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Abstract—Full-rank spatial covariance analysis (FCA) is a
technique for blind source separation (BSS), and can be applied
to underdetermined situations where the sources outnumber
the microphones. This paper proposes multi-frame FCA as an
extension of FCA to improve the BSS performance when the room
reverberations are not so short that multiple time frames are
needed to cover the dominant parts of the reverberations. There
has already been proposed an FCA model that considers delayed
source components. However, the existing FCA model does not
take the correlation between different time frames into account.
In contrast, our new extension models multiple time frames
with multivariate Gaussian distributions of larger dimensionality
than the existing FCA models, aiming to better model the
source components spanning multiple time frames. We derive
an expectation-maximization (EM) algorithm to optimize the
model parameters. Experimental results show that the proposed
multi-frame FCA performed clearly better than the existing
FCA techniques in BSS tasks and also joint BSS and blind
dereverberation tasks.

Index Terms—Blind source separation (BSS), blind dere-
verberation (BD), full-rank spatial covariance analysis (FCA),
expectation-maximization (EM) algorithm, multivariate complex
Gaussian distribution, weighted prediction error (WPE)

I. INTRODUCTION

BLIND source separation (BSS) aims to separate N
sources from the mixtures on M sensors (e.g., micro-

phones in audio cases) without the information about the
sources and the mixing situation (e.g., the directions of
sources). Among the BSS techniques extensively developed
in more than thirty years [3]–[9], independent component
analysis (ICA) [5], [6], [10], [11] is a well-established one
in which the mixing system is assumed to be invertible. Full-
rank spatial covariance analysis (FCA) [12]–[15], on the other
hand, is rather a new technique that models a more flexible
mixing system than ICA does. The most crucial difference
between ICA and FCA is that ICA can only be applied to
determined (N = M ) and over-determined (N < M ) cases
whereas FCA can also be applied to underdetermined cases
(N>M ).

In a real room environment, signals are mixed in a convolu-
tive manner with reverberations. Frequency-domain approach,
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where we first apply a short-time Fourier transform (STFT) to
the input time-domain signals, is effective for such convolutive
mixtures. In the multiplicative transfer function (MTF) approx-
imation [16], a convolution in the time domain is approximated
as a multiplication in the frequency domain. Most of the
existing frequency-domain BSS methods [12]–[15], [17]–[24]
are based on the MTF approximation. However, in general
cases where the room reverberation time is not too short, an
STFT analysis window of typical length (e.g., 128 ms) cannot
cover the dominant part of the reverberations, and the delayed
source components are contaminated in the following time
frames. To better cope with such cases, the convolutive transfer
function (CTF) approximation [25] has been proposed to
explicitly model the delayed components, and has recently
been employed in multiple-speaker localization [26], speech
separation and enhancement [27], and BSS [28], [29].

On the other hand, the CTF approximation is nothing special
in blind dereverberation (BD) [30]–[34], for which weighted
prediction error (WPE) [31]–[33] is a representative method.
Moreover, there have been proposed many methods that com-
bine BSS and BD [35]–[44]. Among them, the methods pro-
posed in [36], [37] combine ICA and WPE, and the methods
proposed in [39]–[44] combine FCA and WPE. Especially in
[42]–[44], the idea of delayed source components has been
proposed for the FCA part to adopt the CTF approximation.
However, all these WPE related methods basically apply to
determined and over-determined cases (N ≤ M ), since WPE
assumes that the mixing system is invertible likewise ICA.

In this paper, we discuss how to extend the original FCA
to improve the underdetermined BSS and BD performances in
reverberant situations where CTF approximation is appropri-
ate. A straightforward way is to employ the above-mentioned
existing idea of delayed source components. However, this
extension, which we call FCAd, does not take the correlation
between different time frames into account. To better model
the source components spanning multiple time frames, we
newly propose multi-frame FCA mfFCA in this paper.

Let us explain how the original FCA is extended to FCAd
and mfFCA by referring to Fig. 1. The original FCA is based
on the MTF approximation, and thus the source components
cnt are forced to contain all the components including the
direct one plus early reflections from the current time frame
and also the late reverberant components from the previous
time frames. To avoid such contaminations, we explicitly con-
sider the delayed source components in both extensions with
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Fig. 1. Illustrations of the original FCA and its conventional extension FCAd and our new extension mfFCA.

a set L = {l1, . . . , lL} of time lags. However, how to model
the delayed source components and their covariance matrices
are different between FCAd and mfFCA. Let n and t be the
indices of a source and a time frame, respectively. In FCAd,
a direct cnt and delayed c

(l)
nt , l ∈ L, components included in

a single frame sensor observation xt are modeled by mutually
independent multivariate Gaussian distributions (see (5) and
(18)) with covariance matrices sntAn and sn(t−l)A

(l)
n , l ∈ L,

and the dimensionality remains M as the original FCA. In
contrast, our proposed mfFCA concatenates the direct and
delayed source components included in a multi-frame sensor
observation x̄t (x̄3 = [xT

3 ,x
T
4 ,x

T
5 ]

T in Fig. 1) to make a
multi-frame vector c̄nt (c̄n3 = [cTn3, c

(1)T
n4 , c

(2)T
n5 ]T in Fig. 1),

which is modeled by a multivariate Gaussian distribution with
a covariance matrix of dimensionality M × (L + 1). Con-
sequently, we newly model the correlation between different
time frames on the block off-diagonal parts, e.g., A(0,1)

n , of
the introduced larger covariance matrix. A similar multi-frame
model has been proposed in [34]. However, there are many
differences between the model and ours as will be explained
in Section III-E.

The contributions of this paper are summarized as follows.
1) Multi-frame FCA mfFCA is proposed as a novel tech-

nique. Advancing from our previous work [1], we have
refined the model, and provided the complete deriva-
tions of the related probabilistic models and the EM
algorithm. A sample code is available at https://github.
com/nttcslab-sp/mfFCA.

