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Overview

Previous method: HMM-based extractive summarization

Experiment and Results
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Domain: finance
Operator: Thank you for waiting.
Caller:      I’ve lost my cash card.
Operator: Uh-huh.
Caller: I’d like to have it reissued.
Operator: Certainly. Let me confirm your information.
Caller: Okay.
Operator: Can I have your telephone number?
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Summary

Extract utterances related to a given domain to make a summary

Improvements: New ILP formulation
•Objective: Extractive summarization of multi-domain contact center dialogues 

(Domains: finance, PC support, ISP, telephone, mail order, etc.)
•Our previous method using an HMM could not control compression rates
•We realized compression-rate control and better summaries by a new ILP 
formulation that uses state posterior probabilities as importance of utterances 

HMM assigns a domain label by Viterbi decoding

•Maximum coverage of important words under length constraints
•Importance of words is influenced by the importance of utterances

Importance of a word (eg. Term frequency)wij: weight of j-th word in i-th utterance
zij:  whether to include j-th word in i-th utterance in a summary
mij: whether to include j-th word in i-th utterance in maximization calculation

Training data: 391 dialogues in six domains
Test data: 240 dialogues in six domains (40 dialogues for each domain)
References: 250/500 character extractive summaries made by a human
Evaluation measure: Utterance retrieval accuracy in F-measure
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even:   Use the same value (1.0) for weight(Ui)
viterbi: Use 1.0 for weight(Ui) when the domain label assigned by Viterbi

decoding matches the domain of a dialogue; otherwise 0.0
weight(wj): domain-relatedness of a word by the log likelihood ratio 

Baselines

Proposed method made significant improvement for 500-character summaries
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No need for reference summaries

Importance of an utterance estimated by the state posterior 
probability (how likely an utterance relates to a given domain)Objective function
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