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ABSTRACT

This paper reports the improvements we made to our previ-

ously proposed hidden Markov model (HMM) based summa-

rization method for multi-domain contact center dialogues.

Since the method relied on Viterbi decoding for selecting ut-

terances to include in a summary, it had the inability to con-

trol compression rates. We enhance our method by using the

forward-backward algorithm together with integer linear pro-

gramming (ILP) to enable the control of compression rates,

realizing summaries that contain as many domain-related ut-

terances and as many important words as possible within a

predefined character length. Using call transcripts as input,

we verify the effectiveness of our enhancement.

Index Terms— Natural languages, Natural language in-

terfaces, Hidden Markov models

1. INTRODUCTION

Automatically summarizing calls is one of the important goals

of contact centers because it allows human operators to look

back on their exchanges with customers to improve service

skills. It also allows supervisors to check the activity of indi-

vidual operators for finding ways to improve customer sat-

isfaction. Figure 1 shows a sample call (transcript) in the

financial domain. Since such a dialogue can be quite long,

our aim is to create a short extractive summary, such as the

one shown in Fig. 2. Although there has been an emergence

of work that uses natural language processing techniques to

improve the productivity of contact centers [1, 2], little work

has focused on the summarization of calls. One exception

is [3], which uses manually created heuristic rules to extract

key utterances, such as those related to caller intentions or the

acceptance/loss of orders, and then uses those utterances to

create call logs.

In that approach, however, experts must create rules and

must do so for each business domain, which is costly and

problematic in scalability. As an alternative, we have been

promoting an approach based on hidden Markov models

(HMMs) for extractive summarization of multi-domain con-

tact center dialogues. With this approach, domain-specific

operator-caller exchanges are automatically modeled from

multi-domain dialogue data in order to perform extractive

summarization of calls [4]. In our method, to summarize

a dialogue of a given domain, we use Viterbi decoding [5]

to select utterances that are most likely to be related to that

domain in order to make a summary.

Since we used Viterbi decoding to extract all domain-

related utterances, a shortcoming of our method was its in-

ability to control compression rates, which has greatly limited

the method’s applicability. This paper tackles this problem by

utilizing, instead of Viterbi decoding, the forward-backward

algorithm [5] to assign utterances with posterior probabilities

that indicate how likely they are to be related to a certain do-

main. Then, we regard such probabilities as the real-valued

importance of utterances and formulate the summarization

problem as the maximum coverage of important utterances

and important words within a predefined length. Then, we

solve the problem by using integer linear programming (ILP),

which can find the optimal extractive summarization results

under constraints [6].

In Section 2, we briefly describe our previously proposed

HMM-based summarization method and explain the improve-

ments we made to enable the control of compression rates in

detail. In Section 3, we describe the dialogue data for train-

ing our HMMs as well as the reference data we created for

testing. In Section 4, we describe the summarization experi-

ment we performed and present the results. In Section 5, we

conclude the paper.

2. HMM-BASED EXTRACTIVE SUMMARIZATION

2.1. Previous Method

Our previously proposed HMM-based extractive summa-

rization method [4] used HMMs to model domain-specific

sequences from multi-domain dialogue data. Although a

method for HMM-based extractive summarization [7] had

been reported before ours, it can only be applied to a single

domain and training data have to be created for each domain.
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OPE: Thank you for waiting. This is Sakura at Wakaba Life

Tokyo contact center.

CAL: Excuse me.

CAL: It’s about my life insurance contract.

CAL: I’d like to change my plan.

OPE: Certainly.
...

OPE: From next month, the payment will be 25000 yen per

month. Is that okay with you?

CAL: Yes.

OPE: Right.

OPE: The new contract will come into effect from next month.

CAL: From next month?

OPE: Is that all right?

CAL: Yes, that’s fine.

OPE: Okay.

OPE: Okay then. Thank you for calling.

CAL: Thank you.