2) We have succeeded in separating reverberant sources
that span multiple STFT time frames in fully blind un-
derdetermined cases. The effectiveness of the proposed
mfFCA over the conventional FCAd is clearly shown in
the experiments with increased varieties of experimental
setups from our previous work [1], [2].

In the rest of the paper, Section II reviews the original FCA
and its conventional extension FCAd. Section III describes
our proposed extension mfFCA. Section IV collects some
issues that should be considered in practice. Section V explains

the experimental settings and shows the results from various
perspective. Section VI concludes the paper.

Throughout this paper, we use lower bold fonts to represent
vectors, e.g., cnt. Moreover, we use Sans-serif fonts to indicate
positiveness or positive definiteness: the lower and upper cases
represent positive scalars, e.g., snt, and Hermitian positive
definite matrices, e.g., An, respectively. We occasionally omit
the range of summation when the space is limited and the
range information is clear from the context, e.g., the right-
hand side of (17).

II. FULL-RANK SPATIAL COVARIANCE ANALYSIS (FCA)

A. Probabilistic model

Here we define the original FCA model where n =
1, . . . , N sources are mixed and observed at m = 1, . . . ,M
sensors at every time frame t ∈ {1, . . . , T}. Let

xt = [x1t, . . . , xMt]
T ∈ CM , (1)

cnt = [c1nt, . . . , cMnt]
T ∈ CM (2)

be M -dimensional complex vectors representing sensor ob-
servations and source components, respectively. For model
tractability, we assume the independence of the sensor ob-
servations among different time t, i.e.,

p({xt}Tt=1 | θ) =
∏T

t=1 p(xt | θ) . (3)

Then, the probabilistic model of FCA is specified by

p(xt | {cnt}Nn=1, θ) = N (xt |
∑N

n=1 cnt, βI) , (4)
p(cnt | θ) = N (cnt | 0,Cnt) , Cnt = sntAn , (5)

where N represents a multivariate complex proper and circular
Gaussian distribution with a Hermitian positive covariance
matrix [45]

N (c | µ,Σ) = 1

πM detΣ
exp

[
−(c− µ)∗Σ−1(c− µ)

]
,

and
θ = {{snt}Tt=1,An}Nn=1 (6)

https://github.com/nttcslab-sp/mfFCA
https://github.com/nttcslab-sp/mfFCA
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is a set of parameters to be optimized. The parameters snt and
An represent the time-variant power of source n at time frame
t and the time-invariant spatial property from source n to all
M sensors, respectively. The sensor noise is assumed to be
uncorrelated among sensors and represented by an identity
matrix I and the noise power parameter β, which can be
predefined, e.g., as β = 10−3.

In the FCA model, the component vectors are assumed to
be independent of each other:

p({cnt}Nn=1 | θ) =
∏N

n=1 p(cnt | θ) . (7)

Then, the joint distribution p(xt, {cnt}Nn=1 | θ) turns out to be
a zero-mean Gaussian distribution with a covariance matrix

Xt C1t · · · CNt

C1t C1t 0
...

. . .
CNt 0 CNt

 (8)

with
Xt =

∑N
n=1 Cnt + βI , (9)

as shown in Appendix A. Once the joint distribution is
obtained, it is easy to derive the marginal and conditional
distributions, both of which are also Gaussian distributions
[46]. For example, the marginal distribution p(xt | θ) is given
as

p(xt | θ) = N (xt | 0,Xt) . (10)

B. Objective function and EM algorithm

The parameters in θ are optimized according to observations
{xt}Tt=1 by maximizing the objective function, which is the
log-likelihood ln p({xt}Tt=1 | θ) with the assumption (3)∑T

t=1 ln p(xt | θ) . (11)

The objective function can be locally maximized [12], [13] by
the EM algorithm [47] from some initial values of parameters.
In the E-step, we calculate the conditional distributions of the
component vector cnt as

p(cnt | xt, θ) = N (cnt | µnt,Σnt) , (12)

µnt = CntX
−1
t xt , Σnt = Cnt − CntX

−1
t Cnt . (13)

In the M-step, we optimize the parameters by maximizing the
so-called Q function (62) derived in Appendix B as

snt ←
1

M
tr
(
A−1
n C̃nt

)
, (14)

An ←
1

T

T∑
t=1

s−1
nt C̃nt , (15)

where tr calculates the trace of a matrix, and

C̃nt = µntµ
∗
nt + Σnt (16)

is derived in (63). Throughout this paper, we use ·∗ notation
for representing a conjugate transpose operation.

Once the parameters θ are optimized, we obtain separated
signals ynt simply by getting µnt from (13), as the result of
multichannel Wiener filter.

C. Considering delayed source components

In this Subsection, we introduce time lags l and delayed
source components c

(l)
nt to explicitly model the room rever-

berations that an STFT frame cannot cover. Then, we explain
a conventional FCA extension FCAd whose key ideas have
already been proposed in [42]–[44].

As shown in the FCAd column of Fig. 1, a delayed source
component c(l)nt comes from the source n emitted at time frame
t− l and observed at time frame t through the time lag l.
Let L = {l1, . . . , lL} be the set of time lags. For notational
convenience, let c(0)nt = cnt, A

(0)
n = An, and L0 = {0} ∪ L.

Then, the FCAd model is described as

p(xt | {{c(l)nt}l∈L0
}Nn=1, θ) = N (xt |

∑
n

∑
l c

(l)
nt , βI) , (17)

p(c
(l)
nt | θ) = N (c

(l)
nt | 0,C

(l)
nt ) , C

(l)
nt = sn(t−l)A

(l)
n , (18)

with a new set of parameters

θ = {{snt}Tt=1, {A(l)
n }l∈L0

}Nn=1 , (19)

in contrast to the original FCA model (4)–(6). The newly
introduced parameters A

(l)
n , l ∈ L encode the spatial property

of source n affecting to all M sensors with time lag l.
By the introduction of delayed source components c

(l)
nt with

l ∈ L, the physical meaning of cnt has been changed. In the
original FCA, cnt is forced to contain the late reverberant
components from the previous time frames which are not
explicitly modeled. On the other hand in FCAd, and also in
mfFCA whose details will be explained in Section III, cnt
contains only the direct component plus early reflections, and
not forced to contain the late reverberations any more.

