules. The highly oscillatory be-
havior of the reintensification trial is due to reintensification.

7.6. Performance on Benchmarks Problems 67

Annealing Method R=0 R = 3,000 R =10,000
CBSA mirymax 930 945 | 930 938| 930 938
CBSA meaystd. | 937.80 4.19| 930.80 2.40 933.10 3.81
AESA mirymax 938 972 | 930 951| 934 970
AESA meamstd. | 951.60 10.20 939.50 5.12 944.40 10.24

GREEDY minfmax | 971 1491

GREEDY meaystd. | 1171.45 66.15

Table 7.4:Comparisons between CBSA and AESA.

Time Evolution of a CBSA Trial (R = 0) Time Evolution of a CBSA Trial (R = 3,000)

140 ‘A L [

100 il

Makespan Difference
Makespan Difference

I}

i 1
MR
20 i 20 ” ul
0 0 i

0 200 400 600 800 1000 0 200 400 600 800 1000
Generationsx 10 3 Generationsx 10

Figure 7.2: Successive makespanfférences between the current and optimal solution of the
mt10 problem, without reintensification €R) and with reintensificatiorR = 3, 000).

The power of a reintensification and Critical Block neighborhood structure is shown in table
7.5.2 We show comparative performances of 10 trials of the CBSA and the simulated anneal-
ing algorithms using the AE (adjacent exchange) neighborhood (AESA), which was described
in Section6.3, proposed by van Laarhoven et. al”] . All performances conditions were
identical, except for the reintensification frequencies;@Rno reintensification), R3,000, and
R=10,000), and the neighborhood structure. The performances are best wRg&0OR and the
CBSA is used. Not shown are the cpu times which were similar for all runs given.

7.6 Performance on Benchmarks Problems

A set of benchmark problems has been established to judgeftwiveness of algorithms on
the JSP?

3We are grateful for the benchmark problem set given to us by D. Applegéte [

68 Chapter 7. Critical Block Simulated Annealing for the Jobshop Scheduling Problem

PROB| NxM LB CBSA Appl Laar Mats Adams Bruck

abz7| 20x15 655 685 668 710
abz8| 20x15 638 679 687 716
abz9| 20x15 656 701 707 735

la21| 15x10 1046 1050 1053 1063 1071 1084 1059
la24 | 15x10 935 943 *935 952 973 976 935
la25| 15x10 977 985 *977 992 991 1017 977
la27| 20x10 1235 1262 1269 1269 1274 1291 1270
la29 | 20x10 1130 1188 1195 1203 1196 1239 1202
la38 | 15x15 1196 1209 1217 1215 1231 1255 1232
la40 | 15x15 1222 1235 *1222 1234 1235 1269 1238

Table 7.5:Ten dificult Benchmark Job Shop Scheduling Problems.

The problem set includes the problem#06, mt10andmt20from [4], and problemgarl-
car8 from [49]. Problemsabz5-9are those given in Adams. {]. Also included is a set of 40
job shop scheduling benchmark problefa@1-la40 originally from [37], The first column in
both tables gives the problem name. The next column, NxM, indicates the size of the problem,
i.e. N jobs by M machines. The LB column indicates the lower bound of the problem if the
optimal makespan is unknown. TI@BSAcolumn indicates the best makespan found from 5
CBSA trials. (Each trial used a reintensification frequefy= 3,000 and was run for one
million generations or until the known optimal minimum makespan or lower bound was found.)
The column headingéppl, Laar, Mats, Adamand Bruck indicate the best performances of
Applegate 1], Van Laarhoven1Z], Matsuo [.Z], Adams [L4], and Brucker §] respectively. A
single star,*, indicates the optimum or best known minimum. Tabl@shows the performances
of the CBSA and some of the best known job shop algorithms otatheoblem test set.

7.6. Performance on Benchmarks Problems

PROB| NxM LB CBSA Appl Laar Mats Adams Bruck
la01 | 10x5 — *666 *666 666 — 666 666
la02 | 10x5 — *655 *655 655 655 669 655
la03 | 10x5 — *597 *597 606 597 605 597
la04 | 10x5 — *590 *590 590 590 593 590
la05 | 10x5 — *593 *593 593 - 593 593
la06 | 15x5 — *926 *926 926 - 926 926
la07 | 15x5 — *890 *890 890 — 890 890
la08 | 15x5 — *863 *863 863 863 863 863
la09 | 15x5 — *951 *951 951 — 951 951
lal0| 15x5 — *958 *958 958 - 958 958
lall| 20x5 — *1222 *1222 1222 — 1222 1222
lal2 | 20x5 — *1039 *1039 1039 — 1239 1039
lal3 | 20x5 — *1150 *1150 1150 — 1150 1150
lal4 | 20x5 — *1292 *1292 1292 — 1292 1292
lal5| 20x5 — *1207 *1207 1207 — 1207 1207
lal6 | 10x10 — *945 *945 956 959 978 945
lal7 | 10x10 — *784 *784 784 784 787 784
lal8 | 10x10 — *848 *848 861 848 859 848
la19 | 10x10 — *842 *842 848 842 860 842
la20 | 10x10 — 907 *902 902 907 914 902
la21 | 15x10 1046 1050 1053 1063 1071 1084 1059
la22 | 15x10 - 935 *927 938 927 944 927
la23 | 15x10 — *1032 *1032 1032 1032 1032 1032
la24 | 15x10 935 943 *935 952 973 976 935
la25 | 15x10 977 985 *977 992 991 1017 977
la26 | 20x10 — *1218 *1218 1218 1218 1224 1218
la27 | 20x10 1235 1262 1269 1269 1274 1291 1270
la28 | 20x10 — *1216 *1216 1224 1216 1250 1276
la29 | 20x10 1130 1188 1195 1203 1196 1239 1202
la30 | 20x10 — *1355 *1355 1355 1355 1355 1355
la31 | 30x10 — *1784 *1784 1784 — 1784 1784
la32 | 30x10 — *1850 *1850 1850 — 1850 1850
la33 | 30x10 — *1719 *1719 1719 — 1719 1719
la34 | 30x10 — *1721 *1721 1721 — 1721 1721
la35 | 30x10 — *1888 *1888 1888 — 1888 1888
la36 | 15x15 — 1291 *1268 1293 1292 1305 1268
la37 | 15x15 — 1420 *1397 1433 1435 1423 1424
la38 | 15x15 1196 1209 1209 1215 1231 1255 1232
la39 | 15x15 — 1243 *1233 1248 1251 1273 1233
la40 | 15x15 1222 1235 *1222 1234 1235 1269 1238

69

Table 7.6:Performances of the 40 Benchmark Job Shop Scheduling Problems.

70 Chapter 7. Critical Block Simulated Annealing for the Jobshop Scheduling Problem

7.7 Concluding Remarks

According to Aarts {7], The success of an approximation algorithm depends on a number of
aspects including performances, ease of implementation, and applicability and flexibility. It is
clear that the SA algorithm is very simple and easy to implement, taking only a few hundred
lines of code to implement. Regarding flexibility, we found that our SA code could be used
to implement both Aarts SA approach and the CBSA method by changing only the call to the
neighborhood generation procedure.

Matsuo [7] has indicated that Aarts SA method has very few adjacent pairs that improve the
makespan by exactly one interchange (Aarts SA transition). Compared with Aarts neighborhood
structure, the CB neighborhood contains more (or at least the same number of) transitions that
can immediately improve the a schedules makespan by exactly one transition.

Undoubtedly new and more powerful approaches will be developed to solve the JSP, meth-
ods having better performance and convergence characteristics then the methods described here.

Unlike SA methods, other approximation approaches have no theoretical guarantee that they will
converge to to an optimal solution.

Chapter 8

Critical Block Simulated Annealing with
Shifting Bottleneck Heuristics

In this chapter, we consider to improve the CBSA described in the previous chapter in two
aspects. One is to employ a new neighborhood by incorporating the notion of active schedule
described in Sectioh.2and the other is to combine with a deterministic heuristic called “shifting
bottleneck” described in Sectich6.

8.1 Active Critical Block Simulated Annealing

As explained in the previous chapter, a solution obtained from a before or an after candidate
is not necessarily executable. In the following, we propose a new neighborhood by modifying
the CB neighborhood. Each element in the new neighborhood is not only executable, but also
active and structurally close to the corresponding member in the original CB neighborhood. Let
S be an active schedule ai&}” be a critical block ofS on a machineM,, where the first and

the last operations cBﬁ’ﬁ are thea-th and thes-th operations orM, respectively. LeOﬁ be

a “moving” operation that is tha-th operation onM, such thatr < 4 < g (i.e., O;l is inside

B;*). We consider to generate an active schedjte (or S;*) by movingO? into positiona (or
positionp). If the resulting schedule is active, then we will use it. Otherwise, we try to find an
alternate position that is as closeddor) as possible and is insidig”ﬁ such that the resulting
schedule becomes active and use it instead. This can be done by adopting the GT algorithm
described in Algorithn2.2.1and modifying Step! of the algorithm, where the choice of the
next operation from the conflict s€{ M, i] was at random. Here, the choice is made by looking

at the processing order 8. An operation that is il€[M,, i] and that was scheduled earliesSn

is selected when the operation is located outﬁiﬂ%(i.e.,i ¢ [a,B]). This way, the processing
order of operations i+ or S;” is kept mostly unchanged from that$outsideB;”. However

inside B;“ﬂ instead, the “moving” operatio®; must be chosen from the conflict set with the top
most priority when generatin@ﬁ’“ and with the bottom least priority when generatBﬁf. The

details are described in Algorithé11.1 In the algorithm, if we are generatirﬁj’“ (i,e.,d = f)

and when = «, Oﬁ should be chosen fro@[M;, i] as soon as becomes equal to. However

71

72 Chapter 8. Critical Block Simulated Annealing with Shifting Bottleneck Heuristics

at that point,O; may not yet exist inC[M,i]. This means that if we mov@§ to the front
positiona ignoring the fact thaO; ¢ C[M;,], then the resulting schedule becomes non-active,
or may even become infeasible. Hence, we have to “pass” this time and WaiOl;ua]ijpeares

in C[M,,i]. BecauseS is an active schedule, it is guaranteed m@appeares IC[M,, i] at the
latest when = A4, in which case resulting schedule becomes identic&l tth we are generating
Sﬁ’ﬁ instead (i.e.d = r), thenoﬁ should be moved to the rear postignin other words,O;
should be chosen fro@[M,, i] only wheni becomes equal {6 and not whilel < 8. In fact,O;

is guaranteed to appear@jM,, i] wheni = g at the latest becausis active. Howeveoﬁ may
become the only element @ M,, i] and then it is unavoidable to chooé@ even when < .
This means that if we mov@ﬁ to the rear positio ignoring the fact thaOﬁ ¢ C[M,,], then

the resulting schedule becomes non-active, or may be even infeasible. Hence we have to choose
O! even wheri < 8. The new neighborhoodCB(S) is now defined as a set of &{* andS;”
over all critical blocks:

ACH(S) = ||)18} hacicp U (S})acacs | \ (S} (8.1)

a8
BV

Once we have the neighborhood structA@BS) defined, the basic framework of the sim-
ulated annealing algorithm described in Algoritiin2.1can be applied without major modifica-
tions by usingACB(S) in place ofCB(S) in Step2(a)iof Algorithm 7.2.1

In Algorithm 7.2.1, if the acceptance probabilities are low for all membera@B(S), the
system will remain trapped in a local minimugand it will take a long time to move to a new
state. The algorithm may stay $even after all members are selected in Stey)iand evaluated
in Step2(a)ii. To avoid this, relative acceptance probability defined&)(

Sras P(Si)

P(Si) Ss ce PS) for eachS; € ACB(S) (8.2)
will be introduced after all members WCB(S) are visited and evaluated without being chosen.
The memberlS; in ACB(S) is then randomly selected in proportion B§S;), and the system
moves unconditionally t&;. This modification is fective when, likeACB(S), the neighborhood
size is limited. Therefore, Algorithm.2.1is modified as in Algorithn8.1.2

8.2 Active CBSA Enhanced by Shifting Bottleneck

As described in SectioB.6, Shifting bottleneck (SB) proposed by is a powerful heuristic
method for solving a JSP. Here we consider to incorporate the local optimization procedure used
in the SBI heuristic described in Algorithé6.1into the active CBSA described in the previous
section.

SBI is a constructive method that generates a complete schedule from scratch. Modifying
the method is necessary in order to refine a certain complete schedule for improvement. The
BottleRepairshown in Algorithm8.2.1describes an iterative version of the basic SB. The reopti-
mization process used here is the same as used in Algazitbuh The basic idea dBottleRepair

8.2. Active CBSA Enhanced by Shifting Bottleneck 73

Algorithm 8.1.1 (An algorithm to generat&;“ or S;” from S)

A scheduling problem is given as in Algorithéh2.1 An original active schedul& of the
problem and a moving operati@(; on a critical bIockBj’ﬂ of S is given, wherer < 1 < 8. The

directiond = f (front, when generatin@i’“) ord =r (rear, when generatir@’ﬂ) is given.

1.

2
3.
4

5.
6.
7.

Initialize G (as in Stepl of Algorithm 2.2.1). Initialize S” as an empty schedule.

. Find the earliest completable operatiOn € G (as in Ste of Algorithm 2.2.1).

