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Abstract— In this paper a new metaheuristic method is proposed
to solve the classical permutation flowshop scheduling problem with
the objective of minimizing sum of completion times. The representa-
tive neighbourhood combines the stochastic sampling method mainly
used in Simulated Annealing and the best descent method elaborated
in Tabu Search and integrates them naturally into a single method.
The method is further extended into the Genetic Local Search frame-
work by using a population and a special crossover operator called
multi-step crossover fusion. Computational experiments using bench-
mark problems demonstrate the effectiveness of the proposed method.
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1. Introduction

In the last two decades, new approximation methods
such as Simulated Annealing (SA), Genetic Algorithms
(GA) and Tabu Search (TS) have been successfully applied
to combinatorial optimization problems for which classical
methods such as Branch and Bound did not work effec-
tively. These methods, which were previously studied in
different communities and different contexts, are now col-
lectively called Meta-Heuristics (MH) to be studied in a sin-
gle framework. While sharing the core features in common,
they have different characteristics such as SA’s stochastic
sampling, GA’s population-based search strategy and TS’s
adaptive memory. It is natural to assume that a very power-
ful algorithm can be constructed if one can integrate these
characteristics together into a single algorithm, because they
are not mutually exclusive but rather compatible.

In this paper, we propose one approach to construct such
a powerful unified algorithm to solve the permutation flow-
shop scheduling problem (PFSP). In Section 2, the flowshop
scheduling problem minimizing sum of completion times
is defined and its neighbourhood structure is discussed in
Section 3. Using this neighbourhood structure, a stochastic
local search algorithm is proposed as a base algorithm in
Section 4, and then this algorithm is extended to include TS
in Section 5 and then GA or Genetic Local Search (GLS) in
Section 6. Experimental results using Taillard’s benchmark
problems are shown in Section 7.
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2. The permutation flowshop scheduling prob-
lem
The permutation flowshop scheduling problem (PFSP)

treated in this paper is often designated by the symbols
n/m/P/Obj, wheren jobs have to be processed onm ma-
chines in the same order.P indicates that only permutation
schedules are considered, where the order in which the jobs
are processed is identical for all machines. Hence a sched-
ule is uniquely represented by a permutation of jobs.Obj
describes the performance measure by which the schedule
is to be evaluated—the objective function. For example,
n/m/P/Cmax is the problem of minimizing the makespan
Cmax, while n/m/P/Csum is the problem of minimizing
the sum of the completion timesCsum.

We have already proposed an efficient method to solve
then/m/P/Cmax in [1], [13]. In this paper we deal with
the n/m/P/Csum. Compared to theCmax problem, the
Csum problem is more difficult to optimize, mainly because
the calculation of the objective function is more time con-
suming, and problem specific knowledge such as critical
blocks cannot be used. Only some constructive algorithms
based on heuristic rules such as LIT and SPD are known in
the literature [2]. Recently J.Liu proposed a new construc-
tive method based on, and consistently better than, LIT and
SPD [3].

3. Neighbourhood structure
A neighbourhoodN(x) of a pointx in a search space can

be defined as a set of new points that can be reached fromx
by exactly one transition or move (a single perturbation of
x). One of the well-known transition operators for PFSP is
theshift operatorwhich takes a job from its current position
and re-inserts it in another position. The neighbourhood of
a schedules induced by the shift operator is the set of all
schedules obtained froms by the operator. For each ofn
jobs, there aren − 1 possible positions to be re-inserted;
the size of this neighbourhood is thusn× (n− 1), which is
rather too big for even moderate-sized problems.

3.1. Representative neighbourhood

Nowicki and Smutnicki originally proposed therepre-
sentativeneighbourhood method for theCmax problem[4].
In their approach, a reduced neighbourhood is generated
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2from the original neighbourhood by clustering its members
and choosing the best from each cluster as a representative.
We adopt this method for theCsum problem as shown be-
low.

Let s be a job sequence of the current solution, ands[i, k]
be a new job sequence obtained froms by moving a job
from theith position ins and re-inserting it in thekth po-
sition. Na

i (s) andN b
i (s), subsets ofN(s), are defined as

follows:

Na
i (s) = {s[i, k] | i < k ≤ n},N b

i (s) = {s[i, k] | 1≤ k < i}.

Thus the original neighbourhoodN(s) is divided into clus-
ters consisting ofNa

i (s) andN b
i (s). Let Na

i (s) andN b
i (s)

be one of the best members inNa
i (s) andN b

i (s) respec-
tively. The representative neighbourhoodN∗(s) can be de-
noted as:

N∗(s) = {Na
i (s) | 1 ≤ i < n} ∪ {N b

i (s) | 1 < i ≤ n}.