Although we omit the detailed derivations, the specific form
of the joint distribution p(xt, {{c(l)nt}l∈L0

}Nn=1 | θ) can be
obtained as in the case (8) of FCA. Consequently, the marginal
distribution p(xt | θ) is a zero-mean Gaussian distribution with
a covariance matrix

Xt =
∑N

n=1

∑
l∈L0

C
(l)
nt + βI . (20)

The parameters in θ are optimized by the EM algorithm as
in the case of FCA. In the E-step, we calculate the conditional
distributions of the component vector c(l)nt as

p(c
(l)
nt | xt, θ) = N (c

(l)
nt | µ

(l)
nt ,Σ

(l)
nt ) , (21)

µ
(l)
nt = C

(l)
ntX

−1
t xt , Σ

(l)
nt = C

(l)
nt − C

(l)
ntX

−1
t C

(l)
nt . (22)

In the M-step, we optimize the parameters as

snt ←
1

M(L+ 1)

∑
l∈L0

tr

[(
A(l)
n

)−1

C̃
(l)
nt

]
, (23)

A(l)
n ←

1

T

T∑
t=1

s−1
nt C̃

(l)
nt , (24)

where

C̃
(l)
nt = µ

(l)
ntµ

(l)∗
nt + Σ

(l)
nt . (25)

After the parameters θ are optimized, we obtain separated
signals ynt by accumulating all the components originate from
source n and observed at time frame t as

ynt = µ
(0)
nt +

∑L
i=1 µ

(li)
n(t−li)

. (26)
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To perform dereverberation further, we obtain dereverberated
separated signals dnt as

dnt = µ
(0)
nt (27)

by eliminating the delayed components, i.e., the second term
of (26).

III. MULTI-FRAME FCA

To better model the source component cnt with its delayed
versions {c(l)n(t+l)}l∈L, we propose a new extension of FCA,
multi-frame FCA (mfFCA), that considers the correlation
between, e.g., cnt and c

(1)
n(t+1), both of which originate from

the same source n at the same time frame t but are observed
at adjacent two frames.

A. Multi-frame vectors

Let us introduce multi-frame vectors for the sensor obser-
vations and the source components

x̄t = [xT
t ,x

T
t+l1

, . . . ,xT
t+lL

]T ∈ CM(L+1) , (28)

c̄nt = [cTnt, c
(l1)T
n(t+l1)

, . . . , c
(lL)T
n(t+lL)]

T ∈ CM(L+1) (29)

for a set L = {l1, . . . , lL} of time lags, respectively. The
mfFCA column of Fig. 1 shows x̄3 and c̄n3 with L = {1, 2}
as examples. In the rest of this subsection, we detail the source
component vector c̄nt. The complete description of the sensor
observation vector x̄t will be given in the next subsection.

The multi-frame component vector c̄nt is defined in (29)
by concatenating all the delayed versions originating from the
same source n with the same time instant t. To reflect this,
we assume that c̄nt follows a zero-mean Gaussian distribution
with covariance matrix

C̄nt = sntĀn , Ān =


A
(0)
n . . . A

(0,lL)
n

...
. . .

...
A

(lL,0)
n . . . A

(lL)
n

 . (30)

Ān is of size M(L + 1) ×M(L + 1) and encodes the time-
invariant spatial property from source n to all M sensors
with all the considered time lags L0 = {0} ∪ L including
0-lag. We have already seen the block diagonal submatri-
ces A

(0)
n , . . . ,A

(lL)
n in (5) and (18). The newly introduced

block off-diagonal submatrices A
(l,l′)
n satisfy the conjugate

transpose relationship
(
A

(l,l′)
n

)∗
= A

(l′,l)
n . They represent

the correlation of the source components c
(l)
n(t+l) and c

(l′)
n(t+l′)

that originate from the same source n and time instant t
but observed at different time frames according to the time
lags l and l′. The existing FCA model and its extension, i.e.,
FCAd with (17) and (18), do not consider such block off-
diagonal submatrices, and ignore such aforementioned frame-
wise correlations based on how sources propagate to all
sensors with reverberations.

Fig. 2. Diagonal shift operators ↖i and ↘i applied to a covariance matrix
C̄nt of size M(L+1)×M(L+1). Each small box represents an M ×M
submatrix.

B. Probabilistic model

In this subsection, we develop the probabilistic model of
mfFCA. We assume the independence of the multi-frame
observations among different time t, i.e.,

p({x̄t}T−lL
t=1 | θ) =

∏T−lL
t=1 p(x̄t | θ) , (31)

similarly with (3). Then, we will discuss the relationship
between c̄nt and x̄t. In the existing FCA and FCAd, the rela-
tionship between c

(l)
nt and xt is clear as the simple summation

models (4) and (17). This simplicity is represented in Fig. 1 as
all the incoming arrows into x3 are related to c

(l)
n3 , l = 0, 1, 2

that are colored in red. On the other hand, x̄3 of mfFCA
has incoming purple arrows in addition to the red arrows that
correspond to c̄n3. We thus model such purple arrows by an
M(L+ 1)×M(L+ 1) covariance matrix

D̄t =
∑N

n=1

∑L
i=1

(
↖i C̄n(t−li)+↘i C̄n(t+li)

)
(32)

where ↖i and ↘i are newly introduced operators that di-
agonally shift the submatrices of size M × M as shown
in Fig. 2. With this notation, the summation of the purple
arrows coming into x̄3 shown in Fig. 1 is given by D̄3 =∑

n

(
↖2 C̄n1+↖1 C̄n2+↘1 C̄n4+↘2 C̄n5

)
.