Calculate the conflict s&&[M,,i] c G, (as in SteB of Algorithm 2.2.1).

. If r # A, then select and schedule fradjM,, i] the earliest operatio@®y, in S as thei-th

operation orM; in ', i.e., S/, := k, wherek is the job number 00,,.
If r =4,

e If d = f (i.e., generatin®;*),
— If @ <i < 2andOj € C[M,,], then select and schedul® as thei-th operation
onM, in S.
— Otherwise, select and schedule fr@fM;, i] the earliest operation i as the
i-th operation orM; in S’.
e If d = (i.e., generating;”),
— If A <i < B andC[M,,i] contains any operation other thé)j, then select and
schedule fronC[M,, i] \ {Oﬁ} the earliest operation i as the-th operation on
M, inS'.
— If C[M,,i] = {Og} ori = pandO; € C[M,,], then select and schedul¥ as the
i-th operation or, in S'.
— Otherwise, select and schedule fr@fM;, i] the earliest operation i as the
I-th operation orM; in S’.
Let Oy be the operation selected above, whkrs the job number oD, then
S, =k
Do Step6 and Step of Algorithm 2.2.1
Repeat from Stefh to Step5 until all operations are scheduled.

Output the active schedu® asS}” if d = f, or asS;” if d =r.

74 Chapter 8. Critical Block Simulated Annealing with Shifting Bottleneck Heuristics

Algorithm 8.1.2 (The Active Critical Block Simulated Annealing)
We are given a jobshop scheduling problem to optimize, and the initial tempeTfgture

1. SetS = Sy a random initial active schedule, generated by the GT algorithm in Algo-
rithm 2.2.1 Setk = 0, andT,-g = Tp.

2. do
(a) SetN be the size oACB(S) and sei = 0, the number of elements RCB(S) that
are already evaluated.
(b) do

i. Pick S; from ACB(S) randomly and ifS; is first time to be picked and not yet
evaluated, then evalua® by calculatingCp,(Si) and seh = n+ 1.

ii. AcceptS; with probability:

! if Cax(Si) < Crmax(S)
(S) =\ - CrakS)-CratoN/T otherwise.

until S; is accepted on = N.
(c) e If Sjisaccepted, then s8t=S; andn = 0.
e Otherwise(i.e., if n = N) selectS’ from ACB(S) in proportion to the probability
STERY P(Si)
P(S) =
A)

and seS = S; andn = 0.
(d) Setk = k+ 1 and decreasg, according to the annealing schedule.

until termination (i.e. T is suficiently small ork is suficiently large or the minimal
makespan or lower bound is found).

3. Print the best schedule found and its makespan.

8.2. Active CBSA Enhanced by Shifting Bottleneck 75

Algorithm 8.2.1 (BottleRepair Iterative SB)
A complete selectio is given as an input. LeM be a set of all machines\l = {Mq, ..., M,}.

1. Let My = {M1,M,,..., M} be a set of all the critical machines (machines that contain
parts of critical path irS).

2. Reset all sequences of all machines\ih\ My and make the machines unsequenced. Let
Sy be a partial selection obtained fragby this resetting.

3. Reoptimize all sequenced machines\ity by applying Stef® of Algorithm 2.6.1with My
andS; obtained above and obtain n&y.

4. Do Step2 to Step8 of Algorithm 2.6.1with M, and S, obtained above and obtain a
complete selection.

5. Output the complete selection as an obtained schedule.

Algorithm 8.2.2 (SB incorporation for Active CBSA)
2(b)iii. If Sjis rejected, applBottleRepairto S; and obtairs;*.
AcceptS;* and set5; = S if CmaxSi") < Cnax(S).

comes from the original paper of SB4] where the lastr noncritical machines are temporarily
removed for the reoptimization.

As shown in Algorithm8.1.2 S; is selected fromACH(S) and is probabilistically accepted.
BottleRepairs applied toS; only whenS; is rejected. The resulting sched 8¢ is accepted if
its makespan is shorter than that®f To summarize, Step(b)iii as defined in Algorithr@.2.2
is added to Algorithn8.1.2just after Ste@(b)ii.

BottleRepairgives a systematic way to inspect the schedule’s critical path and permutes op-
erations again and again by repeatedly solving one machine problems in a deterministic manner.
If it generates an improved schedBéfrom S, the critical path ofS” becomes dierent from
S and the diference is much greater than that betw8eand its active CBSA neighbor. On the
other hand, active CBSA gives a stochastic more focused local search around the current critical
path. The proposed integration of active CBSA and SB is expected to have the synefigstic e
as: SB gives a long jump to active CBSA so that it can omit many time-consuming inferior tran-
sitions and active CBSA adds stochastic perturbations to SB so that it can escape from the local
minima.

76 Chapter 8. Critical Block Simulated Annealing with Shifting Bottleneck Heuristics

8.3 Experimental Results

8.3.1 Muth and Thompson’s Benchmark

A 10 x 10 problem (mt10) and 2R 5 problem (mt20) formulated by!] (MT benchmarksare

well known benchmark JSPs. CBSA with and without SB modification was evaluated using
these problems. Tabk1 shows the results of 20 trials withftkrent random number seeds on a
SUN SPARC station 10. All programs are written in the C language.

Table 8.1:Comparisons between CBSA and CBS2B using MT benchmarks
CBSA (R = 6,000) CBSA+SB

best mean std Bffbest mean std BT

mt10|10x 10| 930 933.65 4.04 190930 932.45 3.01 786

mt20| 20x 5 |1178 1179.45 1.94 233165 1165.00 0.00 449

std: standard deviation

BT: average cpu time (sec.) to find the best solution

Prob| nxm

Results for the mt10 problem using CBSA without SB show that the optimal solutions of
L = 930 were found in 11 trials. The average cpu time was 3 min. 10 sec., and the fastest was 1
min. 21 sec. Although the solutions bf= 930 were found in only half of the trials, the cpu time
in successful runs were satisfactorily short. If the temperature is more slowly lowered, though it
takes longer, the rate of finding optimal solutions will become higher asCijn CBSA without
SB could not find any optimal solution for mt20 problem. In most cases, solutiohs-0£178
were found instead of the optimhl= 1165.

The results for the mt10 problem using active CBSA with SB modification show that the
number of trials finding optimum solutions increased slightly, but the average cpu time increased
about four times. This fact indicates that CBSA without SB is powerful enough to solve mt10
problem. On the other hand, all 20 trials with SB modification for mt20 problem found the
optimal solutions ot. = 1165 in an average cpu time of 7 min. 29 sec., and 1 min. 22 sec. was
the best time. Theffect of SB enhancement is obvious from this problem. Reintensification did
not work well because the optimal or near optimal solutions were obtained at an early stage of
the search.

8.3.2 Other Benchmarks

Results in the previous section indicate that if CBSA without SB can solve a problem skillfully,
applying CBSA+SB has no advantage. However, if CBSA fails to work well, CBS8B may
improve solution quality and compensate for the extra cpu time needed with SB enhancement. A
set of benchmark problems has been established to evaltiaesdt algorithms for JSPs. Table

8.2 shows the makespan performances of CBSR and various other algorithms for the ten
difficult benchmark JSPs. All experiments of CBS2B runs were done on a HP 730 (HP 730

is about 1.5 times faster than SUN SPARC station 10).

8.3. Experimental Results

77

The LB column indicates the theoretical lower bound of the problem if the optimal makespan
is unknown. The CBSASB column indicates the best makespans found from ten trials. Each
trial used a reintensification frequency®f= 1,000 and ran for three hours or until the known
optimal makespan or lower bound was found. The column headings Aart, Matt, Appl and Tail

indicate the best performances of thosefimn|[[

], [1] and [L7] respectively.

Table 8.2:Results of 10 tough JSPs

Prob| nxm

LB

CBSA+SB
best mean std. B

_IAart

Matt Appl Tail

abz7
abz8
abz9
la21
la24
la25
la27
la29
la38

20x15
20x15
20x15
15x10
15x10
20x10
20x10
20x10
15x15

654
635
656
1040

1235
1120
1184

la40|15%x15

665 671.0 3.92 781
675 680.0 3.13 877
686 698.6 7.42 874
1046 1049.3 3.32 36
935 939.2 1.99 622
977 979.3 1.62 411
1235 1242.4 6.15 780
1154 1162.4 7.10 543
1198 1206.8 4.53 347
1228 1230.2 2.32 333

4668
5670
9691

6935
7983

672
683
703
1053
938
977
1236
1184
1201
1228

668 665
687 676
707 691
1053 1047
935

977

1269 1240
1195 1170
1209 1202
1222

1053

3249
4185
9208
1225

1635

1585

1535

1485

Makespan

1385

1335

1285

1435

«—|nitia Schedule: L = 1665

erature (T)

S

L
-
.
-

o
LY

............

1

(o2}

L =1235

———"””""' 8 3
Cputimex 10

Figure 8.1:The time evolution of CBSASB trial for the 1a27 problem

Figure 8.1 shows the time evolution of the makespar) &nd temperaturel() of the best
trial of CBSA+SB for the 1a27 problem. The abscissa shows the cpu time in seconds, and the

78 Chapter 8. Critical Block Simulated Annealing with Shifting Bottleneck Heuristics

Table 8.3:An optimal solution of la27 problem

Job sequences on each machine
18 9 4 211 312 810 7131520 1 619 514
14 9 812 31715 41013 6 71119 1 218
1114 31910 4 9 5 6 21617 1315 7 20 18
61110 119 3 8131518 212 1417 4 7
12 3 5 6201311 8 117 919 714 216
191811 814 7 316 217 110 9 513 6 4
17 21315 9 819 7 62010181416 5 4 1
21216 141110 3 51920 6 71317 81815 1
1812 314111016 81913 4 615 21720 1 9
0/132018 9 4 511 6 3 8 2191014 117 715
m: machine

©CoO~NOONWNRS

NoOoTONOLS O 01O

=

solid and dotted lines show the makespan and the temperature respectively. Starting from the

makespan valué = 1665, it rapidly decreases to = 1291 during the first warmup interval.

After twelve times of reintensification, it finally reached the optimal vdlue 1235. In this

experiment, 56059 schedules were generated and 8850 schedules accepted. About 25% of the

accepted schedules were accepte®bitleRepairto add CBSA long jumps and the rest served

as stochastic perturbationsBottleRepair The oscillatory behavior is due to reintensification.
Although CBSA+SB outperformed other methods most of the cases in EaBléhe required

computational time is much longer. For exampl&;][reported that Applegate’s method in the

Appl colum found a schedule &f = 1269 in 604.2 sec. on SUN SPARC station ELC which is

about 10 times slower than HP 730. This is because each €BBAxperiment includes a lot

of unsuccessfuBottleRepairtrials. But this gap can be filled to some extent by the fact that in

the same experiment, CBS/AB passed a poirit = 1269 in 164 sec.

8.4 Concluding Remarks

The proposed method CBS/AB is an improved CBSA enhanced by integrating with a problem
specific method called shifting bottleneck. The performance of CBS\was evaluated using
difficult benchmark problems. The results show that for eight problems offtesuttibenchmark
problems, CBSASB could find schedules better than or equal to the best schedules published so
far in the literature, when enough computational time is given. A new solution=01235 was

found for the 1a27 problem; it is optimal because the value equals the theoretical lower bound.
Further research is necessary to reduce the computational time.

Chapter 9

Scheduling by Genetic Local Search with
Multi-Step Crossover Fusion

As we have seen in Chaptér Genetic Algorithms can be applied to the job-shop scheduling
problem with good success. However, the well-known fact that GAs are, in general, not well
suited for fine-tuning structures which are very close to optimal solutions also applies to this
case and obstructs further improvements. The general remedy to this problem is to incorporate
local search methods, such as neighborhood search described in GhapteGAs. The result

of such incorporation is often callg@enetic Local Search (GL$}6]. In this framework, an
offspring obtained by a recombination operator, such as crossover, is not included in the next
generation directly but is used as a “seed” (initial solution) for the subsequent local search. The
local search moves thetepring from its current point to the nearest locally optimal point, which

is included in the next generation.

In solving combinatorial optimization problems, it is ofterfdiult to construct anfécient
crossover operator, because a crossover operator that “recombines” solutions, allows to cause
global changes that alters the structure of a solution in large parts and therefore may violate the
constraints of the target problem, resulting in generating many infeasible solutions.

On the other hand, a neighborhood search operator which modifies a solution only locally is
rather easier to construct as we have seen in Chamad ChapteB. A simple neighborhood
search operator exchanges a pair of consecutive jobs in a job sequence, another operator removes
a job from its original position and re-insert it in another position on the same job sequence. As
we have seen in the previous chapters, they should be improved by focusing on the jobs on the
critical path. Unfortunately the same method cannot be applied directly to construeetive
crossover operator.

9.1 Multi-step crossover fusion
Reeves has been exploring the possibility of integrating local optimization directly into a Sim-

ple GA with bit string representations and has proposed the Neighborhood Search Crossover
(NSX) [54]. Let any two individuals bex andz. An individualy is calledintermediatebetween

79

80 Chapter 9. Scheduling by Genetic Local Search with Multi-Step Crossover Fusion

Algorithm 9.1.1 (Multi-Step Crossover Fusion — MSXF)

Parent individualgag, p; are given as inputs. The distance meadliie defined. For a given
individual x, f(x) is the function to be minimized.

