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Abstract

This paper investigates an approach to the permutation flowshop scheduling problem based
on Tabu Search with an additional memory structure called a ‘pruning pattern list’. The
pruning pattern list approach allows a better use of the critical block information. A solution
of the flowshop scheduling problem is represented by a permutation of job numbers. A pruning
pattern is generated from a solution by replacing job numbers inside a critical block with ‘wild
cards’ so that solutions that ‘match’ the pattern would be excluded from the search. A set
of pruning patterns, which is called a ‘pruning pattern list’, is used to navigate the search by
avoiding solutions that would match any pattern on the list. Computational experiments using
benchmark problems demonstrate the effectiveness of the proposed approach.

1 Introduction

The scheduling problem investigated in this paper is called the permutation flowshop scheduling
problem (PFSP) and is conventionally designated as n/m/P/Cmax[1], where n jobs have to be
processed on m machines in the same order. The processing of each job on each machine is an
operation, which requires the exclusive use of the machine for an uninterrupted duration called the
processing time. P indicates that only the permutation schedules are considered, where the order
in which each machine processes the jobs is identical for all machines. Hence, a schedule is uniquely
represented by a permutation of jobs. The objective here is to find a schedule that minimizes the
makespan Cmax, the time at which the last job is completed on the last machine. The problem is
strongly NP-hard[1], therefore complete enumeration methods are not computationally practical
as the problem size increases. Approximation methods to solve the problem are categorized to two
types: one is constructive methods and another is iterative improvement methods. Constructive
methods have been proposed by Campbell et al.[2], Dannenbring[3] and Nawaz et al.[4]. As for
iterative improvement methods, Osman and Potts[8] and Ogbu and Smith[6] proposed simulated
annealing methods, and Widmer and Herz[7] and Taillard[10] proposed tabu search methods. More
recently, Nowicki and Smutnicki proposed a very powerful approximation method based on tabu
search[5].

In this paper, an approximation method based on Tabu Search with an additional memory
structure called “pruning pattern list” is proposed. In short, the pruning pattern list approach
allows a better use of the critical block information. A pruning pattern is constructed from a
solution represented by a permutation of job numbers by replacing some of job numbers inside
a critical block by wild cards (?-s) so that solutions that ‘match’ the pattern will be excluded
from the search hereafter. This means that any modification of a solution, regardless of inside or
outside the critical block, is discouraged if the resulting sequence would match the pattern. A list
of pruning patterns generated from good schedules collected in the course of a search process is
used to prevent the search from visiting already searched and no longer interesting region again
and again.
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2 Basic concepts

A critical path is a sequence of operations starting from the first operation on the first machine M1

and ending with the last operation on the last machine Mm. The starting time of each operation on
the path, except for the first one, is equal to the completion time of its preceding operation—that
is, there is no idle time along the path. Thus, the length of the critical path is the sum of the
processing times of all the operations on the path and equals to Cmax. There can be more than
one critical path in a schedule.

The operations on a critical path can be partitioned into subsequences, called critical blocks,
according to their associated machines. A critical block consists of maximal consecutive operations
on the same machine, or to put it more simply, a subsequence of associated jobs. Most of the
following notations have previously been used by Nowicki and Smutnicki[5]. Consider a schedule
represented by a permutation π. Let B1, . . . Bk be a set of all critical blocks that contains more
than one job and let ml be the index of the machine associated with Bl. Let π(ul) be the first job
of Bl (and the last job of Bl−1). Then the ‘inside’ of Bl, denoted by B̂l, is defined as follows:

B̂l =





Bl \ {π(ul+1)} if l = 1 and ml = 1
Bl \ {π(ul)} if l = k and ml = n
Bl \ {π(ul), π(ul+1)} otherwise.