To summarize the discussion of this Section so far, we
specify the probabilistic models of x̄t and c̄nt as:

p(x̄t | {c̄nt}Nn=1, θ) = N (x̄t |
∑N

n=1 c̄nt, D̄t+β Ī) , (33)
p(c̄nt | θ) = N (c̄nt | 0, C̄nt) , C̄nt = sntĀn , (34)

with an identity matrix Ī of size M(L+ 1)×M(L+ 1) and
the set of parameters to be optimized

θ = {{snt}Tt=1, Ān}Nn=1 . (35)

These three equations are similar to (4) - (6) of FCA, but the
differences are in the dimensionality and the introduction of
the covariance matrix (32).

The following four equations are also similar to (7) - (10)
of FCA. The multi-frame component vectors are assumed to
be independent of each other:

p({c̄nt}Nn=1 | θ) =
∏N

n=1 p(c̄nt | θ) . (36)
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Then, the joint distribution p(x̄t, {c̄nt}Nn=1 | θ) turns out to be
a zero-mean Gaussian distribution with a covariance matrix

X̄t C̄1t · · · C̄Nt

C̄1t C̄1t 0̄
...

. . .
C̄Nt 0̄ C̄Nt

 (37)

with
X̄t =

∑N
n=1 C̄nt + D̄t + β Ī , (38)

as Appendix C describes. Therefore, x̄t also follows a zero-
mean Gaussian distribution

p(x̄t | θ) = N (x̄t | 0, X̄t) . (39)

C. Objective function and EM algorithm

The parameters θ of (35) are optimized according to multi-
frame observations {x̄t}T−lL

t=1 by maximizing the objective
function, which is the log-likelihood ln p({x̄t}T−lL

t=1 | θ) with
the assumption (31) ∑T−lL

t=1 ln p(x̄t | θ) . (40)

The EM algorithm to maximize the objective function (40)
from some initial values of parameters has been derived as
follows. In the E-step, we calculate the conditional distribu-
tions of the multi-frame component vector c̄nt as

p(c̄nt | x̄t, θ) = N (c̄nt | µ̄nt, Σ̄nt) , (41)

µ̄nt = C̄ntX̄
−1
t x̄t , Σ̄nt = C̄nt − C̄ntX̄

−1
t C̄nt . (42)

In the M-step, we optimize the parameters by maximizing
the so-called Q function (71) derived in Appendix D. Since
the Q function is complicated according to the existence of
D̄t defined in (32), we introduce an approximation that the
parameter values used in D̄t are fixed at the previous parameter
values in θ′ when optimizing the parameters. Consequently,
the parameters are updated as

snt ←
1

M(L+1)
tr
[
Ā−1
n

˜̄Cnt

]
, (43)

Ān ←
1

T

T−lL∑
t=1

1

snt
˜̄Cnt (44)

with ˜̄Cnt = µ̄ntµ̄
∗
nt + Σ̄nt (45)

derived in (73). The plausibility of the approximated EM
algorithm will be demonstrated in Section V. The convergence
analysis of the approximated EM algorithm has not been done.
This is left as future work. Or, we aim to invent a perfect
algorithm without approximation as another future work.

D. Source separation and dereverberation

After the parameters θ are optimized by the EM algorithm,
we obtain separated signals ynt and further dereverberated
signals dnt for sources n = 1, . . . , N in the following
manner. First, we apply the multi-frame multichannel Wiener
filter C̄ntX̄

−1
t to multi-frame observation vectors x̄t as in

Fig. 3. ⊓i operators applied to a multi-frame vector µ̄nt of dimension M(L+
1). Each grey rectangular represents an M dimensional single-frame vector.

(42) to obtain µ̄nt. Note that our definition of the multi-
frame multichannel Wiener filter differs from that in [48].
In particular, our multi-frame multichannel Wiener filter is
defined as the posterior mean of the multivariate Gaussian
distribution developed in Subsection III-B. Then, we introduce
a ⊓i operator that extracts the (i + 1)-th single-frame vector
from a multi-frame vector (see Fig. 3). To perform source
separation, we accumulate all the components originating from
source n and observed at time frame t as

ynt = ⊓0µ̄nt +
∑L

i=1 ⊓iµ̄n(t−li) . (46)

To perform dereverberation further, we eliminate the delayed
components, i.e., the second term of (46) to obtain

dnt = ⊓0µ̄nt . (47)

E. Model differences to [34]

Having described the detailed model of the proposed multi-
frame FCA, let us discuss the differences to a similar multi-
frame model proposed in [34]. The most notable difference is
in the covariance matrices regarding the purple arrows shown
in Fig. 1. In our mfFCA, these purple arrows are modeled
by D̄t in (32), in which shifted components in both directions
by ↖i and ↘i, illustrated in Fig. 2, are considered. On the
other hand in [34], only the shifted components in either
direction are considered. As will be experimentally shown in
Subsection V-F, shifts in both directions clearly performed
better than shifts in either direction. Therefore, the multi-
frame model proposed in this paper is novel and effective for
precisely modeling a real-world acoustic situations.

IV. PRACTICAL ISSUES

We have intentionally omitted some practical aspects of
FCA methods in the previous two sections to make the
explanations as simple as possible. In this section, we explain
some practical issues that should be considered to separate and
dereverberate actual sound mixtures effectively.

A. Full-band processing and permutation alignment

In the previous two sections, we omit frequency dependency
f for notational simplicity, and denote m-th microphone
observations at time frame t as xmt. For practical separation
and dereverberation tasks, we actually have microphone obser-
vations xmtf for frequency bins f = 1, . . . , F as the results
of STFT. Thus, we need to perform f = 1, . . . , F separate
FCA executions for the STFT results xtf , t = 1, . . . , T .

However, it is essential to relate the F FCA executions so
that n-th source in every frequency bin f corresponds to the
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same source. This is known as the permutation problem as
in the case of ICA [49]. There are three major approaches to
align the permutation ambiguities of ICA or FCA solutions.
The first one is post-processing [50]. The second one is by
sharing the source power parameters sntf among frequency
bins [19]–[21]. The third one is by modeling the source power
parameters with nonnegative matrix factorization (NMF) [22]–
[24], which is especially effective for music separation. In
the experiments for speech separation reported in Section V,
we combined the first and second approaches. The details are
explained in Subsection V-E.

