プラスコンテンツ

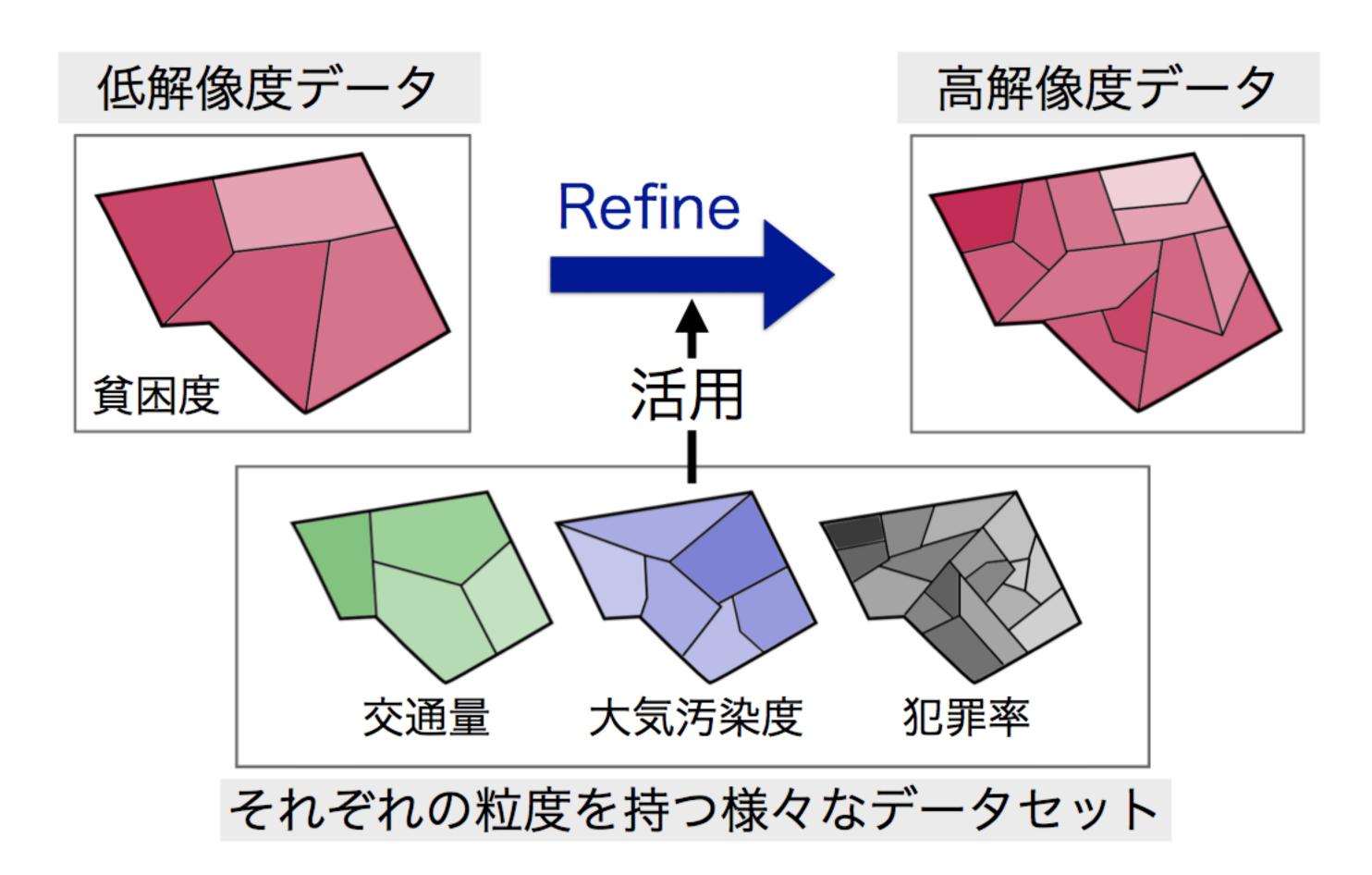
都市における 空間集約データの高解像度化

NTTサービスエボリューション研究所田中佑典

タスク 空間集約データの高解像度化

関連する出版物 · Y. Tanaka et al., NeurIPS, 2019. **タスク**:粗い粒度に集約されたデータの高解像度版を予測 **利点**:介入(再開発等)が必要な地域を詳細に絞り込める

※都市における集約データ(種類は問わない)を想定



問題設定

- ・入力データ
- · 予測 (Refinement)