Figure 1 shows an example of schedule π = 4, 5, 6, 1, 2, 3, 8, 7 for a problem with n = 8 jobs and
m = 6 machines represented by a grid graph, that is taken from [5]. In the figure, the vertical
axis corresponds to machines and the horizontal axis to jobs. Each circle represents an operation,
and arrows precedence relation between operations. A critical path is marked by thin lines. In
this example, there are four critical blocks B1, B2, B3, B4 that contain more than one job. B2 on
machine 3, for example, consists of four jobs 5, 6, 1 and 2, and B̂2 consists of jobs 6 and 1. Likewise
B̂4 on machine 6 consists of jobs 8 and 7.

A neighborhood N(x) of a point x in a search space can be defined as a set of new points that can
be reached from x by exactly one transition or move (a single perturbation of x). One of the well-
known transition operators for PFSP is the shift move which takes a job from its current position
and re-inserts it in another position. Let v = (a, b) be a pair of positions in π. Here, v defines a move
that removes the job π(a) from a position a and re-inserts it in a position b. If a < b, the resulting
schedule is represented by πv = π(1), . . . , π(a− 1)π(a + 1), . . . , π(b), π(a), π(b + 1), . . . , π(n), and if
a > b, πv = π(1), . . . , π(b), π(a), π(b + 1), . . . , π(a− 1)π(a + 1), . . . , π(n). A neighborhood N(V, π)
is defined as the set of all schedules obtained by shift moves in V = {(a, b) : b 6∈ {a − 1, a}, a, b ∈
{1, . . . , n}}.

Let Wl(π) be a set of moves restricted to the inside of Bl, namely Wl(π) = {(a, b) ∈ V |a, b ∈ B̂l}
and W (π) =

⋃k
l=1 Wl(π), then the so-called ‘block property’ is formulated as follows:

Property A (block property): For any schedule β, β ∈ N (W (π), π) =⇒ Cmax(β) ≥ Cmax(π).

According to property A above, no move in W (π) can directly improve schedule π. Therefore,
it is reasonable, for computational efficiency, to reduce the size of the neighborhood N(V, π) by
eliminating moves in W (π), and to use a new neighborhood N(V \W (π), π), which we call here a
“critical block neighborhood”.

3 Tabu search

Nowicki and Smutnicki [5] proposed a Tabu Search (TS) method for the PFSP. The tabu list
used in their approach is described as follows: when v = (a, b) is performed on π, a pair of jobs
(π(a), π(a + 1)) (if a < b) or (π(a − 1), π(a)) (if a > b) is stored as ‘tabu’ in the tabu list T of
length tl. Then, a move v = (a, b) cannot be performed on β if a < b and {(β(j), β(a)) | j =
a + 1, . . . , b} ∩ T 6= φ or if a > b and {(β(a), β(j)) | j = b, . . . , a − 1} ∩ T 6= φ. The neighborhood
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Figure 1: A grid graph representation of a solution to a problem of 8 jobs and 6 machines.

N(V \W (π), π), which is a subset of N(V, π), is still too big for problems of even moderate size.
Thus, it is impracticable to evaluate all the neighbors in N(V \W (π), π), so Nowicki and Smutnicki
use a subset of N(V \ W (π), π) as a neighborhood structure. Alternatively, one can make the
evaluation probabilistic: a member α from N(V \W (π), π) is selected at random and accepted if
Cmax(α) < Cmax(π), otherwise probabilistically accepted according to the Metropolis probability
Pc(α) = exp (−∆Cmax/c),where ∆Cmax = Cmax(α)− Cmax(π).

4 Pruning pattern

A pruning pattern [π]l associated with π and its critical block Bl is derived from π by replacing
the jobs that belong to B̂l by ? as follows:

[π]l(j) =

{
? if j ∈ B̂l,
π(j) otherwise.