B. Parameter regularization

The parameters (6), (19) and (35) of FCA models tend to
be overfit as reported in [51]. More specifically, the spatial
matrices Anf , A

(l)
nf , and Ānf tend to be pushed towards

rank deficient by maximizing the likelihood. To avoid the
overfitting, we regularize the parameters in two ways.

The first one is flooring. Let ϵ be a flooring parameter, e.g.,
ϵ = 10−4. We apply the following additional updates

sntf ← max(sntf , ϵ) (48)

after (14), (23) and (43), and

Anf ← Anf + ϵI (49)

A
(l)
nf ← A

(l)
nf + ϵI (50)

Ānf ← Ānf + ϵ̄I (51)

after (15), (24) and (44), respectively.
The second one is sharing the source power parameters

sntf among adjacent frequency bins. Let the total F fre-
quency bins be partitioned into B blocks Fb, b = 1, . . . , B
in a consecutive and disjoint manner, e.g., F = 12, B =
3, F1 = {1, 2, 3, 4},F2 = {5, 6, 7, 8},F3 = {9, 10, 11, 12}.
We regularize sntf to be the same in a block Fb, e.g.,
b = 1, snt1 = snt2 = snt3 = snt4. This can be implemented
by averaging the parameters in a block Fb

sntf ←
1

|Fb|
∑
f∈Fb

sntf , f ∈ Fb (52)

after the updates (14), (23) and (43), or after (48) if we employ
the first regularization. The parameter sharing might seem to
be a very strong constraint, but actually not as we have seen
that independent vector analysis (IVA) [19]–[21] work very
well by sharing the parameters even among all the frequency
bins. Thus, it is effective also for permutation alignment as
the second approach explained in the last Subsection.

C. Spatial whitening

Making the vector of sensor observations spatially white
[5] is effective for the FCA methods to work robustly. Intu-
itively speaking, it makes the time-invariant spatial properties
Anf , A

(l)
nf , and Ānf significantly different among different

sources n. Without it, the spatial properties would be very
similar among different sources n especially in low frequen-
cies f where the phase differences between microphones are

small. And there remains a risk of inaccurate estimation for
the spatial properties. Spatial whitening can be performed by

xtf ← Vf xtf (53)

with the whitening matrix Vf calculated by Vf = D−1/2E∗

where D and E contain the eigenvalues and eigenvectors of
1
T

∑T
t=1 xtfx

∗
tf = EDE∗, respectively. Once we employ the

spatial whitening as a preprocessing, we need a corresponding
post-processing to be applied to separated signals (26) and (46)
and further dereverberated signals (27) and (47) as

yntf ← V−1
f yntf , (54)

dntf ← V−1
f dntf . (55)

D. Equally-spaced condition for time lags

We experimentally confirmed the following condition. For
the separated signal construction (26) and (46) of the FCA
extensions to work correctly, the time lags in a set L should
be equally spaced originating from the 0 lag, whose corre-
sponding terms are µ

(0)
nt and ⊓0µ̄nt. For example, L = {1, 2},

L = {2}, and L = {2, 4} work fine, but L = {1, 3} and
L = {2, 3} do not.

V. EXPERIMENTS

A. Conditions and tasks

We performed experiments to separate and dereverberate
N speech sources with M microphones. The combinations
(M,N) of M and N were (2,3), (3,3), and (3,4), with the
second one being a determined case while the others being
underdetermined cases. For each (M,N), we have tested 16
combinations of N speech sources to mix. We measured
the impulse responses from the sources (loudspeakers) to the
microphones under the room conditions shown in Fig. 4. We
varied the room reverberation time from 130 ms to 450 ms
by attaching or detaching cushion walls. For each condition,
i.e., (M,N), N source combinations, and reverberation time,
time-domain mixtures at the microphones were constructed
by convolving the impulse responses and N 6-second English
speech sources and then mixing the convolution results. We
believe that the experimental variations described above were
sufficient to validate the performance of the FCA methods.
This is because we worked on blind tasks where estimated
parameter values varied from case to case, and thus overfitting
to the whole experimental variations hardly occurred.

In order to evaluate separation and dereverberation perfor-
mances, we made two types of time-domain source n images
imgmn and img(cut)mn at each microphone m. The former was
made by convolving source n and the corresponding impulse
response. The latter was made by convolving source n and
the corresponding impulse response that was cut to 64 ms.
We chose this specific duration of 64 ms because we used a
128 ms Hann window for the STFT, as will be explained in
Subsection V-B, and not because we intended to define that
the transition from early echoes to late reverberation occurs at
64 ms.

Relating to the two types of source images, we set two
types of tasks. The first task was blind source separation (BSS)
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Distance: 120cm

Loudspeakers

Microphones
70�

150�

245�

315�

Room size: 4.45 � 3.55 � 2.5 m

Height of microphones and loudspeakers: 120 cm

Microphone colored grey was

excluded when the number was two.

Loudspeaker colored grey was

excluded when the number was three.

Fig. 4. Experimental setup

aiming at separated signals ynt defined in (26) and (46), whose
time-domain representation should be close to imgmn. The
second task was blind source separation and dereverberation
(BSS+BD) aiming at separated and dereverberated signals dnt

defined in (27) and (47), whose time-domain representation
should be close to img(cut)mn . Note that in the original FCA,
ynt = dnt by definition. The performances were measured
in terms of the Signal to Distortion Ratio (SDR) [52] by
setting imgmn and img(cut)mn as reference signals for BSS and
BSS+BD, respectively. The notion of SDR is decomposed into
the source Image to Spatial distortion Ratio (ISR), Source
to Interference Ratio (SIR), and Source to Artifacts Ratio
(SAR). For the calculations of SDR, ISR, SIR and SAR, we
used the MUSEVAL V4 toolkit [53] with bss eval images
configuration.

