実環境における3音源以上のブラインド分離*

澤田 宏, 向井 良, 荒木 章子, 牧野 昭二

(日本電信電話株式会社,NTT コミュニケーション科学基礎研究所)

1 はじめに

観測された混合信号のみから音源信号を分離・抽出す るプラインド音源分離 (BSS: blind source separation) の研究が盛んに行われている.しかし,残響を伴う実 環境での混合を考えた場合,これまでの研究のほとん どは2音源の分離に関するものであり,現実的な状況 で3音源以上の分離に成功した例を見つけることは難 しい.我々は最近,周波数領域での手法により,実環境 での3音源あるいは4音源の分離に成功したので,本 稿でこれを報告する.特に,3音源の場合はリアルタイ ム処理が可能であり,音源の位置が変化しても,その 変化に追従して数秒後には元の分離性能を回復できる.

2 畳み込み混合に対する2つの手法

N 個の音源 $s_p(t)$ が実環境で混合され, M 個のマイ クで観測信号 $x_q(t) = \sum_{p=1}^{N} \sum_k h_{qp}(k) s_p(t-k)$ が得 られたとする.ここで, $h_{qp}(k)$ は音源 p からマイク qへのインパルス応答である.このような畳み込み混合 に対しては, FIR フィルタ $w_{rq}(k)$ を用いて分離信号 $y_r(t) = \sum_{q=1}^{M} \sum_{k=0}^{L-1} w_{rq}(k) x_q(t-k)$ を得ることが一 般的である.音源の位置や無音区間を知らずにフィル 夕係数 $w_{rq}(k)$ を求めるため,我々は,独立成分分析 (ICA: independent component analysis) [1, 2] を用い る.畳み込み混合に ICA を適用する手法は,大きく 2 つに分類できる.一方は畳み込み混合のまま ICA を 適用する時間領域 BSS,他方は周波数毎に瞬時混合の ICA を個別に適用する周波数領域 BSS である.

時間領域 BSS の畳み込み混合 ICA では,本来求め るべき分離信号の独立性を評価しながらフィルタ係数 を学習していくため, ICA の解に収束すれば高い分離 性能が得られる.しかし,最終的な解から遠く離れた 解を初期値として学習を始めると,収束までに非常に 多くの時間を要する.これは,数千タップにも及ぶフィ ルタ係数が互いに依存し合っているためである.従っ て,何らかの手段で得た良い初期解から始めない限り, 現実的な方法とは言えない.

周波数領域 BSS では周波数毎に瞬時混合の ICA を 解く.個々の ICA の学習は,周波数間での関連が無い ため非常に高速に収束する.その代償として,以下に 述べる2つの問題が発生する.第一は,各周波数での 分離信号が同じ音源に対応するように分離信号を並べ 変えなければならないという permutation の問題であ る.第二は,離散周波数表現の巡回性により発生する 問題である.これらの問題に適切に対処することで, 我々は,実環境で3音源以上の分離に成功した.

図 1: 周波数領域 BSS の処理の流れ

3 周波数領域 BSS

周波数領域 BSS の処理の流れ(図1)と2つの問題 への対処法を説明する.本方式では分離のための周 波数特性 $W_{rq}(f)$ を逆フーリエ変換 (IDFT) してフィ ルタ $w_{rq}(k)$ を得る.そのためにまず,観測信号 $x_q(t)$ に L 点の短時間フーリエ変換 (STFT) を適用して 周波数 f 毎の時間系列 $X_q(f,t)$ を求める(時刻 t は フレームシフト間隔で間引く).次に,各周波数で 瞬時混合の ICA: $\mathbf{Y}(f,t) = \mathbf{W}(f) \cdot \mathbf{X}(f,t)$ を解く. $\mathbf{W}(f)$ は要素が $W_{rq}(f)$ である $N \times M$ の分離行列であ り, $\mathbf{X}(f,t) = [X_1(f,t), \dots, X_M(f,t)]^T$ は観測信号, $\mathbf{Y}(f,t) = [Y_1(f,t), \dots, Y_N(f,t)]^T$ は分離信号である.

ICA で得られる分離行列 W(f) の各行には,順序 (permutation)と大きさ (scaling)の任意性があるため, 共に適切に調節する必要がある.第一の問題 permutation は,音源方向を推定した後に分離信号の相関を 取ることで解決する [3].文献 [3] で提案した方向推 定方法が3音源以上に適応可能であるため,3音源以 上の分離が現実的なものとなった.scaling は,MDP (Minimal Distortion Principle) [4] に従い, $W(f) \leftarrow$ diag[$W(f)^{-1}$]·W(f) という操作により解決する.

第二の問題は,離散的周波数表現の巡回性(L点で サンプリングされた周波数特性がLの周期を持つ時間 信号を表現すること)による影響である.分離のため に必要なフィルタ $w_{rq}(k)$ の長さがLに収まる場合は 問題にならないが,Lを超える場合は分離フィルタが 別の周期と重なりを持ってしまう.2音源分離では必 要なフィルタの長さが短いため問題にならなかったが, 3音源以上の分離では必要なフィルタが長くなり,図 3の上段に示すような現象が起こる.

この巡回性の問題に対し我々は, IDFT 後に得られ るフィルタ $w_{rq}(k)$ の両端が0に収束するように周波 数特性を平滑化 (smoothing) する.例えば,ハニン グ窓をフィルタに掛けて両端を0に収束させること は,周波数特性を $W(f) \leftarrow [W(f - \Delta f) + 2W(f) + W(f + \Delta f)]/4$ と smoothing することに相当する.し かし,単に smoothing を行うと, ICA で求めた分離 のための周波数特性が変化するため,分離性能が劣化 する可能性がある.そこで, smoothing 後の分離行列 と ICA の解の誤差が最小化されるように,前もって scaling を調整する.詳しくは [5] を参照されたい.