In most local search algorithms, the NS operators to
choose a new member from the neighbourhood of the cur-
rent solution can be categorized into two types according
to their choice criteria [5] : one is best descent, and the
other is first descent. The best descent method scans all
the members in the neighbourhood at once and choose the
best as a new current solution. This is suitable when the
neighbourhood size is small and the cost of evaluating all
the members is negligible. Tabu search can be seen as an
extension of this method. The first descent method selects
one member (at random) and accepts it if it is sufficiently
good, otherwise selects another one. This can be used even
when the neighbourhood size is large. The stochastic sam-
pling in stochastic local search including SA can be seen as
an extension of this method. The representative neighbour-
hood fills the gap between these two criteria: a clusterNi(s)
is chosen randomly by using first descent, then best decent
is applied to evaluate all the members inNi(s) of which the
best is chosen as a representative. Figure 1 illustrates this
process. As we will see in the later section, this enables the
TS and a stochastic local search method to integrate into a
single unified method.

4. Local search
This section and the next two sections are devoted to a

construction of an algorithm to solve theCsum permuta-
tion flowshop scheduling problem effectively. Here we start
from a simple local search method and then it will be ex-
tended to a more powerful algorithm in the later sections.

The base local search algorithm is constructed as a
stochastic method which is similar to SA, where a member
y from the neighbourhoodN(x) of the current solutionx is
selected at random and tested if it is good enough to be ac-
cepted as a new current solution according to the Metropolis

s

Ni(s)

1. chooseNi(s) at random
3. choose the best as

a representative

2. evaluatea
ll

in N i(s
)

Fig. 1. Representative neighbourhood

criterion. That is,y∈N(x) is accepted with probability 1 if
V (y) < V (x), whereV (·) is the objective function to be
minimized, otherwise with probability

PT (y)=exp(−∆V/T ),where∆V =V (y)−V (x) . (1)

HerePT is called theacceptance probability. In SA, the
parameterT (called thetemperature) decreases to zero fol-
lowing an annealing schedule as the number of iterations
increases. A very long time is required for SA to converge
to a high-quality solution, so a more practical approach is to
keepT constant:T = c. Howeverc is problem dependent,
and it is difficult to predict an appropriate value. The outline
of this algorithm is described in Figure 2.

In our stochastic local search,T is determined adaptively
by an observed value calleduphill ratio rup [6]. rup is a
ratio of the number of recently accepted non-improving so-
lutions over the number of recently accepted both improv-
ing and non-improving solutions. Given a constantRup as
a target uphill ratio (for exampleRup = 0.25), we try to
keep the difference betweenrup and its target valueRup:
|rup − Rup| as small as possible throughout the search by
adjustingT adaptively. To be more concrete: assuming that
rup is not very different fromRup (i.e Rup/rup is within a
reasonable range), we updateT asT = T ∗ (Rup/rup) when
|rup −Rup| > ε (ε is a small constant,0.01 for example).

5. Tabu search

The simple stochastic local search algorithm described
above does not make use of memory, either short term or
long term, as Tabu Search (TS) does. The use of the rep-
resentative neighbourhood makes it easy to have tabu-list
style adaptive memory as in the TS.

If a solutions[i, k] generated from the current solution
s by moving a jobj = s[i] to thekth position is accepted,
the pair(j, i), i.e. the job and its original position, is stored
on the top of a list of lengthl and recorded astabu. The
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• Select a starting point:x = xbest = x0.
do

do
• Select a pointy∈N(x) at random.
• Accepty with probability 1 ifV (y)≤V (x),

and with probabilityPT (y) otherwise.
until y is accepted.

• Setx = y.
• If V (x) < V (xbest) then setxbest = x.
until some termination condition is satisfied.

Fig. 2. Stochastic local search

oldest element in the list is then deleted. In subsequent it-
erations, a solution generated by moving jobj to the ith

position should not be accepted as long as(j, i) is on the
list. In our representative neighbourhood scheme, this is
achieved by excluding the tabu solution from the calculation
of the representative best solution (Na

i (s) and N b
i (s)) so

that the representative neighbourhood will contain no tabu
solutions. Because the tabu solutions have already been ex-
cluded from the representative neighbourhood, there is no
need to modify the stochastic local search procedure de-
scribed in Section 4 by this modification.

6. Genetic local search

The local search method described above is further im-
proved by embedding it into the framework of Genetic Lo-
cal Search (GLS) or population-based local search. There is
a set ofP agents each of which performs short term multi-
start local search: each local search terminates after a fixed
number of iterationsL1 and the best solution obtained is
used as an initial starting point of the next local search.
The short term local search method used here is the one
described in Section 4 and 5. The agents occasionally ex-
change information and the information exchange has two
forms: one is calledselectionwhich passes the solution in-
formation of a successful agent to the other members in the
population, and the other is calledcrossoverwhich recom-
bines solutions from more than one agent in order to obtain
new solutions.