B. Methods

We examined the original FCA (Subsection II-A), the con-
ventional FCAd (Subsection II-C), and the proposed mfFCA
(Section III). The following settings were common in all the
methods. The sampling frequency was 8 kHz. The STFT
window width and shift were 1024 and 256 samples, i.e., 128
ms and 32 ms, respectively. Consequently, the numbers of time
frames and frequency bins were T = 201 and F = 513,
respectively. As shown in [54], the finer the shift amount,
the better the separation performance. We chose this quarter-
shift scheme to balance the performance and the computational
complexity.

After applying spatial whitening (Subsection IV-C), the
FCA parameters (6), (19) and (35) were initialized by the
procedure shown in [55]. The initialization procedures of
FCAd and mfFCA were exactly the same as that of FCA, as
will be explained in the first paragraph of Subsection V-E. The
noise power parameter was β = 10−3. The flooring parameter
was ϵ = 10−4. The size of blocks for parameter sharing was
four |Fb| = 4. The number of iterations for the EM algorithms
was 500.

Regarding FCAd and mfFCA, we prepared three sets of
time lags L = {2}, L = {2, 4} and L = {2, 4, 6}. According
to the discussion of Subsection IV-D, a set L = {1, 2, 3, 4} of
time lags would be fine to replace L = {2, 4}, for example.
However, we employed these three sets of time lags with

only even numbers. The reason was again to balance the
performance and the computational complexity. We chose the
quarter-shift scheme with a Hann window for the STFT as
described above. In this setting, adjacent STFT frames were
75 % overlapped, and skipping one frame still had 50 %
overlap. Imagining the shape of a Hann window, time lags
corresponding to 50 % overlap were enough to cover the past
signals of interest for modeling reverberations.

C. Results of FCA methods

Figure 5 shows the BSS and BSS+BD results of the FCA
methods under various reverberation times measured in SDR,
ISR, SIR, and SAR. We examined 7 methods as listed in the
right top corner of Fig. 5. And only for the SDR as a represen-
tative measure, Fig. 6 shows the differences from the baseline,
which was FCA, to highlight how much improvements were
achieved by the FCA extensions.

From these two figures, we observe the followings. The
improvements by the extensions FCAd and mfFCA from the
baseline were apparent except the lowest reverberant 130 ms
cases. Comparing these two extensions, the proposed mfFCA
clearly outperformed the conventional FCAd. From Fig. 5,
we observe that mfFCA achieved clearly higher SIRs than
FCAd in both BSS and BSS+BD tasks, and clearly higher
ISRs in BSS tasks. Regarding the three sets of time lags,
Fig. 6 clearly shows that mfFCA maximized the performance
by employing an adequate set of time lags according to a
reverberation time, e.g., L = {2} for 200 ms and L = {2, 4, 6}
for 450 ms, whereas the results of FCAd were not affected
much by the differences of the time lag sets. We believe that
the introduction of the block off-diagonal parts, e.g., A(0,1)

n

in Fig. 1, contributes to better model reverberant situations.
Separated sound examples produced by the original FCA and
the proposed mfFCA with L = {2, 4, 6} for a case of 450 ms
reverberation time can be heard at [56].

Comparing the improvements by the proposed mfFCA
between the BSS and BSS+BD tasks, we observed that the
improvements for the BSS tasks was more prominent than the
improvements for the BSS+BD tasks. Therefore, we tried to
improve the results of the BSS+BD tasks further by WPE as
will be reported next.

D. WPE preprocessing for the BSS+BD tasks

We then report the results of the BSS+BD tasks when
we employed WPE [31]–[33] as a preprocessing of FCA
and mfFCA. WPE is a well-established BD method for
over-determined mixtures. However, even for underdetermined
mixtures, we expect that WPE removes reverberations to a
certain degree despite that the number M of microphones is
insufficient for the number N of sources.

Figure 7 shows the results. The horizontal axis in each
plot corresponds to the set of time lags for WPE. We ex-
amined three sets of time lags L = {2, 3, 4, 5, 6}, L =
{2, 3, 4, 5, 6, 7, 8} and L = {4, 5, 6, 7, 8}. Note that for WPE
we did not have to care about the equally-spaced condition
described in Subsection IV-D. The empty set L = {} indicates
that the preprocessing by WPE was not employed. To see how
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Fig. 5. BSS (odd rows) and BSS+BD (even rows) performances measured in SDR, ISR, SIR, and SAR (shown in each column). Every two rows from the
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the sample means (the point estimates) and the vertical lines represent their 95% confidence interval.
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Fig. 6. (Continued from Fig. 5) SDR differences from the baseline. Each box plot shows the distribution of 48 and 64 differences (16 combinations of N
sources) for N = 3 and N = 4 cases, respectively.
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Fig. 7. BSS+BD performances when WPE was employed as preprocessing. The numbers in the colors represent the averaged SDR differences from the
baseline, i.e., FCA without WPE. The three rows correspond to (M,N) combinations (2,3), (3,3), and (3,4). The columns correspond to reverberation times.
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Fig. 8. Typical convergence behaviors for a task BSS(3,4) under 450 ms
reverberation time.

BSS+BD performances were improved by extending FCA and
by employing WPE, we set FCA without WPE as the baseline.
The numbers in Fig. 7 represent the averaged SDR differences
from the baseline.

From the results, we observe the followings. For situations
with moderate and higher reverberations (from 270 ms to
450 ms), the introduction of WPE preprocessing generally
improved the BSS+BD performance further with the FCA
extension mfFCA. The best set of WPE time lags depended
on the situation, i.e., (M,N) combination, reverberation time,
and the set of time lags of mfFCA.