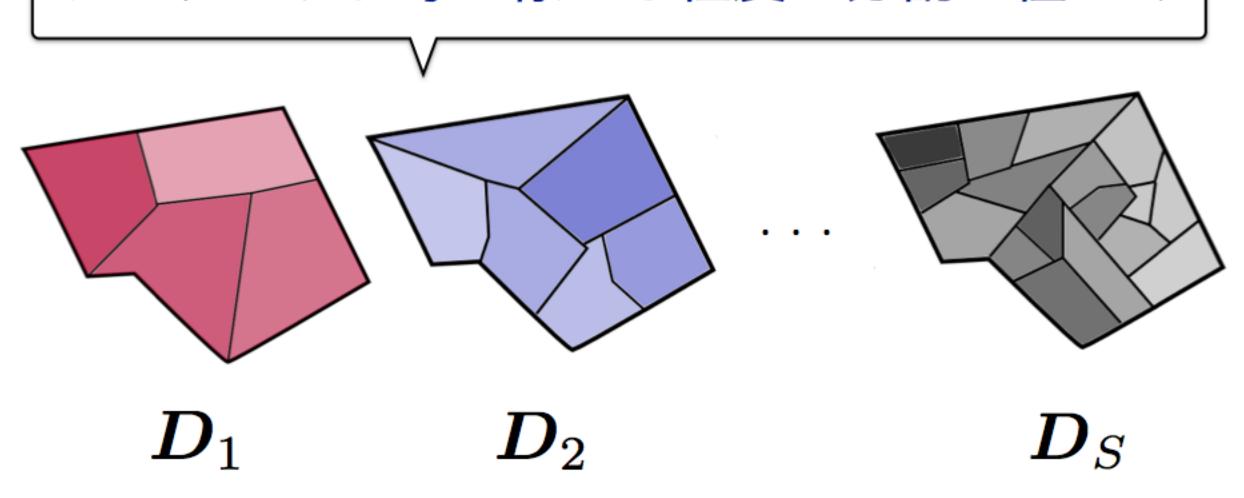
データセットの種類数:S

S 番目のデータセットに対するXの分割: P_s

入力空間(都市全体の領域)

$$S$$
 番目のデータセット: $m{D}_s = \{(y_{s,n}, m{R}_{s,n})\}$ 但し, $m{R}_{s,n} \in m{P}_s$ データセットID 値 領域 領域ID