For example, the pruning pattern corresponding to π = 4, 5, 6, 1, 2, 3, 8, 7 and B2 in Figure 1 is [π]2 =
4, 5, ?, ?, 2, 3, 8, 7. The makespan of [π]l is defined as the makespan of π, namely, Cmax([π]l) :=
Cmax(π). The ? means a wild card, and a permutation β ‘matches’ [π]l if β(j) = [π]l(j) at all but
? positions. For example 4, 5, 6, 1, 2, 3, 8, 7 and 4, 5, 1, 6, 2, 3, 8, 7 both match [π]2. [π]l and a set
of all permutations that match [π]l are identified. It is clear that N (Wl(π), π) ⊂ [π]l. The block
property can be reformulated using [π]l as follows:

Property B: For any schedule β and any pruning pattern [π]l, β ∈ [π]l =⇒ Cmax(β) ≥ Cmax([π]l).

Property C below is a corollary of Property B:

Property C: For any two pruning patterns [π]i and [φ]j , [π]i ⊂ [φ]j =⇒ Cmax([π]i) ≥ Cmax([φ]j).

Property B suggests that when a new, possibly good, solution π is found during the search, [π]l
identifies a region where no solutions are better than π, and that excluding [π]l from the search
space can reduce the size of the search space without eliminating the global optima.

5 Pruning pattern list approach

The basic idea of the pruning pattern list approach is to reduce the size of the search space effectively
through storing the ‘important’ pruning patterns that correspond to a long critical block of a good
solution. Let [π] (without suffix) be the pruning pattern that corresponds to the longest critical
block of schedule π. The pruning pattern list PL with length pl is maintained and updated as
shown in Figure 2. In the figure, N(π) represents the neighborhood of π. N(V \W (π), π) or its
subset is normally used as N(π). There is no good reason to keep patterns that are rarely accessed
in the list. Therefore such patterns are replaced by new patterns. According to property C, it is
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1. At the beginning of the search, PL is initialized as a list of empty pl elements.

2. After N(π) is calculated from π, NP (π) is initialized as N(π). For each α ∈ NP (π), if
α matches any pattern [β] ∈ PL, then α is removed from NP (π), resulting NP (π) :=
NP (π) \ α, and the ‘access count’ of [β] is incremented. NP (π) is used as the new
neighborhood of π.

3. When a cost-decreasing solution α is selected from the neighborhood NP (π) of the
current solution π (Cmax(α) < Cmax(π)), then its longest pruning pattern [α] is
stored in the list.

4. All the existing patterns [β] in the list that are subsets of a newly stored pattern [α]
([β] ⊂ [α]) are removed and substituted by empty patterns.

5. If the number of non-empty patterns on PL exceeds pl, then the least accessed
pattern [γ] is removed from the list.

Figure 2: The pruning pattern list approach to the PFSP.

also not necessary to keep pruning patterns in the list that are subsets of other patterns. Thus
they are removed.

Starting from an initial solution, the local search iteratively replaces the current solution with
one of its neighbors. In advanced local search strategies, such as Simulated Annealing (SA) and TS,
cost-increasing neighbors can be accepted as well as cost-decreasing ones. Accepting cost-increasing
moves enables the search to escape from the local optima, but this may also cause revisiting of
previously evaluated points in the search space – something that is wasteful of computing resources
in itself, and which also means the search is not adequately diversified. One of the main aims of tabu
search is to discourage such revisiting. This can be accomplished by means of an explicit ‘tabu list’
of points previously visited, but normally it is easier, and more efficient, to record specific attributes
of such points, or of moves that would lead towards them. Nevertheless, recording attributes of
the points, and not the points themselves, can risk treating even moves that are better than any
solution obtained so far as tabu. This is one of the main reasons why aspiration criteria should be
introduced into TS.