^{*}Blind separation of more than two sources in a real room environment, by H. Sawada, R. Mukai, S. Araki, S. Makino (NTT Communication Science Labs., NTT Corporation)

図 3:3 音源分離における離散周波数表現の巡回性に よる影響(上段)と smoothing の効果(下段)

4 実験結果および考察

図 2 に示す条件で音源分離の実験を行った.図 3 は, 3 音源の場合の音源 $s_p(t)$ から分離信号 $y_r(t)$ へのイン パルス応答 $u_{rp}(k) = \sum_{q=1}^{M} \sum_{\tau=0}^{L-1} w_{rq}(\tau) h_{qp}(k-\tau)$ で ある. 左側が目的音の抽出 $u_{11}(k)$, 右側が干渉音の抑 圧 $u_{13}(k)$ に対応する. 巡回性の影響に対して何も処理 を施さないと上段のように目的音の歪みおよび分離性 能の劣化を引き起こすが, smoothing を行うことで下 段のようにその影響が除去される.

音源数2から4の場合の7秒の音声に対するバッチ処 理の結果を表1にまとめる.分離性能 SIR (Signal-to-Interference Ratio) は, 出力信号を $y_r(t) = tar_r(t) +$ *int_r(t)* と分割し, それらのパワー比として計算した. ここで, $tar_r(t) = \sum_k u_{rr}(k)s_r(t-k)$ は目的音成分, $int_r(t) = \sum_{p \neq r} \sum_k u_{rp}(k) s_p(t-k)$ は干渉音成分であ る.次に,SDR (Signal-to-Distortion Ratio)は,目的 音成分を $tar_r(t) = \alpha_r \cdot ref_r(t) + e_r(t)$ と参照音 $ref_r(t)$ の定数倍と歪み $e_r(t)$ に分割し,それらのパワー比と して計算した.ここで, α_r は歪み $e_r(t)$ を最小にする 定数であり,参照音としては MDP [4] に基づきマイ ク r での音源 r 成分 $ref_r(t) = \sum_k h_{rr}(k)s_r(t-k)$ を 選んだ.表1により, smoothing を施すことで, SIR, SDR 共に改善されていることがわかる.また,分離 フィルタ長としてはL = 2048, ICA アルゴリズムと しては FastICA [1] で得た解をループ 50 回の Infomax + Natural gradient 型の ICA [2] でさらに改善するも のを用いた.現実的な処理時間で高い性能の音源分離 が行えていることが分かる.

表 1: バッチ処理の結果

音源数 / 位置		2/ab		$3 \ / \ a \ b \ d$		$4 \ / \ a \ b \ c \ d$	
smoothing	なし	あり	なし	あり	なし	あり	
平均 SIR (dE	B) 19.3	20.3	13.7	16.9	9.3	13.2	
平均 SDR (dl	3) 18.0	19.3	13.9	15.7	10.8	11.3	
実 行時間 (s)	(s) 9.9		18.7		28.3		
$ \begin{array}{c} 15 \\ 10 \\ \hline 10 \\ \hline \\ 10 \\ \hline \\ 10 \\ \hline \\ \\ -5 \\ \hline \\ \\ -10 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c c} & & & \\ \hline \\ \hline$						

図 4: 音源移動に対するリアルタイム処理の分離性能

前回我々は2音源に対するリアルタイム処理 [6] を 発表したが,分離フィルタ長をL = 1024,ループ回 数を35とすることで,3音源に対してもリアルタイム 処理が可能となった.図4にその結果を示す.観測信 号を2秒毎に区切って BSS の処理を行っているので, 音源の移動に対しても追従が可能である.この例では, FastICA は用いずに Natural gradient だけで2秒毎に 分離フィルタを更新していき,約15秒で位置dの音源 を位置 c に移動させた.数秒で以前の分離性能にまで ほぼ回復していることが分かる.また,移動させた音 源自身の分離性能がそれほど劣化しないことは,2音 源の場合 [6] と同様の現象として観測された.

5 まとめ

周波数領域 BSS により,実環境で3音源以上の分離 に成功した.技術のポイントは,3音源以上の方向推 定が可能になったことにより permutation の問題が解 決しやすくなったこと[3]にある.さらに,3音源以 上の分離により,離散的周波数表現の巡回性による影 響という新たな問題が認識された.我々は周波数特性 の smoothing によりこの問題を解決し[5], SIR およ び SDR の改善を達成した.

参考文献

- A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons, 2001.
- [2] S. Haykin, editor. Unsupervised Adaptive Filtering (Volume I: Blind Source Separation). John Wiley & Sons, 2000.
- [3] 澤田,向井,荒木,牧野. 周波数領域プラインド音源分離における permutation 問題の頑健な解法. 音講論集, pp. 777-778, Mar. 2003.
- [4] K. Matsuoka and S. Nakashima. Minimal distortion principle for blind source separation. In Proc. ICA 2001, pp. 722–727, Dec. 2001.
- [5] H. Sawada et al. Spectral smoothing for frequency-domain blind source separation. In *Proc. IWAENC 2003*, Sep. 2003.
- [6] 向井,澤田,荒木,牧野. 移動音源の低遅延実時間ブラインド分離. 音講論集, pp. 779–780, Mar. 2003.