1. Initialize both current solutiom and output aspo; X = q = Po.
2. do

(a) For each membeyr; € N(x), estimated(y;, p1).

(b) Sorty; € N(x) in ascending order of the(y;, p;) estimation.
do

i. Selecty; from N(x) randomly, but with a bias in favor gf with a small index.
ii. Evaluatey; and obtainf(y;) if y; has not yet been evaluated.
iii. Accepty; with probability one iff (y;) < f(x), and withP.(y;) otherwise.

Iv. (optional) Change the index gffromi to n, and the indexes ofi (k € {i+1,i+
2,...,n}) fromktok - 1.

until y; is accepted.
(c) Setx =Yy;.
(d) If f(x) < f(q) then seq = x.

until some termination condition is satisfied.

3. Outputq as an individual for the next generation.

9.1. Multi-step crossover fusion 81

x andz, written asx o y ¢ z, if and only if d(x,z) = d(x,y) + d(y, 2) holds, wherex,y andz

are represented in binary strings ah, y) is the Hamming distance betweerandy. Then
the k"-order 2 neighborhooaf x andz is defined as the set of all intermediate individuals at a
Hamming distance df from eitherx or z. Formally,

Nk(x,2) = {y| xoyozand @d(xy) = kord(y, 2 = k)}.

Given two parent bit stringgp, andp,, the neighborhood search crossover of okd@iSX,) will
examine all individuals ifNk(po, p1), and pick the best as the newfspring.

In this chapter, we extend the idea of the NSX to make it applicable to more complicated
problems such as job-shop scheduling and propose the Multi-Step Crossover Fusion (MSXF): a
new crossover operator with a built-in local search functionatity $6, 57]. The MSXF has the
following characteristics compared to the NSX.

¢ It can handle more general class of representations (i.e., it is not limited to the binary
representation) and neighborhood structures.

¢ Itis based on a stochastic local search algorithm.

¢ Instead of restricting the neighborhood by the intermediateness, a biased stochastic re-
placement method is used.

A stochastic local search algorithm is used for the base algorithm of the MSXF. Although the
SA is a well-known stochastic method and has been successfully applied to many problems as
well as to the JSP, it would be unrealistic to apply SA repeatedly in a GA run that would consume
too much time. In such a case, a restricted method with a fixed temperature parbraetés a
good alternative. Accordingly, the acceptance probability defined. i) i modified as:

, 1 if f(X)<f(x)
P(X') = { e f)-f())/c otherwise. ®-1)

Let parent individuals b@, and p;, and let the distance between any two individuatnd
y in any representation ba(x,y). If x andy are schedules, thed(x,y) is the DG distance
defined in Sectior2.4. Let f be the function to be minimized. In the case of the scheduling
problem,f is the makespa@m.x The basic idea to incorporate crossover functionality into the
neighborhood search described in Algoritlini.1is to set the initial starting point as one of
the parentxy = po and when choosing a candidatérom N(x), give a greater acceptance bias
for y with smalld(y, p.), which we call biased stochastic replacement. This bias control in the
MSXEF is achieved easily by sortifg(x) members in ascending orderdty;, p;) so thaty; with
a smaller index has a smaller distanaky;, p;). The calculation otl(y;, p1) is not an expensive
task if d(x, p1) and the the nature of the move fraxto y; are known; it is not necessary to
actually generate and evaluate Theny; is chosen fronIN(x) randomly, but with a bias foy;
with small indexi. The outline of the MSXF is described in Algorithénl.1

In place ofd(y;, p1), one can also ussign(d(y;, p1) — d(x, p1)) + r. to sortN(x) members in
Algorithm 9.1.1 Heresign(x) denotes the sign of sign(x) = 1if x > 0, sign(x) = 0 if x = 0,

82 Chapter 9. Scheduling by Genetic Local Search with Multi-Step Crossover Fusion

sign(x) = —1 otherwise. A small random fractiopis added to randomize the order of members
with the same sign. The termination condition can be given, for example, as the fixed number of
iterations in the outer loop.

The MSXF is not applicable if the distance betwggrand p; is too small compared to the
number of iterations. In such a case, a mutation operator calldduhieStep Mutation Fusion
(MSMF) is applied instead. The MSMF can be defined in the same manner as the MSXF is
except for one point: the bias is reversed, i.e. sortNi¢t€) members in descending order of
d(yi, p1) in Algorithm 9.1.1

9.2 Scheduling in the reversed order

The GT algorithm in Algorithn2.2.1and all its variants determine the job sequences from left

to right in temporal order. This is because active schedules are defined to have no extra idle
periods of machineprior to their operations. However the idea described below enables the
same algorithms to determine the job sequences from right to left with only small modifications.

In general, a given problem of the JSP can be converted to another problem by reversing all
of the technological sequences. The new problem is equivalent to the original one in the sense
that reversing the job sequences of any schedule for the original problem results in a schedule for
the reversed problem with the same critical path and makespan. It can be seen, however, that an
active schedule for the original problem may not necessarily be active in the reversed problem;
the activeness is not necessarily preserved.

job Routing
1 2(3) 1)
2 2(2) 1(4)

Figure 9.1:A simple 2x 2 problem

(@ (@
M1 J2 Ji M1 J1 J2
Mz| J1 |J2 L=13 M2 L=13 J2| N
@ @®)
M1 J2 Ji M1 Ji J2
<=
MZE J L=10 Mz L=10(3 E|

Figure 9.2:Schedule reversal and activation

For example, the simple 2 2 problem described in Tabk1is considered. Figur.2(1)
shows a solution of this problem, which is active and no more left shifts can improve its makespan.

9.3. MSXF-GA for Job-shop scheduling 83

Figure9.2(2), obtained by reversing Figuf2(1), is not active and can be improved by a left
shift that moves job 1 prior to job 2 on machine 2, resulting in Figup€3). Finally Figured.2(4)

is obtained by reversing FiguBe2(3) again, which is optimal. As things turn out, Figuere(1)

is improved by moving job posteriorto job 2 on machine 2, resulting in Figuée2(4).

Although repairing a semi-active schedule to the active one improves the makespan, it can
be seen from the example above that there sometimes are obvious improvements that cannot
be attained only by left shifts. We call a schedld# active if it is an active schedule for the
original problem andight active if it is such for the reversed problem. It sometimes happens
that a reserved problem is easier to solve compared to the original. Searching only in the set
of left (or right) active schedules may bias the search toward the wrong direction and result in
poor local minima. Therefore left active schedules as well as right active ones should be taken
into account together in the same algorithm. In most local search methods, many schedules are
generated in a single run; therefore it would be better to apply this reversing and repairing method
periodically to change the scheduling directions rather than to reverse and repair every schedule
each time it is generated.

9.3 MSXF-GA for Job-shop scheduling

The MSXF is applied to the JSP by using the active CB neighborhood and the DG distance
defined in Sectior2.4. Algorithm 9.3.1describes the outline of the MSXF-GA routine for the
JSP using the steady state model propose@ing]. To avoid premature convergence even
under a small-population condition, an individual whose fitness value is equal to someone’s in
the population is not inserted into the population in Stdp

A mechanism to search in the space of both the left and right active schedules is introduced
into the MSXF-GA as follows. First, there are equal numbers of left and right active schedules
in the initial population. The schedutggenerated fronpy and p; by the MSXF ought to be
left (or right) active ifpg is left (or right) active, and with some probability (0.1 for example) the
direction is reversed.

Figure9.3 shows all of the solutions generated by an application of (a) the MSXF and (b) a
stochastic local search computationally equivalent to (a) for comparison. Both (a) and (b) started
from the same solution (the same parpgit but in (a) transitions were biased toward the other
solution p;. Thex axis represents the number of disjunctive arcs whose directionsféeeedi
from those ofp; on machines with odd numbers, i.e. the DG distance was restricted to odd
machines. Similarly, thg axis representing the DG distance was restricted to even machines.

9.4 Benchmark Problems

The two well-known benchmark problems with sizes ofX1@0 and 20x 5 (known as mt10

and mt20) formulated by Muth and Thompsat &re commonly used as test beds to measure
the dfectiveness of a certain method. The mt10 problem used to be called a “notorious” prob-
lem, because it remained unsolved for over 20 years; however it is no longer a computational

84 Chapter 9. Scheduling by Genetic Local Search with Multi-Step Crossover Fusion

Algorithm 9.3.1 (MSXF-GA for the JSP)

1. Initialize population: randomly generate a setl@t andright active schedules in equal
number and apply the local search to each of them.

2. do

(a) Randomly select two schedulpg, p; from the population with some bias depending
on their makespan values.

(b) Change the directiori€ft or right) of p; by reversing the job sequences with proba-
bility P;.
(c) Do step2(c)iwith probability P, or otherwise do Step(c)ii.
i. If the DG distance between, p, is shorter than some predefined small value
dmin, @apply MSMF top; and generatg.

Otherwise, apply MSXF top;, p, using the active CB neighborhod¢{p,;) and
the DG distance and generate a new schequle

ii. Apply Algorithm 6.1.1with acceptance probability given by.() and the active
CB neighborhood.

(d) If g's makespan is shorter than the worst in the population, and no one in the popula-
tion has the same makespangaseplace the worst individual witb.

until some termination condition is satisfied.

3. Output the best schedule in the population.

| (b) Stochastic Local Search = gg,.53

| (a) Multi-Step Crossover Fusion
Best (957) = S5iiase

150

oo
ooooo
b33

20

B Py 1
Start (%61)

10 + §g 410 b R
Target (951) Best (935) Target (951)
P1 P1

s s s s s s
0 10 20 30 40 50 60 0 10 20 30 40 50 60

0

Figure 9.3:Distribution of solutions generated by an application of (a) MSXF and (b) a short-
term stochastic local search

9.4. Benchmark Problems 85

Table 9.1:Performance comparison using the MT benchmark problems

1963 Muth-Thompson Test problems 200 20x5

1991 Nakangramada Simple GA 965 1215

1992 YamaddNakano Gitfler-Thompson GT-GA 930 1184
DorndorfPesch Priority-Rule based P-GA 960 1249
DorndorfPesch Shifting-Bottleneck SB-GA 938 1178

1995 KobayashDOno Subsequence Exchange Crossover 930 1178
/Yamamura SXX-GA

1995 Bierwirth Generalized-Permutation GP-GA 936 1181

1996 Yamad&akano Multi-step Crossover Fusion MSXF-GA 930 1165

challenge.

Applegate and Cook proposed a set of benchmark problems called the “ten tough problems”
as a more dficult computational challenge than the mt10 problem, by collectifigcdit prob-
lems from literature, some of which still remain unsolvefl

9.4.1 Muth and Thompson benchmark

Table9.1 summarizes the makespan performance of the methods described in this chapter. The
Simple GA described in Chaptérhas only limited success. It would be improved by being
combined with the GT algorithm ajmt the schedule reversal. The other results excluding the
MSXF-GA results are somewhat similar to each other, although the SXX-GA (a GA with Sub-
sequence Exchange Crossover described in Se6tigs improved over the GT-GA described
in Section5.4in terms of speed and the number of times needed to find optimal solutions for the
mt10 problem. The SB-GA produces better results using the \fégyemt and tailored shifting
bottleneck procedure. The MSXF-GA which combines a GA and local search obtains the best
results.

For the MSXF-GA, the population size 10, constant temperatuce= 10, number of itera-
tions for each MSXF= 1000,P, = 0.1 andP. = 0.5 are used. The MSXF-GA experiments were
performed on a DEC Alpha 600226 which is about four times faster than a Sparcstation 10,
and the programs were written in the C language. The MSXF-GA finds the optimal solutions for
the mt10 and mt20 problems almost every time in less than five minutes on average.

9.4.2 The Ten Tough Benchmark Problems

Table9.2shows the makespan performance statistics of the MSXF-GA for theffesuttibench-

mark problems proposed iri]] The parameters used here were the same as those for the MT
benchmark except for the population siz€0. The algorithm was terminated when an optimal
solution was found or after 40 minutes of cpu time passed on the DEC Alpha/B66.3n the
table, the column named Ib shows the known lower bound or known optimal value (for 1a40)

86 Chapter 9. Scheduling by Genetic Local Search with Multi-Step Crossover Fusion

of the makespan, and the columns named bst, avg, var and wst show the best, average, vari-
ance and worst makespan values obtained, over 30 runs respectively. The columnsigamed
andt,,: show the number of runs in which the optimal schedules are obtained and their average
cpu times in seconds. The problem data and lower bounds are taken from the OR-libtary [
Optimal solutions were found for half of the ten problems, and four of them were found very
quickly. The small variances in the solution qualities indicate the stability of the MSXF-GA as

an approximation method.

Table 9.3 shows the performance comparisons with various heuristic methods for the 10
tough problems. The column headings Nowi and Dell indicate the best performances of TABU
search proposed in f] and [L&]. CBSA+SB indicates SA results described in ChajiteAart,

Matt, Appl indicate SA results proposed iinl], GA results in H2] and results in] respectively.

It is interesting to observe from those results that the two approaches €B$Are mutually
complementary. For the problem instances abz7, abz8, abz9 and la2$BSdutperforms
MSXF-GA. In fact, SA-SB performs the best for these problems. However, for the problem
instance la38 for which SASB fails to find the global optimum, MSXF-GA successfully and
frequently find the global optimum. MSXF-GA also shows reasonably good performances for
the problem instance 1a40 for which $8B performs relatively poorly.