In the case of the pruning pattern list approach, property B guarantees that a move that
matches a pruning pattern is never better than the best solution obtained so far. This means that
an aspiration criterion is not necessary, and it also means that the pruning pattern list can serve
as a longer-term memory to prevent the search getting stuck in an already searched and no longer
interesting region. Unlike the tabu list, an old pattern can remain in the pruning list as long as it
is accessed frequently. If N(V \W (π), π) or its subset is used as the neighborhood of the current
solution π, it does not contain any solution that matches [π]l, even without PL. However, it is still
possible that the region [π]l would be revisited in some later stages without any better solutions
than π being found. The size of PL is fixed to pl mainly for computational efficiency. Theoretically,
NP (π) may not satisfy the connectivity property that N(V \ W (π), π) does. It should be noted
that the pruning pattern list is treated in a similar way that the population is treated in Genetic
Algorithms (GAs), especially in the steady state model [12]. The access count of the pruning
pattern corresponds to the fitness function of the individual in GAs.
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6 Experimental results

The pruning pattern list approach described in the previous section can be embedded into any local
search method, including TS, SA, and even GAs [13, 9]. Here a simple probabilistic version of the
TS described in Section 3 is used as a test case. The programs are coded in C.

The graph on the left side of Figure 3 shows the time evolution of the makespan averaged over
30 runs of the TS with and without the pruning pattern list. This uses the ta041 problem, which
is one of Taillard’s benchmarks for size 50×20 (50 jobs and 10 machines) [11]. The parameters
used are c = 3.0, tl = 7 and pl = 10. The pruning pattern list is updated after every 10000 TS
evaluations for 700 times (thus total 10000×700 TS evaluations). One run takes about 10 minutes
on an HP 700 workstation. The best and worst makespans obtained among 30 runs are 3000 and
3016 respectively when TS with the pruning pattern list is used, and 3010 and 3025 when TS
without the pruning pattern list is used. It can be seen that the pruning pattern list approach
improves both the solution quality and the speed. Without the pruning pattern list 12 runs out of
30 were trapped at a local minimum of makespan = 3025, which Nowicki and Smutnicki reported
as the new reference makespan for this problem[5]. This suggests that their TS method can also
be improved by incorporating the pruning pattern list approach.

The pruning pattern list approach is also applied to 50×20 (50 jobs and 20 machines) problems
of Taillard’s benchmarks (ta051 - ta060). The parameters used are the same as in the ta041
case and the results are averaged over 10 replications instead of 30. The results are summarized
in Table 1, where the columns labeled TS+PL and TS show the average performance with and
without the pruning pattern list respectively. The column labeled NOW shows the best makespan
reported in[5]. The results of TS with the pruning pattern list generally outperform the results of
TS without the pruning pattern list, except for the ta057 problem. As typical examples, the graph
on the right side of Figure 3 shows the time evolution of the average makespan for ta051 problem.
It also includes the computationally equivalent MSXF-GA results reported in [9] for comparison.
Figure 4 shows the time evolution for other 50×20 problems.

prob TS+PL TS NOW (best)
051 3859.4 3866.0 3875
052 3708.0 3713.4 3715
053 3653.9 3657.4 3668
054 3734.0 3737.2 3752
055 3617.1 3625.7 3635
056 3689.3 3691.7 3698
057 3712.8 3712.4 3716
058 3701.4 3706.8 3709
059 3756.9 3762.3 3765
060 3765.7 3767.3 3777

Table 1: Comparison with and without the pruning pattern list for problems size 50×20.

To see how the proposed approach behaves with growing problem sizes, the experiments are
extended to Taillard’s 100×20 (ta081 - ta090), 200×20 (ta101 - ta110) and 500×20 (ta111 - ta120)
problems. For 100×20 (ta081 - ta090), 200×20 (ta101 - ta110) problems, the results are summarized
in Table 2. Here, the pruning pattern list is updated after every 10000 TS evaluations for 160
times, which resulted in comparable and slightly better performances than those reported in [5].
The parameters used are are c = 3.0, tl = 7 and pl = 5. and the results are averaged over 10
replications. One run for each 100×20 and 200×20 problems takes about 6 and 12 minutes on an
HP 700 workstation respectively. It is observed that the computational overhead of the pruning
pattern calculation is about 8 % when pl = 5 and increases linearly as the size of PL. According to
some preliminary experiments, the performance of the algorithm seems not sensitive to the length
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of the pruning pattern list as long as pl ≥ 5. It can be seen that the results of TS with the pruning
pattern list generally outperform the results of TS without the pruning pattern list with some
exceptions, whereas the gaps between TS+PL and TS become decreasing and less significant (less
than 0.1 %).