E. Convergence behavior

Figure 8 shows typical convergence behaviors as examples.
The vertical axes show the average of N = 4 SDRs for a
source combination. The horizontal axes show the iteration
numbers of the EM algorithms for the FCA methods. The first
50 iterations were common to the baseline FCA. Then, FCAd
and mfFCA inherited the FCA parameters, and augmented the
time lag set from an empty set to the specified set L by adding
one time lag at the beginning of every 50-iterations until the
completion of L.

We employed a hybrid approach for permutation alignment
(Subsection IV-A), which was further related to parameter
regularization (Subsection IV-B). In the first 50 iterations, we
did not employ the second regularization of parameter sharing,
and employed only the first regularization of flooring. After the
first 50 iterations, we aligned the permutation ambiguities of
FCA solutions by post-processing [50]. The alignment results
were expected to be roughly correct globally, but there might
be a few misaligned frequency bins. Then, starting from the
51-th iteration, we employed the second regularization of
parameter sharing, which could be regarded as the second
approach of permutation alignment. We expected the above-
mentioned misaligned frequency bins to be aligned locally
within each of the blocks Fb, , b = 1, . . . , B by sharing the
source power parameters sntf , f ∈ Fb.

From Fig. 8, we observe that the effectiveness of employing
suitable set of time lags are clear as mfFCA{2} saturated

TABLE I
COMPUTATIONAL TIME (IN SECONDS) OF THE FCA METHODS WITH 500

ITERATIONS FOR THE EM ALGORITHMS.

FCA mfFCA
L = {2} L = {2, 4} L = {2, 4, 6}

BSS(2,3) 87.2 90.9 110.6 119.1
BSS(3,3) 89.3 113.3 140.7 174.2
BSS(3,4) 104.6 130.5 173.0 200.0

TABLE II
THE DIRECTIONS OF THE DIAGONAL SHIFT OPERATORS AFFECTED THE

PERFORMANCE MEASURED IN AVERAGED SDRS (IN DB). THE
REVERBERATION TIME WAS 450 MS.

BSS(3,4) BSS+BD(3,4)
time lags both ↖i ↘i both ↖i ↘i

L = {2} 4.79 2.31 3.21 4.36 1.02 2.66
L = {2, 4} 5.53 0.41 3.13 4.68 0.29 2.65

L = {2, 4, 6} 5.69 -0.95 3.07 4.73 0.17 2.63

around 350 iterations due to the insufficient time lags for the
450 ms reverberation time.

Table I shows the computational times that took for FCA
and mfFCA to run the EM algorithms with 500 iterations. All
the methods were coded with Python using CuPy [57] and
run on an AMD EPYC 7313 processor together with NVIDIA
RTX A6000 as a GPU. Although we accelerated the algorithm
computation by the GPU and CuPy similar to [58], the matrix
inverse calculations in (13), (14), (42) and (43) still took long
times. We also observed that the newly introduced ↖i and
↘i operators took long times in mfFCA as M and L = |L|
increased. However, we consider the computation times were
worth paying for the performance improvements.

F. On the directions of the diagonal shift operators

Table II shows that the directions of the diagonal shift
operators, introduced for (32), affected the performance. For
the sake of limited space, only the cases of BSS(3,4) and
BSS+BD(3,4) with the 450 ms reverberation time are shown.
However, also for the other (M,N) = (2, 3), (3, 3) combi-
nations and the reverberation times from 130 ms to 380 ms,
we confirmed that the tendencies were almost the same. As
discussed in Subsection III-E, our proposed mfFCA shifted
the covariance matrices in both directions, and therefore per-
formed clearly better than the other methods that only shifted
in either direction. Especially the method only using↖i could
not successfully separate the mixtures. This can be explained
as this method ignored the↘i shifted components which were
the dominant direct components as illustrated by the red boxes
in Fig. 2.

VI. CONCLUSION

We have newly proposed multi-frame FCA mfFCA in which
source components spanning multiple STFT time frames are
modeled with covariance matrix (30) of larger dimensionality
than the existing FCA models. Then, we have developed
the corresponding probabilistic model and derived an EM
algorithm to optimize the model parameters. The model and
algorithm derivations are fully described in Section III and Ap-
pendices. Our experimental tasks were BSS and BSS+BD for
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determined and underdetermined cases, the latter of which was
the first experimental confirmation of underdetermined separa-
tion and dereverberation in a fully blind manner. Experimental
results show that the proposed mfFCA considerably improves
the separation performance for reverberant BSS tasks. For
BSS+BD tasks, preprocessing by WPE contributed to improve
the performance of mfFCA further even in underdetermined
cases. Therefore, future work includes the development of a
technique that integrates WPE and mfFCA as WPE and FCAd
are integrated [42]–[44]. The execution times were far from
the signal lengths (6 seconds) even we have accelerated the al-
gorithm computation by a GPU. In this sense, we would like to
reduce the computational complexity as another future work.
The joint diagonalization approach [15] would contribute to
both the integration and the computational reduction.

APPENDIX A
THE JOINT DISTRIBUTION (FCA)

In this appendix, we derive the specific form of the joint
distribution p(xt, {cnt}Nn=1 | θ). According to the product rule
of probability and the independence assumption (7), we have

p(xt, {cnt}Nn=1 | θ) = p(xt | {cnt}n, θ)
∏

n p(cnt | θ) . (56)

The log likelihood of (56) can be expressed as

ln p(xt | {cnt}n, θ) +
∑

n ln p(cnt | θ)
const
=

−β−1(xt −
∑
n

cnt)
∗(xt −

∑
n

cnt)−
∑
n

c∗ntC
−1
nt cnt (57)

where const
= denotes equality up to constants that do not include

variables xt and cnt. By simple mathematical manipulations to
(57), we confirm that the joint distribution (56) is a zero-mean
Gaussian distribution with the precision matrix

β−1


I −I · · · −I
−I I · · · I
...

...
. . .

...
−I I · · · I

+


0 0 · · · 0
0 C−1

1t 0
...