Table 9.2:Results of the 10 tough problems

prob size b bst avg var wsShg, top
abz7 215 655 678 692.5 0.94 703 - -
abz8 2x15 638 686 703.1 1.54 724 - -
abz9 2x15 656 697 719.6 1.53 732

la21 15<10 - *1046 1049.9 0.57 1055 9 687.7
la24 15<10 - *935 938.8 0.34 941 4 864.1
la25 2010 - *977 979.6 040 984 9 765.6
la27 2010 — *1235 1253.6 1.56 1269 1 2364.75
la29 20<10 1130 1166 1181.9 1.31 1195 - -
la38 15«15 - *1196 1198.4 0.71 1208 21 1051.3

la40 15¢15 *1222 1224 12279 0.43 1233 - -

Figure9.4 shows a performance comparison of GLS with and without MSXF using the 1a38
problem. A total of 100 experiments (runs) were performed for each under the same conditions
used in Tabl®.2 but with different random seeds. In the figure, the solid line gives the results of
MSXF-GA (in other words, GLS with MSXF) and the dotted line gives the equivalent results of
GLS without MSXF (i.e., in place of MSXF, CPU equivalent short-term stochastic local search
is used). Each of the 100 runs is numbered from No.1 to No.100 in ascending order of cpu
time at which each run is terminated. For example, run No.1 successfully found the optimal
schedule and was terminated the most quickly. The cpu time val24¢00 means that the run
was terminated before it found the optimal schedule. In the figure, instead of standard time
evolution graph, thex axis represents run numbers and yrexis represents the cpu time. The

9.4. Benchmark Problems 87

Table 9.3:Performance comparisons with various heuristic methods on the 10 tough problems
prob our bst Nowi Dell CBSASB Aarts Matt Appl

abz7 678 - 667 665 668 672 668
abz8 686 — 678 675 670 683 687
abz9 697 - 692 686 691 703 707

la21 *1046 1047 1048 *1046 1053 1053 1053
la24 *935 939 941 *935 *935 938 *935
la25 *977 *977 979 *977 983*977 *977
la27 *1235 1236 1242 *1235 1249 1236 1269

la29 1166 1160 1182 1154 1185 1184 1195
la38 *1196*1196 1203 1198 1208 1201 1209
lad0 1224 1229 1233 1228 1225 1228222

2500

2000 1 without MSXF i

1500 -

with MSXF

CPU time (sec.)

1000 -

500 /

0 10 20 30 40 50 60 70 80 90 100
No. of runs

Figure 9.4:Performance comparison using the 1a38<155 problem

88 Chapter 9. Scheduling by Genetic Local Search with Multi-Step Crossover Fusion

fact that the solid line increases slower and has shorter horizontal tail part than the dotted line
means that the experiments with MSXF outperforms those without MSXF both in terms of the
cpu time and in the number of successful runs.

Chapter 10

Permutation Flowshop Scheduling by
Genetic Local Search

So far, we have mainly considered the jobshop scheduling problem (JSP), but hereafter, we will
shift our focus to the permutation flowshop scheduling problem, abbreviated as PFSP or just
FSP, which is a special case of the JSP in a sense that the technological sequence of machines
is the same for all jobs and the order in which each machine processes the jobs is also same for
all machines. A solution schedule is then represented by a permutatiojolo$, instead ofn
permutations oh jobs. We do not have the concept of active schedule, but still we have critical
path and blocks, if the objective @&,.xbut not if the objective i€, the sum of the completion

times of all the operations. In this chapter, the MSXF method described in the previous chapter
is applied to then/m/P/Caxand in the next chapter, the MSXF is applied to tie/P/Cgym

10.1 The Neighborhood Structure of the FSP

Because the FSP is a special case of the JSP, the concepts of critical path and blocks also apply
to the FSP in a similar but much simpler fashion. We briefly review those concepts again in the
FSP context for the better understanding.

The permutation flowshop scheduling problem designated by the symbpu)®/C,.x has
n jobs that have to be processed mmmachines in the same order. Because of this simplicity
against the general JSP, we can assume that the machines are indexed in the processing order
of jobs, so that théV; is the first machine to process jobs avg, is the last. We are given the
processing timg;, of each operation of jold; on machineM;. A schedule can be represented
by a permutation of jobs, or to put it more simply, a permutation of job numhers

A critical path is a sequence of operations starting from the first operation on the first machine
M; and ending with the last operation on the last macMgge The starting time of each operation
on the path, except for the first one, is equal to the completion time of its preceding operation—
that is, there is no idle time along the path. Thus, the length of the critical path is the sum of the
processing times of all the operations on the path and equélsto There can be more than
one critical path on a schedule.

89

90 Chapter 10. Permutation Flowshop Scheduling by Genetic Local Search

job4 5 6 1 2 3 8 7
block machine

Figure 10.1:A grid graph representation of a solution to a problem of 8 jobs and 6 machines.

The operations on a critical path can be partitioned into subsequences oraiéed blocks
according to their associated machines. A critical block consists of maximal consecutive opera-
tions on the same machine, as in the JSP, but here we make it simple and define a critical block
as a subsequence of associated jobs, instead of operations.

Consider a schedule represented by a permutatiohet By, ... B be a set of all critical
blocks that contains more than one job andiiebe the index of the machine associated vidth
Let z(u) be the first job o3, (and the last job oB,_;). Then the ‘inside’ o, denoted byB,, is
defined as follows:

B\ {7(u.1)} ifl=1andm =1
B ={ B\ {n(w) if | =kandm =n (10.1)
B \ {m(u),n(u,1)} otherwise.

Figure 10.1 shows an example of schedute= 4,5,6,1,2,3,8,7 for a problem withn = 8
jobs andm = 6 machines represented by so-called a grid graph, which is a simplification of
the disjunctive graph for the JSP. In the figure, the vertical axis corresponds to machines and
the horizontal axis to jobs. Each circle represents an operation, and arrows precedence relation
between operations. A critical path is marked by thick lines. In this example, there are four
critical blocksB,, ..., B4 that contain more than one joB, on machine 3, for example, consists
of four jobs 56,1 and 2, and, consists of jobs 6 and 1. Likewid®, on machine 6 consists of
jobs 8 and 7. Note that the machines are indexed in the processing order of jobs.

As described in Chaptér, a neighborhood(x) of a pointxin a search space can be defined
as a set of new points that can be reached froby exactly one transition or move (a single
perturbation ofx). One of the well-known transition operators for PFSP isghidt movethat
takes a job from its current position and re-inserts it in another positionz £, b) be a pair of
positions inr. Here,v defines a move that removes the jea) from a positiona and re-inserts
it in a positionb. If a < b, the resulting schedule is representediby: 7(1),...,n(a— L)r(a +
1),...,n(b),n(@),n(b+ 1),...,x(n), and ifa > b, n, = n(1),...,n(b),n(a),x(b + 1),...,7(a—-
Dr(a+ 1),...,7(n). A neighborhood\(V,) is defined as the set of all schedules obtained by
shiftmovesinvV = {(a,b) :b¢ {a—1,al,a,be{l,...,n}}.

10.2. Representative Neighborhood 91

S;b the best move is selected
as arepresentative move

J
the job moved to
the next block

thejob moved to
the previous block

Figure 10.2:The best move to the né¢gtevious block is selected as a representative.

Let W (r) be a set of moves restricted to the insiddBgfnamely

Wi(r) = {(a.b) € Vla,b € By} (10.2)
and
k
W) = |_J Witr) (10.3)
=1

then the block property described in Theorgrafor the JSP is reformulated as follows:

Corollary 1 (Block property for the FSP) For any schedulg,
if Be N(W(n),n) then CnadB) = Chnax(n).

According to Corollaryl above, no move iW(r) can directly improve schedule Therefore,
it is reasonable, for computationdkieiency, to reduce the size of the neighborhd®t, 7) by
eliminating moves inW(r), and to use a new neighborhobifV \ W(r), 7), which we call here
a “critical block neighborhood”.

10.2 Representative Neighborhood

Nowicki and Smutnicki have proposed tlepresentativemeighborhood method[], where are-
ducedneighborhood is generated from the original neighborhood by first patitioning the original
neighborhood members into clusters and then picking up the best move (representative) from
each cluster as a representative. A new neighborhood is the set of all representative moves.

In this chapter, the representative neighorhood method is applied as follows. For each job
j in a critical block, 1etS{ be a set of moves that shift the jgito some position in the next
block; s.imilarIyS*jJ shifts j to the previous block. Evaluate schedules obtained from each move
in S and denote the best one By Similarly s*f is obtained frorrS*J?. Then the representative
neighborhood is defined as a set of all schedules obtained by representative{sﬁcs?ﬁor all
jobs j in all critical blocks (see Figur&0.2).

92 Chapter 10. Permutation Flowshop Scheduling by Genetic Local Search

10.3 Distance Measures

To measure the fference between two permutation schediBeand T, an appropriately de-
fined distance is required. In the case of the JSP, we have used the DG distance introduced in
Section2.4. For the FSP, two well-known distances are considered as follows:

precedence-basedThis distance counts the number of job pairg} in which j is preceded by
iin S butnotinT.

position-based: This distance sums up the positionafdiences for each job i andT.

The first precedence-based distance is equivalent to the DG distance if the FSP is viewed as a
special case of the JSP. The relationship between these two distances will be discussed in the
later section.

10.4 Landscape analysis

According to Hbhn and Reevesi]l], a landscape is defined by a triple of a search space, an
objective function and a distance measure. The link between landscape and search algorithm is
given by the NS operators used in the algorithm. Because these operators generate new points in
the search space relative to a given point, they define a distirfsg) on the search space given

by the minimum number of applications of operatdrthat will convert element into element

S.

One can understand the degree dficulty of the given combinatorial optimization problem
by looking at its landscape: if the landscape is simple and has only one peak, it is very easy
to find the global optimum by using simple best ascent search. UnfortunatelyMfstard
combinatorial optimization problems, including PFSP, have very ‘rugged’ landscapes with many
false peaks under any NS operator.

Recently, Boese et alc6P] have shown that an appropriate choice of NS operator introduces
some neat structure into the landscape. In this ‘big valley’ structure, local optima occur in clusters
— good candidate solutions are usually to be found ‘fairly close’ to other good solutions. If
a landscape has this structure, it would support the idea of generating new starting points for
search from a previous local optimum rather than from a random point in the search space.

Before we apply our GLS method to PFSP, we investigate whether there is a big valley
structure for the PFSP and the NS operator using the representative neighborhood and a stochastic
search using 9.1) (constant temperature). For the same PFSP but with simpler NS operators,
similar experiments reported in Reevés][found such a landscape did occur.

As discussed ind2, 64, 63], the existence of a big valley structure can be examined by
first generating a set of random local optima and then observing the correlation between their
objective function values and their distances to the nearest global optimuyoy ameir aver-
age distances to other local optima. The distance used here shod)d foe an operatorV.
However this distance is flicult to compute, and precedence-based distance is used here as an
approximation.

10.4. Landscape analysis 93

OBJN taOll(a) OBJN taOll(b)
200
140 190
0 =
120 160
110 150
100 120
% 120
80 110
. -
60 80
50 70
o | A 0
30— ot 40
e el o
20 3B o ;g
10— grewiemes 10
0 = \ 0 BESTD
40 50 60 70 80 ggIEAND 0 20 40 60 80 100
OBJFN ta021(a) OBJFN ta021(b)

200] 210
190 200
180 . . 190
170 : i . 180
160 : ' 160
1453 T 150
12 . NN 140
120 130
120
110 110
100 100
90 20
80 80
70 70
60 60
50 50
433 40
30

20 20— b

10 10 .
0 0

70 80 % 100 1lFAND 20 BT

Figure 10.3:1841 distinct local optima obtained from 2500 short term local search for the ta011
(20 x 10) problem and 2313 distinct local optima for the ta021 ¥x220) problem are plotted

in terms of (a) average distance from other local optima and (b) distance from global optima
(x-axis), against their relative objective function valugsKis).

94 Chapter 10. Permutation Flowshop Scheduling by Genetic Local Search

STEPS

PREC
0 20 40 60 80 100

Figure 10.4:The correlation between the precedence-based distance (PREC) and the approxi-
mate number of steps (STEPS)

Figure10.3shows a scatter plot of random local optima for problems ta011 and ta021, being
respectively the first of Taillard’s 28 10 and 20x 20 groups of problems?[l]. Each local
optimum is generated by running the neighborhood search described in Algdrithirwith
L = 5000 based on the stochastic method with acceptance probdhjlity = 5. Extensive
preliminary experiments found only two distinct global optima for the ta011 problem, very close
to each other in terms of the precedence-based distance (the distance is two) and only one global
optimum for ta021 problem; although one cannot rule out the possibility of finding otffieredit
global optima by continuing the search. However, more than 2500 global optima were found for
the smaller taO01 (28 5) problem by spending the same amount of CPU time.