Fig. 1. Sample dialogue in the financial domain. OPE and

CAL denote operator and caller, respectively. There are 70 ut-

terances (880 characters) in this transcript when unabridged.

The dialogue was originally in Japanese and was translated

by the authors.

CAL: It’s about my life insurance contract.

CAL: I’d like to change my plan.

OPE: Your current plan is the “Iki-Iki (lively) Life EX stan-

dard plan”, is this right?

OPE: Sure. Then, could you tell me the plan you would like

to change to?

CAL: I’d like to change to the “Iki-Iki (lively) Life EX pre-

mium plan”.

OPE: Certainly.

OPE: The new contract will come into effect from next month.

CAL: Okay.

OPE: Okay then. Thank you for calling.

Fig. 2. Reference summary for the dialogue in Fig. 1.

In contrast, our method only requires dialogue data with do-

main labels and the training is done simultaneously for all

domains.

Given the dialogue data of multiple domains, we first

model utterance sequences of each domain using an HMM

and combine such HMMs into a single HMM. Here, we as-

sume that each HMM has a certain number of states that emit

utterances of an operator and the same number of states for

those of a caller. These states are connected ergodically and

the training is done using the EM-algorithm. We use this type

of HMM because it has been shown to be effective for mod-

eling two-party conversations [8]. In combining the HMMs

into a single HMM, we had three topologic variations:

ergodic: This variation connects all states in the HMMs

ergodically with equal initial/transition probabilities

(see Fig. 3 for the topology). In this paper, connecting

HMMs means connecting all states in the HMMs.
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Fig. 3. Topologies of ergodic (left) and ergodic-cs (right).
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Fig. 4. Process of concatenated training. For simplicity, the

number of domains is depicted as two.

ergodic with common states (ergodic-cs): This variation

bears similarity to the background model [9]. Here,

in addition to ‘ergodic’, it additionally has an HMM

trained from the utterances of all domains (see Fig. 3

for the topology). Hence, this additional HMM can

represent common utterance sequences across all do-

mains and makes it possible for the HMM to distin-

guish domain-specific sequences from common ones

in the case of decoding. Since this additional HMM

represents no specific domain, we call it ‘an HMM for

domain 0’ and call its states ‘common states’. Simi-

larly to ‘ergodic’, all states in this HMM are connected

to each other with equal initial/transition probabilities.

concat: This variation uses concatenated training [10] to op-

timize the transition probabilities between the states of

different HMMs. Figure 4 illustrates its process. For

K domains, an HMM for domain k (1 ≤ k ≤ K)

is paired ergodically with a copy of an HMM for do-

main 0 and retrained with the data of domain k. This

retraining reassigns the data, and, as a result, common

utterance sequences become more likely to be gener-

ated from the HMM for domain 0 and domain-specific

sequences in turn become more likely to be generated

from the HMM for domain k. Then, the K paired

HMMs are merged using the HMM for domain 0 as

a pivot with the probabilities of the HMM for domain

0 averaged over K . If the fitting of all HMM pairs has

not covered against training data, the HMMs are sepa-

rated into pairs again and retrained. Here, the transition

probabilities of the HMM for domain 0 is summed and

redistributed between the pairs.

In our previous work [4], we trained these three types of

HMMs using multi-domain contact center dialogues. Then,

to summarize a dialogue known to belong to domain k, we
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used Viterbi decoding to decode an input utterance sequence

into domain labels that indicate to which domain each ut-

terance is most likely to be related. Finally, we selected all

utterances in the dialogue that were given domain k labels.

Since we selected all utterances having a certain domain la-

bel, a shortcoming of our previous method was its inability

to control the compression rates. Note that, although con-

cat achieved the best results in [4], we reconsider all three

variations in this paper because we use a different decoding

algorithm and different references (see Section 3).