Algorithm 3 describes the outline of the GLS routine,
where a steady state model is used as a selection model. In
this model, the population is ranked according to theCsum

values, and two solutions are selected as parents from the
population with a probability inversely proportional to their
ranks. The algorithm would use crossover on the parents
(or use mutation on the first parent if the parents are too
close to each other) with probabilityPX (PX = 0.5 for ex-
ample) and generate a new solution, otherwise stochastic
local search is used on the first parent. The newly generated
solutionq is inserted into the population only if itsCsum

is better than the worst in the population. To avoid prema-
ture convergence even under a small-population condition,
if an individual with the sameCsum value already exists in
the population, thenq is not inserted into the population in
Step 7.

1. Initialize population: randomly generate a set ofP
permutation schedules. Sort the population members in
descending order of theirCsum values.
2. Repeat Step 3 to Step 7 until some termination condi-
tion is satisfied.
3. Select two schedulesp1, p2 from the population with
a probability inversely proportional to their ranks.
4. Do Step 5 with probabilityPX , or otherwise do
Step 6.
5. If the distance betweenp1, p2 is less thandmin, ap-
ply mutation to p1 and generateq. Otherwise, apply
crossoverto p1, p2 and generateq.
6. Apply local searchand generateq.
7. If q’s Csum value is less than the worst in the popu-
lation, and no member of the current population has the
sameCsum asq, replace the worst individual withq.
8. Output the best member in the population and termi-
nate.

Fig. 3. Genetic local search for the PFSP

The termination condition can be given, for example, as
a fixed number of iterationsL2. The local search algorithm
used is the one described in Section 4. The crossover and
mutation operators are discussed in the next subsection.

6.1. Multi-step crossover fusion

As has been observed elsewhere (see, for example, [7]),
traditional genetic crossover actually has two functions,
which we denote by F1 and F2. Firstly (F1) it focuses at-
tention on a region between the parents in the search space;
secondly (F2), it picks up possibly good solutions from that
region. Unlike traditional crossover operators, Multi-step
crossover fusion (MSXF) is a more search oriented: it is de-
signed as an extension of local search algorithm described
in section 4, but has the functions F1 and F2, so well call
it ascrossoverhere. In this section we review MSXF only
briefly. Please refer to [8], [9], [1], [10], [13] for more
detail.

MSXF is defined in a problem-independent manner us-
ing a neighbourhood structure and a distance measure, both
of which are very common for most combinatorial opti-
mization problems. Let the parent solutions bep1 andp2,
and let the distance between any two individualsx andy
bed(x, y). A short term local search is carried out starting
from p1 and usingp2 as a reference point as follows. First
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x is set top1. All members inN(x) are sorted in ascending
order ofd(yi, p2) so thatyi∈N(x) with a smaller indexi has
a smaller distanced(yi, p2). One of the membersyi∈N(x)
is selected with a probability inversely proportional to the
index i. Thenyi is accepted according to the Metropolis
criterion in Equation (1). As previously suggested, the ter-
mination condition can be given by, for example, a fixed
number of iterationsL1 The best solutionq is used in the
next generation (see Figure 4).

• Let p1, p2 be the relevant solutions.
Setx = q = p1.
do
• For eachyi∈N(x), calculated(yi, p2).
• Sortyi∈N(x) in ascending order ofd(yi, p2).
do
• Selectyi from N(x) with a probability
inversely proportional to the indexi.
• CalculateV (yi) if V (yi) is unknown.
• Acceptyi with probability 1 ifV (yi)≤V (x),
and with probabilityPT (yi) otherwise.
• Change the index ofyi from i to n,
and the indices ofyk (k ∈ {i + 1, . . . , n})
from k to k − 1.

until yi is accepted.
• Setx = yi.
• If V (x) < V (q) then setq = x.
until some termination condition is satisfied.
• q is used in the next generation.

Fig. 4. Multi step crossover fusion

In contrast with the stochastic local search described in
Figure 2, MSXF carries out a short termnavigatedlocal
search starting from one of the parent solutions to find new
good solutions, where the other parent is used as a reference
point so that the search direction is biased toward the par-
ent. Therefore the stochastic local search is a fine-grained
search aroundp1, whereas MSXF performs more coarse-
grained search but in more wider area betweenp1 andp2. It
should be noted that crossover and local search are treated
equally in Figure 3, especially whenPX = 0.5. The pro-
posed method makes use of the combination of these two
search methods of different focus and preliminary experi-
ments suggests that the valuePX = 0.5 is appropriate for
our problem.