The x-axis in Figurel0.3represents (a) the average precedence-based distance from other
local optima (MEAND), and (b) the precedence-based distance from one of the nearer global
optima (BESTD). They-axis represents their objective function values relative to the global
optimum. These plots clearly show that there are good correlations between the distances and
objective function values. The calculated correlationfitoents for each plot are: ta0ll(a):

0.74, ta011(b): 0.50, ta021(a): 0.62 and ta021(b): 0.44. These values are statistically significant
at the 0.1% level, on the basis of 1000 replications in a randomizationttést These high
correlations suggest that the local optima are radially distributed in the problem space with the
global optima as the centre, and the more distant are the local optima from the centre, the worse
are their objective function values. Hence, by tracing local optima step by step, moving from one
optimum to nearby slightly better one, without being trapped, one can eventually reach a near
global optimal solution.

In the analysis above, the precedence-based distance is used as a surrajatbdonuse
the minimum number of steps for the neighborhood operator to reach the global optimum is
difficult to compute. Although the precedence-based distance seems to be a good alternative, the
approximation still need to be justified. For this purpose, the approximate number of steps to

10.5. MSXF-GA for PFSP 95

POSN
140

130
120
110
100
%0
80
70
60
50
1o
30
20
10

PREC
0 20 40 60 80 100

Figure 10.5:The correlation between the precedence-based distance (PREC) and the position-
based distance (POSN)

reach the global optimum from each local optimum was calculated by choosing the closest move
to the global optimum each time from the neighborhood. While this does not necessarily give
the best distance between two points, it seems likely to give a fairly close upper bound.

Figure 10.4 shows the correlation between the precedence-based distance (PREC) and the
approximate number of steps (STEPS) for the local optima shown in Figug¢a011(a) (cor-
relation codicient is 0.66). Figurel0.5shows that there is a strong correlation between the
precedence-based distance (PREC) and the position-based distance (POSN) for the same local
optima (correlation cdécient is 0.91). Thus it does not matter which distance is used. The same
kind of experiments were carried out for all Taillard’sx200 and 220 benchmarks, and similar
results were obtained in every case. Therefore, the use of the easily-computed precedence-based
distance appears to be justified, and the ‘big valley’ structure can be assumed to hold for this
neighborhood.

10.5 MSXF-GA for PFSP

As described in Sectiof.1, the MSXF operator is designed to find a new local optimum based
on previous ones. MSXF-GA provides a framework for traversing local optima without being
trapped, by concentrating its attention on the area between the parent solutions and thus eventu-
ally finding a very good solution under the assumption of a ‘big valley’. MSXF-GA was applied
to PFSP using the representative neighborhood described in Séttiband the precedence-
based distance.

Algorithm 10.5.1describes the outline of the MSXF-GA routine for the PFSP. In this model,
the population is ranked according to the makespan values, and the parents are selected from
the population with a probability inversely proportional to their ranks. The newly generated

96 Chapter 10. Permutation Flowshop Scheduling by Genetic Local Search

solutionq is inserted into the population only if its makespan is better than the worst in the
current population. To avoid premature convergence even under a small-population condition, if
an individual with the same makespan already exists in the populationg ikemt inserted into

the population in Stefic.

Algorithm 10.5.1 MSXF-GA for the PFSP
The population siz® is given.

1. Initialize population: randomly generate a set of permutation schedules. Sort the population
members in descending order of their makespan values.

2. do

(a) Selecttwo schedulgs, p, from the population with a probability inversely proportional
to their ranks.
(b) Do Step2(b)i with probability Py, or otherwise do Step(b)ii.

I. If the precedence-based distance betwmem, is less thart,,, apply MSMF top,

and generats.
Otherwise, apply MSXF top;, p, using the representative neighborhood and the
precedence-based distance and generate a new sclgedule

ii. Apply Algorithm 6.1.1with acceptance probability. and the representative neigh-
borhood.

(c) If g's makespan is less than the worst in the population, and no member of the current
population has the same makespaun,agplace the worst individual witt.

until some termination condition is satisfied.

3. Output the best schedule in the population.

10.6 Experimental results

In Section10.4, the existence of a big valley structure became clear for the relatively small-size
PFSP instances. An adaptive multi-start method (AMS) in which new local search is concen-
trated in a region between previously found local optima shouldfieetese at least for these
problems. MSXF-GA for PFSP is especially designed as one of the AMS approaches for PFSP.
Preliminary experiments show that MSXF-GA is vetyegtive for the problem instances dis-
cussed in Section0.4 and the global optima are found very quickly. In this section we will
extend our investigations to larger-size problems and apply MSXF-GA to a subset of Taillard’s
benchmark problems.

Table 10.1 summarizes the performance statistics of MSXF-GA for a subset of Taillard’s
benchmark problems together with the results found by Nowicki and Smutnicki using their tabu

10.6. Experimental results 97

Offspring

Parentl

.
.
.
.
.
.
.

-
“‘
.

s

Figure 10.6:Navigated local search by MSXF-GA: A new search is started from one of the par-
ents and while no other good solutions are found, the search ‘navigates’ towards the other parent.
In the middle of the search, good solutions would be eventually found somewhere between the
parents. That direction is then pursued to the top of a hill (or a bottom of the valley, if it is a
minimization problem) — a new local optimum.

Table 10.1:Results of the Taillard benchmark problems

50x 20 100x 20 200x 20

No.| best avginowi| lb—ub |best avglnhowi| Ib—ub | best avg.| nowi Ib —ub
1/3861388038753771-387%242 625%62866106—-62281.1272 113161129411152-11195
2|3709371637153661-371%6217 623462416183-621011299 113461142011143-11223
3/3651366836683591-3668299 631263296252-627111410 11458 144611281-11337
4(3726374437523631-3752%6288 630363066254—-626911347 114001134711275-11299
5/3614363636353551-3635329 635463776262-631911290 1132(1131111259-11260
6
7
8

3690 370136983667—-36816380641764376302—-6403.1250 112881128211176-11189

3711 372837163672—-370686302 6319%63466184—629211438 114581145611337-11386

3699372137093627-37006433 6466(64816315-642811395 114261141511301-11334

93760 376937653645-3755%297 632363586204-627511263 113061134311145-11192
1013767 377237773696—-37616448 647164656404-643411335 114091142211284-11313

best, avg.: our best and average makespan values

nowi: results of Nowicki and Smutnicki

Ib, ub: theoretical lower bounds and best known makespans taken from OR-library

98 Chapter 10. Permutation Flowshop Scheduling by Genetic Local Search

search implementation{] and the lower and upper bounds, taken from the OR-librafy. [
(Upper bounds are the currently best-known makespans, most of them found by a branch and
bound technique with computational time unknown). In all, 30 runs were completed for each
problem under the same conditions but witffelient random number seeds. For each MSXF-
GA run, population size- 15, constant temperatuce= 3, number of iterations for each MSXF
= 1000,dnin = n/2 andPx = 0.5 are used. Each run is terminated after 700 iterations, which
takes about 12, 21 and 47 minutes of CPU time respectively for each28) 100x 20 and
200x 20 problems on a DEC Alpha 600226.

It can be seen that the results for @0 problems are remarkable: the solution qualities of
our best results are improved over those foundii} for most of the problems, and some results
(marked in bold letters) are even better than the existing best results reported in the OR-library.
The results for larger problems are not as impressive as thosexo268@roblems, but still good
enough to support our hypothesis. The degradation is probably due to the increasing complexity
of the neighborhood calculation. In fact for problems where the matio > 3, Nowicki and
Smutnicki abandoned their representative neighborhood and used a simple one instead: just
moving a job to the beginning or the end of its critical block. They also implementeftieiest
way of evaluating all the members in the neighborhood in a specific order. This method is useful
for the tabu search, but not directly applicable to our stochastic search.

10.7 Concluding Remarks

The landscape for the Permutation Flowshop Scheduling Problem with stochastic local search
and the representative neighborhood structure has been investigated. The experimental analysis
using 20x 10 and 20x 20 Taillard benchmark problems shows the existence of a ‘big valley’
structure for PFSP. This suggests a well-designed AMS method, such as MSXF-GA in which
new local search is concentrated in a region between previously found local optima should be
effective in finding near-optimal solutions. MSXF-GA for the PFSP is implemented using the
neighborhood operator and applied to more challenging benchmark problems. Experimental
results demonstrates th&extiveness of the proposed method.

Chapter 11

CsumPermutation Flowshop Scheduling by
Genetic Local Search

11.1 Introduction

We have already proposed affieient method based on the genetic local search with the MSXF
to solve then/m/P/C,ax in the previous chapter. In this chapter we deal withripw/P/Cgsym
Compared to th€,.x problem, theCy,,problem is more diicult to optimize, mainly because the
calculation of the objective function is more time consuming, and problem specific knowledge
such as critical blocks is not applicable. However, thiSiclilty can be partly overcome by
extending the idea of the representative neighborhood discussed in SEtfon

11.2 Representative Neighborhood

Let sbe a job sequence of the current solution, dick] be a new job sequence obtained fram
by moving a job from thé™ position insand re-inserting it in th&™" position. N3(s) andN?(s),
subsets oN(s), are defined as follows:

NA(s) = (i, K] | < k< n},N*(s) = (i, K] | 1 <k < i}.

Thus the original neighborhodd(s) is divided into clusters consisting &f(s) andNP"(s). Let

N3(s) andNP(s) be one of the best membersNii(s) andNP(s) respectively. The representative
neighborhoodN*(s) can be denoted as:

N*(s) = {N&9) | L<i<nfU{NP(s) | 1<i<n}.

In most local search algorithms, the NS operators to choose a new member from the neighbor-
hood of the current solution can be categorized into two types according to their choice criteria
discussed in Sectiof.1; one is best descent, and the other is first descent. The best descent
method scans all the members in the neighborhood and choose the best as a new current so-
lution. This is suitable when the neighborhood size is small and the cost of evaluating all the

99

100 Chapter 11.Cq,y Permutation Flowshop Scheduling by Genetic Local Search

(3) choose the best as
(1) choose Ni(S) at random arepresentative

Figure 11.1:Representative neighborhood

members is negligible. Tabu search can be seen as an extension of this method. The first descent
method selects one member (at random) and accepits it if iffisisatly good, otherwise selects
another one. This can be used even when the neighborhood size is large. The stochastic sam-
pling in stochastic local search including SA can be seen as an extension of this method. The
representative neighborhood fills the gap between these two criteria: a dl¥sers chosen
randomly by using first descent, then best decent is applied to evaluate all the menitjéss in

of which the best is chosen as a representative. Figjureillustrates this process. As we will

see in the later section, this enables the TS and a stochastic local search method to integrate into
a single unified method.

11.3 Tabu List Style Adaptive Memory

As described in Chaptet, Tabu Search (TS) adopts a deterministic local search approach with
a ‘memory’ implemented as a ‘tabu list’ of moves which have been made in the recent past of
the search, and which are ‘tabu’ or forbidden for a certain number of iterations. The use of the
representative neighborhood makes it easy to have 'tabu list’ style adaptive memory.

If a solutiondi, k] generated from the current solutistby moving a jobj = di] to the k"
position is accepted, the pait (), i.e. the job and its original position, is stored on the top of a list
of lengthl and recorded asbu The oldest element in the list is then deleted. In the subsequent
iterations, a solution generated by moving jolo theit" position should not be accepted as long
as (,1) is on the list. In our representative neighborhood scheme, this is achieved by excluding

the tabu solution from the calculation of the representative best soh@(and NP(s)) so

that the representative neighborhood will contain no tabu solutions. Because the tabu solutions
have already been excluded from the representative neighborhood, there is no need to modify the
stochastic local search procedure described in Setfidsby this modification.

11.4. Experimental Results 101

11.4 Experimental Results

We applied our method to some of Taillard’s benchmark problems (ta problems, in shigrt) [
First it was applied to relatively easy problems from ta001 to ta030 (the number of jobs is 20
and the number of machines is 5, 10 and 20: denoted by 20x5, 20x10 and 20x20). Six runs
were carried out for each problem withffdirent random seeds. The parameters used in these
experiments areP? = 5,L; = 100Q L, = 700, Px = 0.5 and the length of the tabu list 7.

Here quite consistent results were obtained, i.e. almost all of the 6 runs converged to the same
job sequence in a short time (from a few seconds to a few minutes) before the limi=o700
was reached on a HP workstation. The best results (and they are also the average results in most
cases) are reported in Tablé.1together with the results obtained by the constructive method
(NSPD) due to J.Liuq9].

Table 11.1:Taillard’s benchmark results (ta001 — ta030)

prob best NSPD| prob best NSPD| prob best NSPD
001 14033 14281 011 20911 21520 021 33623 34119
002 15151 15599 012 22440 23094 022 31587 32706
003 13301 14121] 013 19833 20561 023 33920 35290
004 15447 15925 014 18710 18867 024 31661 32717
005 13529 13829 015 18641 19580 025 34557 35367
006 13123 13420 016 19245 20010 026 32564 33153
007 13548 13953 017 18363 19069 027 32922 33763
008 13948 14235 018 20241 21048 028 32412 33234
009 14295 14552 019 20330 21138 029 33600 34416
010 12943 13054 020 21320 22212 030 32262 33045

Problems ta031 to ta050 (50x5 and 50x10 problems) are much méiuildiand the best
results were dferent in each run. Ten runs were carried out for each problem wfférelnt
random seeds. The parameters used in these experiments Wvere30,L; = 1000QL, =
700, Py = 0.5. It takes 45 minutes per run for 50x5 problems (ta031 to ta040) and 90 minutes
for 50x10 problems (ta041 to ta050).