2.2. Enabling to Control Compression Rates

One simple solution to enabling compression-rate control is

to apply standard extractive summarization methods to the

extracted utterances by Viterbi decoding. For example, us-

ing ILP [6], we can optimally select utterances that cover as

many important words as possible. However, this may not be

appropriate because the utterances not selected by the Viterbi

decoding but that still contain important words would not be

included in the summary. In addition, selecting utterances

based only on its important words means that the importance

of an utterance is determined solely by its words, which may

be too simplistic because the importance of words is likely to

depend on the context of the dialogue.

We argue that an utterance has certain real-valued impor-

tance (not a binary value as in Viterbi decoding) depending

on the context and that the real-valued importance affects the

importance of words in the utterance. For example, utter-

ances concerning callers’ requests and decisions should be

valued more highly than others; therefore, the words in such

utterances should be more important. For such importance

of utterances, we propose to use the posterior probabilities

of the states of the HMM for the target domain. The pos-

terior probabilities can be calculated by using the forward-

backward algorithm [5], and they represent how likely the

utterances may have been generated from the HMM of the

domain in question. We can regard the posterior probabili-

ties as the importance of utterances because high-probability

utterances should represent key utterances characterizing the

domain.

Following this idea, we formulate the summarization

problem as the maximum coverage of important utterances

and important words. Although our formulation is similar to

that in [11], which uses position information for weighting

the words, our formulation is different in that we take into

account the flow of dialogue that can be learned from data.

In our formulation, we perform the maximization using

the following objective function:

argmax
∑

i

∑

j

mijwijzij (1)

where mij is a binary value representing whether the i-th ut-

terance contains word j, wij is the weight of word j in the

i-th utterance, and zij is a binary value representing whether

word j in the i-th utterance is included in the summary. Here,

wij is derived by

wij = weight(Ui) · weight(wj) (2)

where ‘weight’ is a function that returns the importance of

its argument, Ui is the i-th utterance, and wj is the j-th word

in the entire vocabulary within the dialogue. Here, for the

weight of Ui, we use the posterior probabilities. For the

weight of wj , we use its term frequency within the dialogue,

or as we show later, we can also employ an external dictio-

nary to create a custom weight function. In maximizing the

objective function, we have four constraints. First, we have

xi, zij ∈ {0, 1} (∀i, j) (3)

which constrains the range of decision variables. Here, xi

is a binary value representing whether the i-th utterance is

included in the summary. It is used in the second constraint

∑

i

lixi ≤ L (4)

which limits the character length of the summary. Here, li is

the character length of the i-th utterance and L is the length

limitation. Our third constraint is

xi ≥ zij (∀i, j) (5)

which represents the inclusive relationship between utter-

ances and the words in them; that is, if the i-th utterance

is not included in the summary, words in the i-th utterance

must not be included in the summary. Finally, to reduce the

redundancy of the output summary, we have

∑

i

mijzij ≤ 1 (∀j) (6)

which means that if the same words are included in the sum-

mary more than once, only one of their weights (i.e., the high-

est one for maximization) is used in the objective function.

2.3. Summarization Procedure

Using our three types of HMMs and our ILP formulation, our

HMM-based extractive summarization method is performed

as follows. See Fig. 5 for an illustration of the summarization

flow.

Let D (d1 . . . dN ) be the entire set of contact center dia-

logues, DMk (DMk ∈ DM, 1 ≤ k ≤ K) be the domain

assigned to domain k, and Udi,1 . . . Udi,H be the utterances in

di. Here, H is the number of utterances in di. To facilitate

the treatment of utterances by HMMs, we assume that the ut-

terances have been converted into topic labels Tdi,1 . . . Tdi,H

in advance. See [4] for how we do this by means of latent

Dirichlet allocation (LDA). Basically, the conversion is the

same as that used in [7], in which ‘content topics’ are assigned
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Fig. 5. Summarization flow.

to newswire sentences. From D, we train the HMMs to model

the sequences of topic labels.