prob TS+PL TS NOW (best) prob TS+PL TS NOW (best)
081 6270.6 6270.2 6286 101 11285.5 11305.0 11294
082 6228.9 6233.0 6241 102 11358.5 11349.6 11420
083 6309.8 6314.8 6329 103 11428.3 11430.3 11446
084 6302.5 6306.6 6306 104 11357.7 11366.9 11347
085 6358.1 6362.1 6377 105 11301.5 11310.3 11311
086 6420.8 6431.1 6437 106 11269.7 11275.0 11282
087 6328.2 6333.6 6346 107 11463.8 11459.9 11456
088 6470.1 6471.5 6481 108 11413.5 11420.9 11415
089 6327.0 6332.2 6358 109 11302.8 11313.2 11343
090 6469.3 6476.9 6465 110 11404.6 11418.3 11422

Table 2: Comparison with and without the pruning pattern list for problems size 100×20 and
200×20.

Table 2 shows the results for Taillard’s 500×20 (ta111 - ta120) problems. In the columns
TS+PL and TS, the average, best and worst results over 10 replications are reported respectively.
To keep the results comparable with those reported in [5], the number of iterations is doubled
and the pruning pattern list is updated after every 10000 TS evaluations for 320 times with the
other parameters same as 100×20 and 200×20 problems. Due to the increase both in the problem
size and the number of iterations, one run now takes about 60 minuts. The same tendencies are
observed here again: TS+PL runs are generally better than TS runs with some exceptions whereas
the gaps between TS+PL and TS become decreasing.

Finally, to see the maximal performace of the TS+PL method, the number of iterations are
doubled again for TS+PL runs only, resulting in best, worst and average makespans shown in the
columns under the label “TS+PL (long)” in Table 2.

prob TS+PL TS TS+PL (long) NOW (best)
average [best worst] average [best worst] average [best worst]

111 26324.0 [26198 26398] 26321.0 [26263 26403] 26159.6 [26139 26182] 26189
112 26687.6 [26633 26735] 26717.0 [26629 26805] 26625.5 [26600 26642] 26629
113 26465.6 [26435 26522] 26483.6 [26466 26512] 26431.4 [26417 26435] 26458
114 26547.2 [26522 26590] 26555.6 [26533 26584] 26525.0 [26520 26541] 26549
115 26371.4 [26354 26412] 26399.6 [26383 26413] 26356.2 [26354 26366] 26404
116 26589.2 [26535 26621] 26584.0 [26564 26621] 26516.3 [26498 26543] 26581
117 26432.4 [26412 26481] 26438.4 [26412 26463] 26413.0 [26412 26422] 26461
118 26678.8 [26619 26748] 26659.4 [26619 26736] 26615.9 [26615 26619] 26615
119 26149.8 [26097 26196] 26151.0 [26101 26235] 26078.8 [26050 26103] 26083
120 26600.0 [26546 26669] 26608.6 [26572 26684] 26526.4 [26497 26552] 26527

Table 3: Computational results for problems size 500×20.

7 Conclusion

The pruning pattern list approach to the makespan-minimizing permutation flowshop schedul-
ing problem is proposed and embedded into a Tabu Search method. The experimental results
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Figure 3: The time evolutions of makespans for the ta041 (50 jobs and 10 machines) and ta051 (50
jobs and 20 machines) problems

demonstrate the effectiveness of the proposed approach especially for medium-size problems. Good
performances are also observed for large-size problems, however the gap between with and without
the pruning pattern list approach seems to be decreasing, which would be left for future research.
Future research will also aim to implement more efficient ways to scan the pruning pattern list and
find a match more quickly. The proposed approach can also be embedded into GAs. However,
the implementation details including whether each individual should have its own pruning pattern
list and should occasionally exchange it with others, or a single list should be shared by all the
members in the population are yet to be investigated.
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