It is difficult to say how good these solutions are, in other words, how far they are from the
global optima. Even for the easier problems in Tablel, there is no guarantee that the best
solutions obtained so far are optimal, although we believe that they are at least very close to
being so. For the problems in Taldlé.2 it is almost certain that our best results are not optimal.

In fact we found one solution @&, = 64803 for problem ta031 by an overnight run.

11.5 Concluding Remarks

A new genetic local search method is proposed to solv€thgpermutation flowshop schedul-
ing problem. This methodffectively integrates the stochastic sampling of Simulated Annealing,

102

Table 11.2:Taillard’s benchmark results (ta031 — ta040)

Chapter 11.Cg,, Permutation Flowshop Scheduling by Genetic Local Search

prob best average NSPD prob best average NSPD
031 64860 64934.8 66590 041 87430 87561.4 90373
032 68134 68247.2 68887 042 83157 83305.8 86926
033 63304 63523.2 64943 043 79996 80303.4 83213
034 68259 68502.7 70040 044 86725 86822.4 89527
035 69491 69619.6 71911 045 86448 86703.7 89190
036 67006 67127.6 68491 046 86651 86888.0 91113
037 66311 66450.0 67892 047 89042 89220.7 93053
038 64412 64550.1 66037 048 86924 87180.5 90614
039 63156 63223.8 64764 049 85674 85924.3 91289
040 68994 69137.4 69985 050 88215 88438.6 91622

the adaptive memory using the tabu list of Tabu Search and the population-based search of Ge-
netic Algorithms into a single unified framework as summarized in Figur& The method is
applied to Taillard’s benchmark problems. Experimental results demonstratédbiveness of

the proposed method.

Simulated Annealing
(Stochastic local search)

first descent [

Tabu Search

representative
neighbourhood

best descent I:

mu

It-step

crossover fusion

Genetic Local Search

Stochastic
sampling

+

Adaptive
memory

+

Population,
path relinking
crossover, mutation

Figure 11.2:The framework of the proposed method

Chapter 12

Tabu Search with a Pruning Pattern List
for the Flowshop Scheduling Problem

12.1 Introduction

In this chapter, an approximation method based on Tabu Search with an additional memory
structure called “pruning pattern list” is describeédb]. A pruning pattern is constructed from

a solution, which is represented by a permutation of job numbers, by replacing some of its job
numbers by a “wild card” or a “don’t care” symbol. The job numbers to be replaced are deter-
mined by investigating the critical path of the schedule. A list of pruning patterns are generated
from “good” schedules that are obtained in the course of a search process, and maintained. The
list is used to inhibit the search to visit already searched and no longer interesting region again
and again.

12.2 Tabu Search

As described in Chaptér, Tabu Search (TS) adopts a deterministic local search approach with a
‘memory’ implemented as a ‘tabu list’ of moves which have been made in the recent past of the
search, and which are ‘tabu’ or forbidden for a certain number of iterations. A tabu move may
be accepted (even if it is 'tabu’) if certain criteria are satisfied, such as the solution obtained by
the application of the move being better than the best solution obtained so far. Such criteria are
called aspiration criteria.

Nowicki and Smutnicki P0] proposed a Tabu Search (TS) method for the Permutation Flow-
shop Scheduling Problem (PFSP). The tabu list used in their approach is described as follows by
using the notations used in Chapiéx

Let 7 be a permutation of job humbers representing a scheduler anda, b) be a move
that removes the job(a) from positiona and re-inserts it into positionin 7. Whenv = (a, b)
with a < b is performed omnr, the precedence relation between a pair of jot§a)(x(a + 1)) is
reversed. To inhibit the future recovery, i.e., re-reversal, of the precedence relat@nr(@a+1))
is stored as ‘tabu’ in the tabu ligt of lengthtl. Then, a move’ = (&, b’) with & < b’ cannot be

103

104 Chapter 12. Tabu Search with a Pruning Pattern List for the Flowshop Scheduling Problem

V= (2,7)

ﬂ@@@@@@@@@
tabu

- ey
- =~

00 XV =(16)

A A
B ®OwWwOOO
Figure 12.1:Whenv = (2,7) is applied tor, (7(2),7(3)) = (X,y) is stored inT

as tabu. Latery’ = (1,6) is not allowed to apply t@ because it will restore the
previously banned precedence relation betweey) (

performed on a new schedyaf v’ induces a recovery of any precedence relatiom,ime., if
{B()),B@) | j=a+1,...,0}nT # ¢. Likewise, r(a—1), 7(a)) is stored as ‘tabu’ i/ = (a, b)
with a > b is performed orx.

The neighborhood(V \ W(r), 7r), which is a subset dl(V,), is still too big for problems
of even moderate size. Thus, it is impracticable to evaluate all the neighbN(¥ ik W(r),),
so Nowicki and Smutnicki use a subsetMfV \ W(r),) as a neighborhood structure. Alterna-
tively, one can make the evaluation probabilistic: a menabkeom N(V \ W(r), n) is selected at
random and accepted@, (@) < Chax), otherwise probabilistically accepted according to the
Metropolis probabilityP.(a@) = exp ACmax/C), WhereACax = Crad@) — Crax(7).

12.3 Pruning Pattern

A pruning patternf], associated witlr and its critical blockB, is derived fromr by replacing
the jobs that belong tB, by x as follows:

* ifjeB,
n(]) otherwise

[7]i()) ={

For example, the pruning pattern corresponding te 4,5,6, 1,2, 3,8,7 andB, in Figure10.1
is 7], = 4,5, %,%,2,3,8,7. The makespan ofr], is defined as the makespan maf namely,
Cmax[7]1) := Chadr). Thex means a wild card, and a permutatirmatches’ [t], if B(j) =
[7]i(]) at all butx positions. For example,8,6,1,2,3,8,7 and 45,1,6,2,3,8, 7 both match
[7]2. [7]; and a set of all permutations that mateh fre identified. It is clear tha' (W (x), 7)
[7];. The block property described in Corollatyn Section10.1can be reformulated usingl]j

12.4. Pruning Pattern List Approach 105

as follows:

Corollary 2 For any schedulg and any pruning patteriw];, 8 € [7]; = Cnaxd{8) = Cmax[7])-
This again can be reformulated as follows:

Corollary 3 For any two pruning patternr]; and[¢];, [7]i € [¢]; = Cmax[7]i) = Craxd[4];)-

Corollary 2 suggests that when a new, possibly good, solutissmfound during the searchr]|
identifies a region where no solutions are better thaand that excludingd], from the search
space can reduce the size of the search space without eliminating the global optima.

12.4 Pruning Pattern List Approach

The basic idea of the pruning pattern list approach is to reduce the size of the search space
effectively through storing the ‘important’ pruning patterns that correspond to a long critical
block of a good solution. Letr (without sufix) be the pruning pattern that corresponds to the
longest critical block of schedule. The pruning pattern lisPL with length pl is maintained

and updated as shown in Algorithi?.4.1 Here,N(r) represents the neighborhoodfN(V \

W(r),) or its subset is normally used B&x). There is no good reason to keep patterns that are
rarely accessed in the list. Therefore such patterns are replaced by new patterns. According to
Corollary 3, it is also not necessary to keep pruning patterns in the list that are subsets of other
patterns. Thus they are removed.

Starting from an initial solution, the local search iteratively replaces the current solution with
one of its neighbors. In advanced local search strategies, such as Simulated Annealing (SA)
and TS, cost-increasing neighbors can be accepted as well as cost-decreasing ones. Accepting
cost-increasing moves enables the search to escape from the local optima, but this may also
cause revisiting of previously evaluated points in the search space — something that is wasteful
of computing resources in itself, and which also means the search is not adequately diversified.
One of the main aims of tabu search is to discourage such revisiting. This can be accomplished
by means of an explicit ‘tabu list’ of points previously visited, but normally it is easier, and more
efficient, to record specific attributes of such points, or of moves that would lead towards them.
Nevertheless, recording attributes of the points, and not the points themselves, can risk treating
even moves that are better than any solution obtained so far as tabu. This is one of the main
reasons why aspiration criteria should be introduced into TS.

In the case of the pruning pattern list approach, Coroliaguarantees that a move that
matches a pruning pattern is never better than the best solution obtained so far. This means that
an aspiration criterion is not necessary, and it also means that the pruning pattern list can serve as
a longer-term memory to prevent the search getting stuck in an already searched and no longer
interesting region. Unlike the tabu list, an old pattern can remain in the pruning list as long
as it is accessed frequently. Ni(V \ W(r),) or its subset is used as the neighborhood of the
current solutiorr, it does not contain any solution that matchels, [even withoutPL. However,
it is still possible that the regiomr], would be revisited in some later stages without any better

106 Chapter 12. Tabu Search with a Pruning Pattern List for the Flowshop Scheduling Problem

Algorithm 12.4.1 The pruning pattern list approach to the PFSP.
A flowshop scheduling problem is given as an input. The sizelois given aspl.

1. PLis initialized as a list of emptypl elements.
2. Generate a starting solution schedujeat random, and set = ng.
3. do

(a) CalculateN(r) from .

(b) NP(x) is initialized asN(r). For eachy € NP(n), if @ matches any patterg] € PL,
thena is removed fromNP(r), resultingNP(r) := NP(x) \ @, and the ‘access count’
of [8] is incrementedNP(r) is used as the new neighborhoodrof

(c) do

i. A candidate schedulg¢ is chosen froniNP(x) and is accepted or rejected based
on the valueC,(¢).

until ¢ is accepted.

(d) When the acceptedl is a cost-decreasing solution (i.€max¢) < Cmax(7)), then its
longest pruning patterm] is stored inPL.

(e) All the existing patternsd] in PL such thatf] c [¢] are removed and substituted by
empty patterns.

() If the number of non-empty patterns B exceedsl, then the least accessed pattern
[y] is removed from the list.

(9) Setr = ¢.

until termination conditions are satisfied.

4. Output the best solution obtained.

solutions thamr being found. The size dPL is fixed to pl mainly for computational ficiency.
TheoreticallyNP(r) may not satisfy the connectivity property thégVv \ W(r), 7) does. It should

be noted that the pruning pattern list is treated in a similar way that the population is treated in
Genetic Algorithms (GAs), especially in the steady state moddgl [The access count of the
pruning pattern corresponds to the fitness function of the individual in GAs.

12.5 Experimental Results

The pruning pattern list approach described in the previous section can be embedded into any
local search method, including TS, SA, and even GAS (9. Here a simple probabilistic
version of the TS described in Secti®@.2is used as a test case. The programs are codéd in

12.6. Concluding Remarks 107

The graph on the left side of Figuie.2shows the time evolution of the makespan averaged
over 30 runs of the TS with and without the pruning pattern list. This uses the ta041 problem,
which is one of Taillard’s benchmarks for sine= 50,m = 10 [21]. The parameters used are
c = 3.0,tl = 7 andpl = 10. One run takes about 10 minutes on an HP 700 workstation. The
best and worst makespans obtained among 30 runs are 3000 and 3016 respectively when TS with
the pruning pattern list is used, and 3010 and 3025 when TS without the pruning pattern list is
used. It can be seen that the pruning pattern list approach improves both the solution quality and
the speed. Without the pruning pattern list 12 runs out of 30 were trapped at a local minimum
of makespar= 3025, which Nowicki and Smutnicki reported as the new reference makespan
for this problem. This suggests that their TS method can also be improved by incorporating the
pruning pattern list approach.

The graph on the right side of Figuie.2 shows the results of the ta051 problem (50 jobs
and 20 machines) based on 10 replications rather than 30. It also includes the computationally
equivalent MSXF-GA results reported ia9] for comparison. The pruning pattern list approach
is also applied to other Taillard’s benchmarks of the same sizes, and the similar behaviors were
observed for most of the cases. The results are summarized in Bigy& & he parameters used
are the same as in the ta041 and ta051 cases and the results are averaged over 10 replications.
The results of TS with the pruning pattern list generally outperform the results of TS without the
pruning pattern list , except for the ta057 problem, where tierdince is not so significant.

12.6 Concluding Remarks

The pruning pattern list approach to the makespan-minimizing permutation flowshop scheduling
problem is proposed and embedded into a Tabu Search method. The preliminary experimen-
tal results demonstrate th&ectiveness of the proposed approach. Future research will aim to
implement an way to féciently scan the pruning pattern list to find a match quickly, because
currently the scanning time becomes not negligible as the problem size increases. The pro-
posed approach can also be embedded into GAs. However, the implementation details including
whether each individual should have its own pruning pattern list and should occasionally ex-
change it with others, or a single list should be shared by all the members in the population are
yet to be investigated. It is also expected to apply the pruning pattern list approach to the jobshop
scheduling problem.