Let dj (/∈ D) be the input dialogue, DM(dj) (∈ DM ) be

the table for obtaining the domain label of dj , L the length

limitation, and Udj,1 . . . Udj,Hdj
be the utterances in dj ,

where Hdj is the number of the utterances. After converting

the utterances into topic labels Tdj,1 . . . Tdj,Hdj
, we perform

the forward-backward algorithm to derive the posterior prob-

abilities Pdj ,1 . . . Pdj,Hdj
for DM(dj). At the same time, we

instantiate the weight function for words, which returns the

term frequency (TF) for a content word in dj . Alternatively,

we can use the following weight function for words:

weight(wi,DMk ) =
log(P(wi|DMk))

log(P(wi|DM\DMk))
(7)

where P(wi|DMk) denotes the occurrence probability of wi

in the dialogues of DMk, and P(wi|DM\DMk) denotes

the occurrence probability of wi in all domains except DMk.

This log likelihood ratio estimates how much a word is char-

acteristic of a given domain and therefore makes it possible

to more accurately estimate the importance of words than the

TF. Finally, using the posterior probabilities and the weight

function, we select the utterances in dj within L characters

that maximize our objective function [cf. eq. (1)].

3. DIALOGUE DATA AND REFERENCES

We collected simulated contact center dialogues conducted

between novice users (as callers) and expert operators who

had experience of working at contact centers [4]. They

talked over telephones in separate rooms. The operators were

given manuals and the users were given realistic scenarios

that showed why they were calling and what they needed.

Each scenario had a description of approximately 300 char-

acters. The dialogues ranged over six business domains:

Finance (FIN), Internet Service Provider (ISP), Local Gov-

Table 1. Training data statistics.

# dialogues utts/dialogue chars/dialogue

FIN 59 148.42 1868.37

ISP 64 108.27 1535.14

LGU 76 108.83 1179.75

MO 70 125.13 1438.33

PC 56 167.14 1891.20

TEL 66 139.55 1489.58

ALL 391 131.17 1542.32

ernment Unit (LGU), Mail Order (MO), PC support (PC),

and Telecommunication (TEL).

We collected 391 and 307 dialogues in two separate occa-

sions. All dialogues have been manually transcribed. Table 1

shows the statistics for the initial 391 dialogues. It can be seen

that dialogues can be quite long with over 100 utterances and

1000-2000 characters per dialogue; hence the need for sum-

marization. Reserving this initial set for training our HMMs,

we created reference data using the remaining 307 dialogues,

which had statistics similar to the training data. We randomly

sampled 40 dialogues for each domain (240 dialogues in to-

tal) and had a text analyst make 250- and 500-character sum-

maries by selecting utterances from the transcripts. See Fig. 2

for a sample reference.

The analyst was given the instruction: “Assume you are

the operator and make a summary by selecting utterances so

that both you and your supervisor would be able to easily

grasp what took place in a dialogue”. She was also instructed

to choose as many utterances as necessary within a given

length, although she was also allowed not to select utterances

forcefully as long as the total summary length exceeded 80%

of the target length. It took appropriately two weeks to create

the reference summaries.

To investigate the inter-annotator agreement, we also had

a second analyst create summaries for half the test dialogues

(20 dialogues for each domain; 120 dialogues in total). The

inter-annotator agreement that the two analysts chose the

same utterance in Cohen’s κ was 0.43 and 0.53 for 250-

and 500-character summaries, respectively. Although we ac-

knowledge that the agreement is not very high and we need

more concrete instructions for making summaries, the kappa

value of over 0.4 indicates that we have moderate agreement.

We use the 240 summaries created by the first analyst as our

reference data in the following experiment.

Note that in [4], we used the scenarios as references.