It is pertinent to note that the approach of generating so-
lutions from search paths joining parent solutions was first
proposed in the scatter search method of Glover [11], which
also included the strategy of using heuristics to improve the
offspring (as later incorporated in Guided Local Search).
The use of neighborhood spaces as the basis for such search
paths was proposed in the extension of scatter search called

path relinking, as described in the context of tabu search
in Glover and Laguna [12]. MSXF may equally well be
viewed from the perspective of path relinking (see [13]).

6.2. Multi-step mutation fusion

Mutation is nearly always regarded as an integral part
of a GA. In our case, we make use of mutation only when
parents are too close to each other. In such circumstances,
MSXF is not applicable as the number of possible neigh-
bours is severely curtailed—in the limit, where the distance
is just one move, there is of course no path at all. In such
cases (defined to be when the distance was less than a value
dmin), a mutation operator calledMulti-Step Mutation Fu-
sion (MSMF) is applied with the aim of diversifying the
search. MSMF can be defined in the same manner as MSXF
except that the neighbours ofx are sorted indescendingor-
der ofd(yi, p2), and the mostdistantsolution is stored and
used in the next generation instead ofq, if q does not im-
prove the parent solutions. From a path relinking viewpoint,
we are attempting to extrapolate the path between the solu-
tions, rather than (as normal) to interpolate it.

7. Experimental Results
We applied our method to some of Taillard’s bench-

mark problems (ta problems, in short) [14]. First it was
applied to relatively easy problems from ta001 to ta030
(the number of jobs is 20 and the number of machines is
5, 10 and 20: denoted by 20x5, 20x10 and 20x20). Six
runs were carried out for each problem with different ran-
dom seeds. The parameters used in these experiments are:
P = 5,L1 = 1000,L2 = 700, PX = 0.5 and the length of
the tabu listl = 7.

Here quite consistent results were obtained, i.e. almost
all of the 6 runs converged to the same job sequence in a
short time (from a few seconds to a few minutes) before the
limit of L2 = 700 was reached on a HP workstation. The
best results (and they are also the average results in most
cases) are reported in Table I together with the results ob-
tained by the constructive method (NSPD) due to J.Liu [3].

Problems ta031 to ta050 (50x5 and 50x10 problems) are
much more difficult and the best results were different in
each run. Ten runs were carried out for each problem with
different random seeds. The parameters used in these exper-
iments were:P = 30,L1 = 10000,L2 = 700, PX = 0.5. It
takes 45 minutes per run for 50x5 problems (ta031 to ta040)
and 90 minutes for 50x10 problems (ta041 to ta050).

It is difficult to say how good these solutions are, in other
words, how far they are from the global optima. Even for
the easier problems in Table I, there is no guarantee that
the best solutions obtained so far are optimal, although we
believe that they are at least very close to being so. For
the problems in Table II, it is almost certain that our best
results are not optimal. In fact we found one solution of



5TABLE I
Taillard’s benchmark results (ta001 – ta030)

prob best NSPD prob best NSPD prob best NSPD
001 14033 14281 011 20911 21520 021 33623 34119
002 15151 15599 012 22440 23094 022 31587 32706
003 13301 14121 013 19833 20561 023 33920 35290
004 15447 15925 014 18710 18867 024 31661 32717
005 13529 13829 015 18641 19580 025 34557 35367
006 13123 13420 016 19245 20010 026 32564 33153
007 13548 13953 017 18363 19069 027 32922 33763
008 13948 14235 018 20241 21048 028 32412 33234
009 14295 14552 019 20330 21138 029 33600 34416
010 12943 13054 020 21320 22212 030 32262 33045

TABLE II
Taillard’s benchmark results (ta031 – ta040)

prob best average NSPD prob best average NSPD
031 64860 64934.8 66590 041 87430 87561.4 90373
032 68134 68247.2 68887 042 83157 83305.8 86926
033 63304 63523.2 64943 043 79996 80303.4 83213
034 68259 68502.7 70040 044 86725 86822.4 89527
035 69491 69619.6 71911 045 86448 86703.7 89190
036 67006 67127.6 68491 046 86651 86888.0 91113
037 66311 66450.0 67892 047 89042 89220.7 93053
038 64412 64550.1 66037 048 86924 87180.5 90614
039 63156 63223.8 64764 049 85674 85924.3 91289
040 68994 69137.4 69985 050 88215 88438.6 91622

Csum = 64803 for problem ta031 by an overnight run.

8. Conclusions
A new genetic local search method is proposed to solve

theCsum permutation flowshop scheduling problem. This
method effectively integrates the stochastic sampling of
Simulated Annealing, the adaptive memory using the tabu
list of Tabu Search and the population-based search of Ge-
netic Algorithms into a single unified framework as sum-
marized in Figure 5. The method is applied to Taillard’s
benchmark problems. Experimental results demonstrate the
effectiveness of the proposed method.
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