108 Chapter 12. Tabu Search with a Pruning Pattern List for the Flowshop Scheduling Problem

ta041 ta051

makespan

3930

makespan

3052

3048

3920

3044

3040 3910

3036

3900

3032

—

S without pruning pattern list

3028 — A== 7 TSwithout jpruning|pattern |ist

3
. 3890 !_.‘
o Y e, / -":.". /
T AP 1, / MSXF-GA
2020 hal R ., 3880 it L y
h o, femn / TS with pruning pattern list
\ TS with pruning pattern |ist =, Rl I
3016 Y =,
N 3870 oy =
R TPSR. !..' *uofl
ey | I AL E L
8012 S —— -"1-‘ 2 T A -
3008 3860 m——N
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 X 7q0
iterations iterations

Figure 12.2:The time evolutions of makespans for the ta041 (50 jobs and 10 machines) problem
averaged over 30 tabu search runs with and without the pruning pattern list (left). The time
evolutions for the ta051 (50 jobs and 20 machines) problem averaged over 10 tabu search runs
and the computationally equivalent MSXF-GA runs for comparison (right).

12.6. Concluding Remarks 109

Cmax ta052 Cmax ta053 Cmax ta054
3760 3705 3785
3750 3695 3775
3730 TS 3675 \ TS 3755 \ TS
TS+PL - 5 Y
3720 3665 / TSHPL q745 | % , TS+PL
N EINL s
3710 P 3655 3735 [
0 200 400 600 0 200 400 .600 . 0 200 400 600
iterations Iterations Iterations
Cmax ta055 Cmax ta056 Cmax ta057
3685 3750 3770
3675 3740 3760
3665 3730 3750
L "’ 3710-; TS 3730 TSTPL
3635-% TS+PL !]
o SdoZ 7 3100 \\g,/ TSHPL 370 kg_‘/ r's
17 3600 T y e
. | AL
36150 200 400 600 0 200 400 600 3100 200 00 600
iterations Iterations iterations
Cmax ta058 Cmax ta059 Cmax ta060
3760 3815
=
3750 3805 3805
3740 3795 3795
|~
o NIk W A
\x\ /I S+PL ;’ \ /l /I S+PL 3775 -.,_“‘// TS+PL
3710 L 3165 “oo..
3700 ——— 5 —T— 3765 ==
0O 200 400 600 375”o 200 400 600 . 0 200 400 600
Iterations Iterations Iterations

Figure 12.3:The time evolutions for the other nine Taillard problems of 50 jobs and 20 machines
(ta052 — ta060) averaged over 10 tabu search runs with (labeleB)Sand without (labeled
TS) the pruning pattern list.

Chapter 13

Conclusions

In this thesis, we have investigated various approaches to solve scheduling problems by meta-
heuristics, including Genetic Algorithms, Simulated Annealing and Tabu Search, and demon-
strated the ffectiveness of the proposed methods. We have basically started from a simple
problem-independent approach to more tailored problem-specific ones that involve more domain
specific knowledge of the scheduling problem.

The key features of the proposed methods include flfextive use of the concept of active
schedule and the GT algorithm as well as the concept of critical path and blocks. The use of
these problem-specific knowledge greatly improves the performance of the proposed methods.
This is because the use of problem-specific knowledge enables to reduce the size of the search
space.

It appears to be always desirable to keep the size of the search space as small as possible.
For example, it is moref@cient to search in the sub space of active schedules rather than the
space of all the semi-active schedules. The use of the critical block neighborhood reduces the
size of the neighorhood. TS also reduces the neighborhood size by temporally eliminating some
of the members in the neighborhood as “tabu”. Likewise, the pruning pattern list introduced in
Chapterl2 also provides a mechanism to reduce the neighborhood size by eliminating already
searched and no longer interesting solutions from the neighborhood. In GAs, a redundant encod-
ing of phenotype to genotype should be avoided because it increases the size of the search space
in which more than one genotypes correspond to the same phenotype. A time-consuming gene
decoding process as well as allowing fatal genotypes to be generated and later to be repaired
must be avoided.

That said, a simple approach presented in Chaptesinnot be dismissed. Because it is
implemented easily and sometimes it is more robust, especially in the real-world situation the
objective function becomes more complicated and incorporating its domain specific knowledge
into the search structure may become mofgaiilt.

Another key feature is the hybrid of GAs and other local search methods such as SA and
TS. It appears more promising to consider such hybrid rather than adhering to a single approach.
In fact, GAs are known to be unsuited for fine-tuning structures which are very close to optimal
solutions as opposed to SA and TS. On the other hand, SA and TS are inherently serial algorithms
and not straight-forward to be parallelized. Thus, the MSXF method proposed in Chaster

110

111

new approach for Genetic Local Search would be promising. In this framework, each individual,
or search agent in the population, performs local search using Srahfl as a main search
engine. Whereas crossover operates occasionally on the solutions of two selected individuals
in the population and produces a new solution, which is then used as an initial solution for the
subsequent local search. Here, the role of the crossover is to exchange informations between
the search agents which otherwise perform independent local search in parallel, rather than to
perform search itself as in the conventional GAs. One promising future direction might be to
consider multiple parents in the MSXF.

Recently, the factory automation has been so advanced that each machine has self diagnos-
tic sensors as well as a network interface and is monitored online even remotely. The flexibility
and the accuracy of controlling machines for reconfiguration and rescheduling are also improved.
Therefore, the need for generating diictent and fine-tuned schedule in reasonable time is more
envisaged. However unfortunately, the jobshop and flowshop scheduling problems investigated
in this thesis might be too simplistic compared to the real-world problems that have more com-
plicated constraints, more flexible objective functions and more dynamic features. It is highly
expected to extend these approaches to incorporate more realistic settings. The author believes
that the ideas presented in this thesis, at least some of them, will be helpful for future research.

Bibliography

[1] D. Applegate and W. Cook. A computational study of the job-shop scheduling problem.
ORSA Journal on Computinyol. 3, No. 2, pp. 149-156, 1991document)1.1, 2.8, 2.6,
7.6,8.3.29.49.4.2

[2] B. Giffler and G.L. Thompson. Algorithms for solving production scheduling problems.
Operations Researchol. 8, pp. 487-503, 1960L.1, 2.2

[3] C. Fischer and G.L. Thompson. Probabilistic learning combinations of local job-shop
scheduling rules. Inndustrial Schedulingpp. 225-251, Englewood @&is, N.J., 1963.
Prentice-Hall.1.1

[4] J.F. Muth and G.L. Thompsonindustrial Scheduling Prentice-Hall, Englewood Gfs,
N.J.,1963.1.1,2.8 7.6,8.3.1,9.4

[5] G.H.Brooks and C.R. White. An algorithm for finding optimal or near optimal solutions to
the production scheduling problemihe Journal of Industrial Engineerinyol. 16, No. 1,
pp. 34-40, 19691.1

[6] E. Balas. Machine sequencing via disjunctive graphs: an implicit enumeration algorithm.
Operations Resear¢chol. 17, pp. 941-957, 1969..1, 6.3

[7] J.R. Barker and G.B. McMahon. Scheduling the general job-sMgnagement Science
Vol. 31, No. 5, pp. 594-598, 1985.1

[8] J. Carlier and E. Pinson. An algorithm for solving the job-shop problétanagement
Science\Vol. 35, No. 2, pp. 164-176, 1989.1

[9] P. Brucker, B. Jurisch, and B. Sievers. A branch & bound algorithm for the job-shop
scheduling problemDiscrete Applied Mathematic¥ol. 49, pp. 107-127, 19941.1, 2.5,
6.3,7.6

[10] P. Martin and D.B. Shmoys. A new approach to computing optimal schedules for the job-
shop scheduling problem. the 5th International IPCO Conferencpp. 389—403, 1996.
1.1

[11] J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop probieopean
Journal of Operational Researchol. 78, pp. 146-161, 1994..1

112

Bibliography 113

[12] P.J.M. van Laarhoven, E.H.L. Aarts, and J.K. Lenstra. Job shop scheduling by simulated
annealing.Operations Research/ol. 40, No. 1, pp. 113-125, 1992..1, 2.3, 6.3, 7.5.2
75.27.6

[13] H. Matsuo, C.J. Suh, and R.S. Sullivan. A controlled search simulated annealing method
for the general jobshop scheduling probleBepartment of Management, The University
of Texas at Austinvol. Working Paper, 03-04-88, , 1988.1, 7.6, 7.7

[14] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job shop schedul-
ing. Management Scienc¥®ol. 34, No. 3, pp. 391-401, 1988.1, 2.3 2.6, 2.8, 7.6, 8.2

[15] F. Glover. Tabu search - part DRSA Journal on Computinyol. 1, No. 3, pp. 190-206,
1989.1.1

[16] F. Glover. Tabu search - part @RSA Journal on Computingol. 2, No. 1, pp. 4-32, 1990.
1.1

[17] E.D. Taillard. Parallel taboo search techniques for the job-shop scheduling prédbDREA
Journal on Computingvol. 6, No. 2, pp. 108-117,1994.1, 2.3, 6.3, 8.3.2

[18] M. Dell’Amico and M. Trubian. Applying tabu search to the job-shop scheduling problem.
Annals of Operations ReseardVol. 41, pp. 231-252, 1993..1,2.5,9.4.2

[19] E. Nowicki and C. Smutnicki. A fast tabu search algorithm for the job-shop problem.
Management Scienc®ol. 42, pp. 797-813, 1996..1, 2.5, 9.4.2

[20] E. Nowicki and C. Smutnicki. A fast tabu search algorithm for the permutation flow-shop
problem. European Jouranl of Operational ReseaydVol. 91, pp. 160-175, 19961.1,
10.2 10.6 12.2

[21] E. Taillard. Benchmarks for basic scheduling problesropean Journal of Operational
ResearchVol. 64, pp. 278-285, 1993..1,10.4,11.4,12.5

[22] J.H. Holland.Adaptation in Natural and Artificial Systemidnuv. of Michigan Press, 1975.
11

[23] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning
Addison-Wesley, Reading,Mass., 19861

[24] R. Nakano and T. Yamada. Conventional genetic algorithm for job shop problems. In
Proceedings of International Conference on Genetic Algorithms (ICGA [§1.)474-479,
1991.1.1,2.4,2.4,4,4.2

[25] T.Yamadaand R. Nakano. A genetic algorithm applicable to large-scale job-shop problems.
In Proceedings of The Second International Conference on Parallel Problem Solving from
Nature PPSN '92pp. 281-290, 199211, 5, 5.3

114 Bibliography

[26] N.L.J. Ulder, E. Pesch, P.J.M. van Laarhoven, J. Bandelt, H, and E.H.L. Aarts. Genetic
local search algorithm for the traveling salesman problemPdrallel Problem Solving
from Nature, 1 pp. 109-116, 19941.1, 9

[27] S. S. Panwalkar and Wafix Iskander. A survey of scheduling rulgserations Research
\Vol. 25, No. 1, pp. 45-61, 1972.2

[28] U. Dorndorf and E. Pesch. Evolution based learning in a job shop scheduling environment.
Computers Ops Re¥0l. 22, pp. 25-40, 19952.2

[29] B. Roy and B. Sussmann. Les probl‘emes d’ordonnancement avec contraintes disjonctives.
Note DS no 9 bis, SEMA, Payi$964.2.3

[30] P. Brucker.Scheduling AlgorithmsSpringer-Verlag, Berlin, 199%.5

[31] J. Carlier. The one-machine sequencing probldfaropean Journal of Operational Re-
search \Vol. 11, pp. 42-47,1982.7, 2.7

[32] S. Lawrence. Resource constrained project scheduling: an experimental investigation of
heuristic scheduling techniques (supplement). Technical report, Graduate School of Indus-
trial Administration, Carnegie Mellon University, 1984.8, 7.6

[33] S. Kobayashi, I. Ono, and M. Yamamura. Afiigent genetic algorithm for job shop
scheduling problems. [Rroceedings of 6th International Conference on Genetic Algo-
rithms and their Applications (Pittsburgh, PA)p. 506-511, 199%.1

[34] I. Yamamura, M. Ono and S. Kobayashi. Character-preserving genetic algorithms for trav-
eling salesman problem (in japanesejpurnal of Japanese Society for Artificial Intelli-
gence\Vol. 7, pp. 1049-1059, 199A.1

[35] C. Bierwirth. A generalized permutation approach to job shop scheduling with genetic
algorithms.OR Spektrumvol. 17, pp. 87-92, 199%.2

[36] C. Bierwirth, D. Mattfeld, and H. Kopfer. On permutation representations for scheduling
problems. InParallel Problem Solving from Nature, pp. 310-318, 19965.2

[37] Y. Davidor, T. Yamada, and R. Nakano. The ecological framework Il: Improving ga per-
formance at virtually zero cost. Frroceedings of 5th International Conference on Genetic
Algorithms and their Applications (Urbana - Champaigpp. 171-176, 1993%.3

[38] M.R. Garey and D.S. Johnsor€omputers and Intractability - A Guide to the Theory of
NP-Completenesg-reeman and Company, New York, 1979.

[39] C.R. (ed.) ReevesModern Heuristic Techniques for Combinatorial Problensackwell
Scientific Publications, Oxford, UK; re-issued by McGraw-Hill, London, UK., 19895.