Using the F-measure (the harmonic mean of the precision

and recall), we performed the evaluation by assessing how

accurately the output summaries contained the content words

in the scenarios. We used scenarios as references under the

assumption that they should contain the basic content ex-

changed between an operator and a caller. However, strictly

speaking, this assumption may not hold. Therefore, in this

work, we decided to prepare references manually and perform

the most straightforward evaluation; that is, we calculate how
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Table 2. The results in F-measure for 250-character summaries averaged over the 240 test dialogues. The letters next to F-

measure values indicate statistical significance over others by a parametric paired t-test; ‘aa’ denotes statistical significance over

(a) with p< 0.01 and ‘a’ with p< 0.05, and likewise for ‘b’ through ‘f’. The best value is indicated by bold font.

(a) even-TF (b) viterbi-TF (c) prob-TF (d) even-DD (e) viterbi-DD (f) prob-DD

ergodic 0.190 0.236aa 0.232aa 0.249aac 0.259aabbcc 0.260aabbccd

ergodic-cs 0.190 0.241aa 0.236aa 0.249aa 0.268aabbccdd 0.265aabbccdd

concat 0.190 0.237aa 0.258aabb 0.249aa 0.262aabbd 0.271aabbcdd

Table 3. The results in F-measure for 500-character summaries. See the caption of Table 2 for the notations.

(a) even-TF (b) viterbi-TF (c) prob-TF (d) even-DD (e) viterbi-DD (f) prob-DD

ergodic 0.379 0.405aa 0.406aa 0.423aabbcce 0.414aab 0.430aabbccee

ergodic-cs 0.379 0.411aa 0.412aa 0.423aabce 0.414aa 0.435aabbccddee

concat 0.379 0.400aa 0.437aabbdee 0.423aabbee 0.409aa 0.433aabbdee

accurately correct utterances are selected from dialogues by

using F-measure.

4. EXPERIMENT

We performed an experiment to verify our summarization

method. Using the transcripts of 391 dialogues (cf. Table 1),

we trained three types of HMMs; namely, ergodic, ergodic-

cs, and concat. Here, the HMM for each domain has two

states (one state each for an operator and a caller), and, for

ergodic-cs and concat, we set the number of common states

to six (three states each for an operator and a caller), which

led to good performance in [4]. The number of topics for

LDA was 100.

For comparison, we also prepared three variations for as-

signing the weights for utterances. They are ‘even’, ‘viterbi’,
and ‘prob’. Here, ‘even’ gives equal weights to all utterances

and simulates the case when we apply a standard ILP-based

summarization to all utterances in a dialogue. The second

variation, ‘viterbi’, gives 1.0 to the utterances selected by

Viterbi decoding and a very small flooring value (1.0−6) to

unselected ones. This simulates our previous work [4] based

on Viterbi decoding. A flooring value was added here to avoid

having zero weights, which can result in too short summaries.

Our third variation, ‘prob’, is our newly proposed one and

uses the posterior probabilities for the weights of utterances.

Here, zero probabilities are also floored. In addition, we have

two variations for assigning the weights for words; namely,

one that uses the TF and another that uses the weight function

of eq. (7). We call the latter variation the domain dictio-

nary (DD). As a result, we have six variations of weight func-

tions: (a) even-TF, (b) viterbi-TF, (c) prob-TF, (d) even-DD,

(e) viterbi-DD, and (f) prob-DD.

4.1. Results

Tables 2 and 3 show the summarization results for the 240

test dialogues (transcripts) in F-measure for 250- and 500-

character summaries, respectively, for all variations. It can

be seen that the variations that use the posterior probabilities

(i.e., prob and prob-DD) outperform others in most cases,

especially for 500-character summaries, although there is

no statistical significance between viterbi/prob variations for

250-character summaries. This is reasonable when consid-

ering that only a small number of strongly domain-related

utterances can be included in such short summaries and that

the utterances given high weights by the forward-backward

algorithm are also selected by Viterbi decoding. When we fo-

cus on how the weights of words affect the results, we clearly

see that the incorporation of the domain-dependent weight

function is effective. This fact also confirms our assumption

that having domain-related elements makes good summaries.