. . .
0 0 C−1

Nt


(58)

whose inverse is the covariance matrix. To calculate the inverse
of (58), we employ a well-known matrix identity[

A B
C D

]−1

=

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
(59)

with the Schur complement S = D−CA−1B. Letting A =
β−1I, B = β−1

[
−I · · · −I

]
and so on, we have the

Schur complement in this case

S =

 C−1
1t 0

. . .
0 C−1

Nt

 , (60)

which is a block diagonal matrix, and the inverse of (58) turns
out to be (8).

APPENDIX B
Q FUNCTION (FCA)

In this appendix, we derive the form of Q function for
optimizing the FCA parameters. The log likelihood of the joint
distribution p(xt, {cnt}n | θ), which can be decomposed as
(56), is expressed as

ln p(xt | {cnt}n, θ) +
∑

n ln p(cnt | θ)
const
=

−
∑

n ln detCnt −
∑

n c
∗
ntC

−1
nt cnt (61)

where const
= denotes equality up to constants that do not include

parameters in θ. Then, the Q function is defined by taking the
expectation using the posterior distribution (12) with the set
θ′ of previous parameters

Q(θ, θ′) =
T∑

t=1

E{p(cnt|xt,θ′)}N
n=1

ln p(xt, {cnt}n | θ)
const
=

−
∑
t

∑
n

{
ln det (sntAn) + tr

[
(sntAn)

−1 C̃nt

]}
(62)

with

C̃nt = Ep(cnt|xt,θ′) [cntc
∗
nt] = µntµ

∗
nt + Σnt . (63)

The partial derivative of Q(θ, θ′) with respect to snt and An

are given as

∂Q(θ, θ′)
∂snt

= −Ms−1
nt + s−2

nt tr
[
A−1
n C̃nt

]
, (64)

∂Q(θ, θ′)
∂An

= −TA−1
n +

T∑
t=1

s−1
nt A

−1
n C̃ntA

−1
n , (65)

respectively. Setting these zero gives the updates (14) and (15).

APPENDIX C
THE JOINT DISTRIBUTION (MFFCA)

In this appendix, we derive the specific form of the joint
distribution p(x̄t, {c̄nt}Nn=1 | θ) by a similar manner with
Appendix A. According to the product rule of probability and
the independence assumption (36), we have

p(x̄t, {c̄nt}Nn=1 | θ) = p(x̄t | {c̄nt}n, θ)
∏

n p(c̄nt | θ) . (66)

The log likelihood of (66) can be expressed as

ln p(x̄t | {c̄nt}n, θ) +
∑

n ln p(c̄nt | θ)
const
=

−(x̄t −
∑
n

c̄nt)
∗Ē−1

t (x̄t −
∑
n

c̄nt)−
∑
n

c̄∗ntC̄
−1
nt c̄nt (67)

with Ēt = D̄t+β Ī, where const
= denotes equality up to constants

that do not include variables x̄t and c̄nt. The definitions of C̄nt

and D̄t are given in (30) and (32), respectively. By simple
mathematical manipulations to (67), we confirm that the joint
distribution (66) is a zero-mean Gaussian distribution with the
precision matrix

Ē−1
t −Ē−1

t · · · −Ē−1
t

−Ē−1
t Ē−1

t + C̄−1
1t · · · Ē−1

t
...

...
. . .

...
−Ē−1

t Ē−1
t · · · Ē−1

t + C̄−1
Nt

 . (68)
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To calculate the inverse of (68), we employ (59) again. Letting
A = Ē−1

t , B =
[
−Ē−1

t · · · −Ē−1
t

]
and so on, we have

the Schur complement in this case

S =

 C̄−1
1t 0

. . .
0 C̄−1

Nt

 (69)

and the inverse of (68) turns out to be (37).

APPENDIX D
Q FUNCTION (MFFCA)

In this appendix, we derive the form of Q function for
optimizing the mfFCA parameters by a similar manner with
Appendix B. The log likelihood of the joint distribution
p(x̄t, {c̄nt}n | θ), which can be decomposed as (66), is
expressed as

ln p(x̄t | {c̄nt}n, θ) +
∑

n ln p(c̄nt | θ)
const
=

− ln det
(
D̄t+β Ī

)
− r̄∗t

(
D̄t+β Ī

)−1
r̄t

−
∑

n ln det C̄nt −
∑

n c̄
∗
ntC̄

−1
nt c̄nt (70)

with r̄t = x̄t −
∑

n c̄n. Here const
= denotes equality up to

constants that do not include parameters in θ. Then, the Q
function is defined by taking the expectation using the poste-
rior distribution (41) with the set θ′ of previous parameters

Q(θ, θ′) =
T−lL∑
t=1

E{p(c̄nt|x̄t,θ′)}N
n=1

ln p(x̄t, {c̄nt}n | θ)
const
=

−
∑
t

{
ln det

(
D̄t+β Ī

)
+ tr

[(
D̄t+β Ī

)−1 ˜̄Rt

]}
−
∑
t

∑
n

{
ln det

(
sntĀn

)
+ tr

[(
sntĀn

)−1 ˜̄Cnt

]}
(71)

with ˜̄Rt = Ep(c̄nt|x̄t,θ′) [r̄tr̄
∗
t ] , (72)˜̄Cnt = Ep(c̄nt|x̄t,θ′) [c̄ntc̄

∗
nt] = µ̄ntµ̄

∗
nt + Σ̄nt . (73)

This Q function of mfFCA is complicated compared to that
(62) of FCA, and the exact maximization by θ is not simple as
(62). To deal with this difficulty, we make an approximation
that the parameter values used in D̄t are fixed at the previous
parameter values in θ′. Then, the partial derivative of Q(θ, θ′)
with respect to snt and Ān are given as

∂Q(θ, θ′)
∂snt

= −M(L+1)s−1
nt + s−2

nt tr
[
Ā−1
n

˜̄Cnt

]
, (74)

∂Q(θ, θ′)
∂Ān

= −T Ā−1
n +

T∑
t=1

s−1
nt Ā

−1
n

˜̄CntĀ
−1
n , (75)

respectively. Setting these zero gives the updates (43) and (44).
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