Bibliography 115

[40] C.R. Reeves. Heuristic search methods: A reviedd.llohnson and F.O’Brien Operational
Research: Keynote Papensp. 122—-149. Operational Research Society, Birmingham, UK,
1996.6

[41] D.S. Johnson. Local optimization and the traveling salesman problent.Goos and
J.Hartmanis (Eds.) Automata, Languages and Programming, Lecture Notes in Computer
Science 443pp. 446-461. Springer-Verlag, Berlin, 19902

[42] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation
of state calculations by fast computing machindsurnal of Chemical Physi¢d/ol. 21,
No. 6, pp. 1087-1092, 1953.1

[43] P. D. Wassermameural Computing: Theory and Practic¥an Nostrand Reinhold, New
York, 1989.7.1

[44] S. Kirkpatrick, C.D.Jr. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science\ol. 220, pp. 671-680, 1983..1

[45] L. Ingber and B E.Rosen. Genetic algorithms and very fast simulated reannealing: A com-
parison.Mathematical and Computer Modelingol. 16, No. 11, pp. 87-100, 1992.3

[46] B. E. Rosen. Function optimization based on advanced simulated anna&bnikshop on
Physics and Computation, PhysComp 9£292.7.3

[47] E. H. L. Aarts and J. H. M. KorstSimulated Annealing and Boltzmann machingésley,
Chichester, 19897.4, 7.7

[48] D. Applegate. Jobshop benchmark problem set. Personal Communication,31992.

[49] J. Carlier. Ordonnancemendscontraintes disjonctivesRAIRQ Vol. 12, pp. 333—-351,
1978.7.6

[50] T. Yamada, B.E. Rosen, and R. Nakano. A simulated annealing approach to job shop
scheduling using critical block transition operators.Pimceedings of IEEE International
Conference on Neural Networks (Orlando, Floridanp. 4687-4692, 19948.3.1

[51] E.H.L. Aarts, P.J.M. van Laarhoven, J.K. Lenstra, and N.L.J. Ulder. A computational study
of local search algorithms for job shop schedulif@@RSA Journal on Computinyol. 6,
No. 2, pp. 118-125, 1994.3.2 9.4.2

[52] H. Kopfer D.C. Mattfeld and C. Bierwirth. Control of parallel population dynamics by
social-like behavior of ga-individuals. IRarallel Problem Solving from Nature, 3994.
8.3.29.4.2

[53] R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra. Job shop scheduling by local search.
Technical report, Eindhoven University of Technology, Dpt. of Math. and CS, February
1994.8.3.2

116 Bibliography

[54] C. R. Reeves. Genetic algorithms and neighbourhood sear&uolationary Computing,
AISB Workshop (Leeds, U.Kpp. 115-130, 1994.1

[55] T. Yamada and R. Nakano. A genetic algorithm with multi-step crossover for job-shop
scheduling problems. IRroceedings of the 1st IAEEE International Conference on
Genetic ALgorithms in Engineering Systems (GALESIA, '8p) 146151, 199%.1

[56] T. Yamada and R. Nakano. Scheduling by genetic local search with multi-step crossover.
In Proceedings of The Fourth International Conference on Parallel Problem Solving from
Nature (PPSN '96)pp. 960-969, 1996.1

[57] T. Yamada and R. Nakano. A fusion of crossover and local seardProbeedings of IEEE
International Conference on Industrial Technologp. 426—430, 1996.1

[58] D. Whitley. The genitor algorithm and selection pressure: why rank-based allocation of
reproductive trials is best. IRroceedings of 3rd International Conference on Genetic
Algorithms and their Applications (Arlington,VA)p. 116-121, 1989.3

[59] G. Syswerda. Uniform crossover in genetic algorithmd?doceedings of 3rd International
Conference on Genetic Algorithms and their Applications (Arlington,Ya) 2—9, 1989.
9.3

[60] J. E. Beasley. Or-library: distributing test problems by electronic ntaukopean Journal
of Operational Researchol. 41, pp. 1069-1072, 1990.4.2 10.6

[61] C. R. Reeves and C.dtn. Are long path problems hard for genetic algorithms?4tm
International Conference on Parallel Problem Solving from Natyp. 134-153, 1996.
104

[62] K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start technique for com-
binatorial global optimizationOperations Research Lettergol. 16, pp. 101-113, 1994.
104

[63] C. R. Reeves. Landscapes, operators and heuristic seamohals of Operations Research
\Vol. to appear, , 199810.4

[64] T. Jones and S. Forrest. Fitness distance correlation as a measure of praliantydi
for gas. InProceedings of 6th International Conference on Genetic Algorithms and their
Applications (Pittsburgh, PApp. 184-192, 199510.4

[65] J. Liu. A new heuristic algorithm for csum flowshop scheduling problems. Personal Com-
munication, 199711.4

[66] T. Yamada.A pruning pattern list approach to the permutation flowshop scheduling prob-
lem Kluwer academic publishers, MA, USA, 20022.1

Bibliography 117

[67] D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and traveling salesman:
The genetic edge recombination operatorPceedings of 3rd International Conference
on Genetic Algorithms and their Applications (Arlington,Vap. 133-140, 198912.4

[68] T. Yamada and C.R. Reeves. Permutation flowshop scheduling by genetic local search.
In Proceedings of the 2nd IHBEEE International Conference on Genetic ALgorithms in
Engineering Systems (GALESIA '9pp. 232—-238, 199712.5

[69] C.R. Reeves and T. Yamada. Genetic algorithms, path relinking and the flowshop sequenc-
ing problem. Evolutionary Computation journal (MIT pressyol. 6, No. 1, pp. 45-60,
1998.12.5

A List of Author’s Work

Journals

1. T.Yamada, B.E.Rosen and R.Nakano, “Critical Block Simulated Annealing for Job Shop
Scheduling (in Japanese)The Transaction of The Institute of Electrical Engineers of
Japan Vol.114-C, No.4, pp.476-482 (1994).

2. T.Yamada and R.Nakano, “Job-Shop Scheduling by Simulated Annealing Combined with
Deterministic Local Search (in Japanes@&)ansactions of Information Processing Society
of Japan Vol.37 No.4, pp. 597-604 (1996).

3. T.Yamada and R.Nakano, “Job-Shop Scheduling by Genetic Local Search (in Japanese),”
Transactions of Information Processing Society of Jap#si.38 No.6, pp. 1126-1138
(21997).

4. T.Yamada and C.R.Reeves, “Landscape Analysis of the Flowshop Scheduling Problem
and Genetic Local Search (in Japanesé@jinsactions of Information Processing Society
of Japan Vol.39 No.7, pp. 2112-2123 (1998).

5. C.R.Reeves and T.Yamada, “Genetic Algorithms, Path Relinking and the Flowshop Se-
guencing Problem Evolutionary Computation journaMIT press, Vol.6 No.1, pp.45-60,
Spring (1998).

Books

1. T.Yamada and R.Nakano, “Job-Shop Scheduling by Simulated Annealing Combined with
Deterministic Local Search,” ilMeta-Heuristics: Theory Applications Kluwer aca-
demic publishers, pp. 237-248 (1996).

2. T.Yamada and R.Nakano, “Chapter 7: Job Shop Schedulingenetic algorithms in
Engineering System$he Institution of Electrical Engineers, pp.134-160 (1997).

3. C.R.Reeves and T.Yamada, “Goal-Oriented Path Tracing Methoddgwldeas in Opti-
mization The MacGraw-Hill Companies, pp.341-355 (1999).

118

A List of Author’s Work 119

4.

T.Yamada “A Pruning Pattern List Approach to the Permutation Flowshop Scheduling
Problem,” inEssays and Surveys in Metaheuristi€kiwer academic publishers, pp. 641—
651 (2002).

International Conferences

1.

10.

R.Nakano and T.Yamada, “Conventional Genetic Algorithm for Job Shop ProblPnoes,”
ceedings of International Conference on Genetic Algorithms (ICGA, 'gp)474—-479
(1991).

. T.Yamada and R.Nakano, “A Genetic Algorithm Applicable to Large-Scale Job-Shop Prob-

lems,” Proceedings of The Second International Conference on Parallel Problem Solving
from Nature (PPSN '92)p.281-290 (1992).

. Y.Davidor, T.Yamada and R.Nakano, “The ECOlogical Framework II: Improving GA Per-

formance At Virtually Zero Cost,’Proceeding of International Conference on Genetic
Algorithms (ICGA '93) pp.171-176 (1993).

T.Yamada, B.E.Rosen and R.Nakano, “A Simulated Annealing Approach to Job Shop
Scheduling using Critical Block Transition OperatoiRfbceedings of IEEE International
Conference on Neural Networks (ICNN '94)p.4687—-4692 (1994).

. T.Yamada and R.Nakano, “A Genetic Algorithm with Multi-Step Crossover for Job-Shop

Scheduling ProblemsProceedings of the 1st IREEE International Conference on Ge-
netic ALgorithms in Engineering Systems (GALESIA,85)146-151 (1995).

. T.Yamada and R.Nakano, “Scheduling by Genetic Local Search with Multi-Step Crossover,”

Proceedings of The Fourth International Conference on Parallel Problem Solving from Na-
ture (PPSN '96)pp.960-969 (1996).

. T.Yamada and R.Nakano, “A Fusion of Crossover and Local SedPobceedings of IEEE

International Conference on Industrial Technologp.426—430 (1996).

. T.Yamada and C.R.Reeves, “Permutation Flowshop Scheduling by Genetic Local Search,”

Proceedings of the 2nd IHEEE International Conference on Genetic ALgorithms in En-
gineering Systems (GALESIA '9pp. 232-238, 1997.

. T.Yamada and C.R.Reeves, “Solving the Csum Permutation Flowshop Scheduling Prob-

lem by Genetic Local SearchBroceedings of 1998 IEEE International Conference on
Evolutionary Computatiorpp.230-234 (1998).

C.R.Reeves and T.Yamada, “Implicit Tabu Search Methods for Flowshop Sequencing,”
Proceedings of IMACS International Conference on Computational Engineering in Sys-
tems Applicationspp.78-81 (1998).

120 A List of Author’s Work

11. T. Yamada, K. Yoshimura and R. Nakano, “Information Operator Scheduling by Genetic
Algorithms,” Simulated Evolution and Learnin@roceedings of the Second Asia-Pacific
Conference on Simulated Evolution and Learning (SEAL’'B8yture Notes in Computer
Science 1585, pp. 50-57 (1999).

	1 Introduction
	1.1 Background
	1.2 Outline of the Thesis

	2 The Job Shop Scheduling Problem
	2.1 The Problem Description
	2.2 Active Schedules
	2.3 Disjunctive Graph Representation
	2.4 DG Distance and Binary Representation
	2.5 Block Property
	2.6 The Shifting Bottleneck Heuristic
	2.7 The One-machine Scheduling Problem
	2.8 The Well-known Benchmark Problems

	3 Genetic Algorithms
	3.1 Basic Concepts
	3.2 A Simple Genetic Algorithm
	3.3 The Procedure of a Simple Genetic Algorithm

	4 A Simple Genetic Algorithm for the Jobshop Scheduling Problem
	4.1 Genetic Encoding of a Solution Schedule
	4.2 Local harmonization
	4.3 Global harmonization
	4.4 Forcing
	4.5 Simple GA for the JSP
	4.6 The Limitation of the Simple Approach

	5 GT-GA: A Genetic Algorithm based on the GT Algorithm
	5.1 Subsequence Exchange Crossover
	5.2 Precedence Preservative Crossover
	5.3 GT Crossover
	5.4 GT-GA
	5.5 Computational Experiments
	5.6 Concluding Remarks

	6 Neighborhood Search
	6.1 The Concept of the Neighborhood Search
	6.2 Avoiding Local Optima
	6.3 The Neighborhood Structure for the Jobshop Scheduling Problem

	7 Critical Block Simulated Annealing for the Jobshop Scheduling Problem
	7.1 Simulated Annealing
	7.2 Critical block Simulated Annealing
	7.3 Reintensification
	7.4 Parameters
	7.5 Methodology and Results
	7.5.1 Random Search
	7.5.2 Low Temperature Greedy Search

	7.6 Performance on Benchmarks Problems
	7.7 Concluding Remarks

	8 Critical Block Simulated Annealing with Shifting Bottleneck Heuristics
	8.1 Active Critical Block Simulated Annealing
	8.2 Active CBSA Enhanced by Shifting Bottleneck
	8.3 Experimental Results
	8.3.1 Muth and Thompson's Benchmark
	8.3.2 Other Benchmarks

	8.4 Concluding Remarks

	9 Scheduling by Genetic Local Search with Multi-Step Crossover Fusion
	9.1 Multi-step crossover fusion
	9.2 Scheduling in the reversed order
	9.3 MSXF-GA for Job-shop scheduling
	9.4 Benchmark Problems
	9.4.1 Muth and Thompson benchmark
	9.4.2 The Ten Tough Benchmark Problems

	10 Permutation Flowshop Scheduling by Genetic Local Search
	10.1 The Neighborhood Structure of the FSP
	10.2 Representative Neighborhood
	10.3 Distance Measures
	10.4 Landscape analysis
	10.5 MSXF-GA for PFSP
	10.6 Experimental results
	10.7 Concluding Remarks

	11 Csum Permutation Flowshop Scheduling by Genetic Local Search
	11.1 Introduction
	11.2 Representative Neighborhood
	11.3 Tabu List Style Adaptive Memory
	11.4 Experimental Results
	11.5 Concluding Remarks

	12 Tabu Search with a Pruning Pattern List for the Flowshop Scheduling Problem
	12.1 Introduction
	12.2 Tabu Search
	12.3 Pruning Pattern
	12.4 Pruning Pattern List Approach
	12.5 Experimental Results
	12.6 Concluding Remarks

	13 Conclusions
	A List of Author's Work