Overall, our new summarization method (prob/prob-DD) pro-

duced good summaries with different compression rates and

that using posterior probabilities made solid improvements.

4.2. Impact of HMM Topologies

When we look into the impact of HMM topologies, we see a

rather interesting phenomenon: when the common states are

introduced (i.e., ergodic-cs), the performance goes up for both

‘viterbi’ and ‘prob’ variations. However, when concatenated

training is applied, the performance for viterbi and viterbi-

DD drops, whereas that for prob and prob-DD generally im-

proves.

To investigate why this is, we made a breakdown of cor-

rectly selected utterances categorized by which HMM is re-

sponsible for selecting them in Viterbi decoding (see Fig. 4).

We found that, in concat, many correct utterances were gener-

ated from domain 0 compared to ergodic-cs. We consider that

because too many utterances were labeled as domain 0 (i.e.,

having only the flooring values), concat could only create its

summaries using a limited number of domain-related utter-

ances, leading to its degraded performance. More utterances

had to be considered for inclusion. Following this result, we

reviewed our reference summaries and found that there are a

fair number of utterances that look common across domains,

such as ‘yes’ and operators’ thanking and acknowledging;
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Table 4. Breakdown (in ratios) of correctly selected ut-

terances categorized by which HMM (HMM for domain 0,

HMM for the target domain, or the HMMs for other domains)

is estimated to have generated them in Viterbi decoding.

250-character summary

domain 0 target-domain other-domain

ergodic-cs 0.384 0.411 0.205

concat 0.491 0.372 0.137

500-character summary

domain 0 target-domain other-domain

ergodic-cs 0.422 0.377 0.200

concat 0.522 0.343 0.135

Table 5. Ratio of utterances not selected by Viterbi decoding

and whose posterior probabilities remained 0 or became more

than 0 when the forward-backward algorithm is used.

remained 0 became more than 0

ergodic 0.000 1.000

ergodic-cs 0.000 1.000

concat 0.486 0.514

however, such utterances were nonetheless selected by the an-

alyst because they appear close to important utterances, such

as requests and decisions. Since concat is trained so as to dis-

criminate common utterance sequences from domain-specific

sequences as much as possible, when we use Viterbi decod-

ing, such common-looking utterances were forcefully catego-

rized as common (domain 0) and were not selected. In con-

trast, prob and prob-DD performed well with concat because

such utterances were given certain (i.e., more than the floor-

ing value) weights because they are common but not totally

so. The combination of prob and concat can perform such

delicate utterance selection, leading to its good performance.

Table 5 shows the ratio of utterances that are not se-

lected by Viterbi decoding and whose posterior probabilities

remained 0 or became more than 0 by using the forward-

backward algorithm. The table indicates that, for ergodic

and ergodic-cs, the forward-backward algorithm gave some

posterior probabilities for all utterances. This is reasonable

because the HMM for domain 0 was trained using the data

of all domains. However, for concat, about a half of the ut-

terances still had zero posterior probabilities, which indicates

that concat is successfully distinguishing totally common ut-

terances from less common ones, enabling it to successfully

create summaries when used with prob and prob-DD.

5. CONCLUDING REMARKS

This paper reported improvements we made to our pre-

viously proposed HMM-based summarization method for

multi-domain contact center dialogues. For the control of

compression rates, we formulated the summarization prob-

lem as the maximum coverage of important utterances and

important words and used the forward-backward algorithm

to derive posterior probabilities that represent how likely

utterances in a dialogue belong to a particular domain and

used those probabilities to represent the importance of utter-

ances. Experimental results showed that our revised method

(prob/prob-DD) successfully creates summaries of different

compression rates and outperforms existing methods, includ-

ing our previous one. The improvement was significant for

500-character summaries. By analyzing the trained models,

we also found supporting evidence that concatenated training

successfully models common utterance sequences. Our future

work includes improving the utterance selection accuracy and

applying our method to speech recognition results.
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