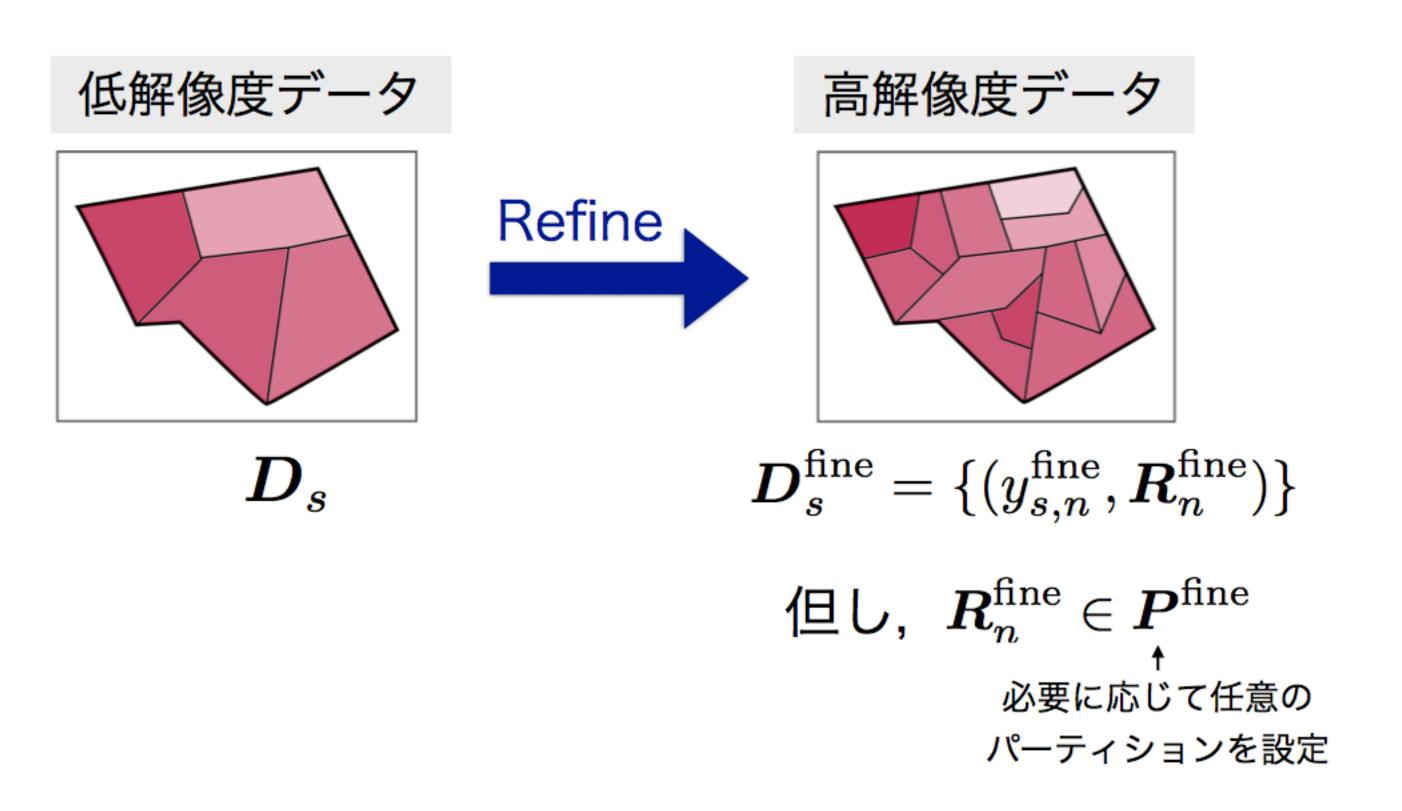
データセット毎に様々な粒度の分割に紐づく



問題設定

- 入力データ
- · 予測 (Refinement)

S 番目のデータセットに対して、高解像度データ $m{D}_s^{ ext{fine}}$ を予測

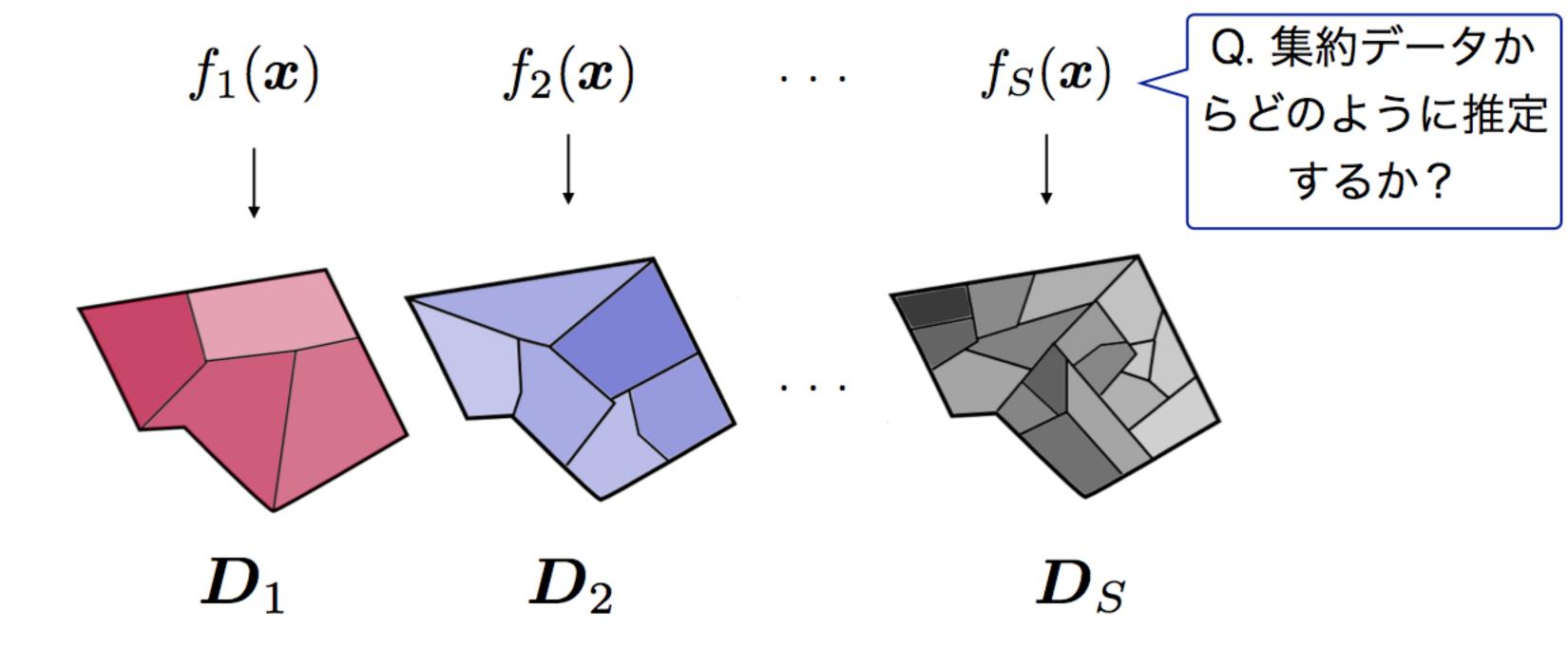


高解像度化のためのアイデア

- データの空間相関を捉えて 内挿する
- ・同じ都市における他の種類のデータセットを活用

データの背後に滑らかな関数(ガウス過程)を仮定

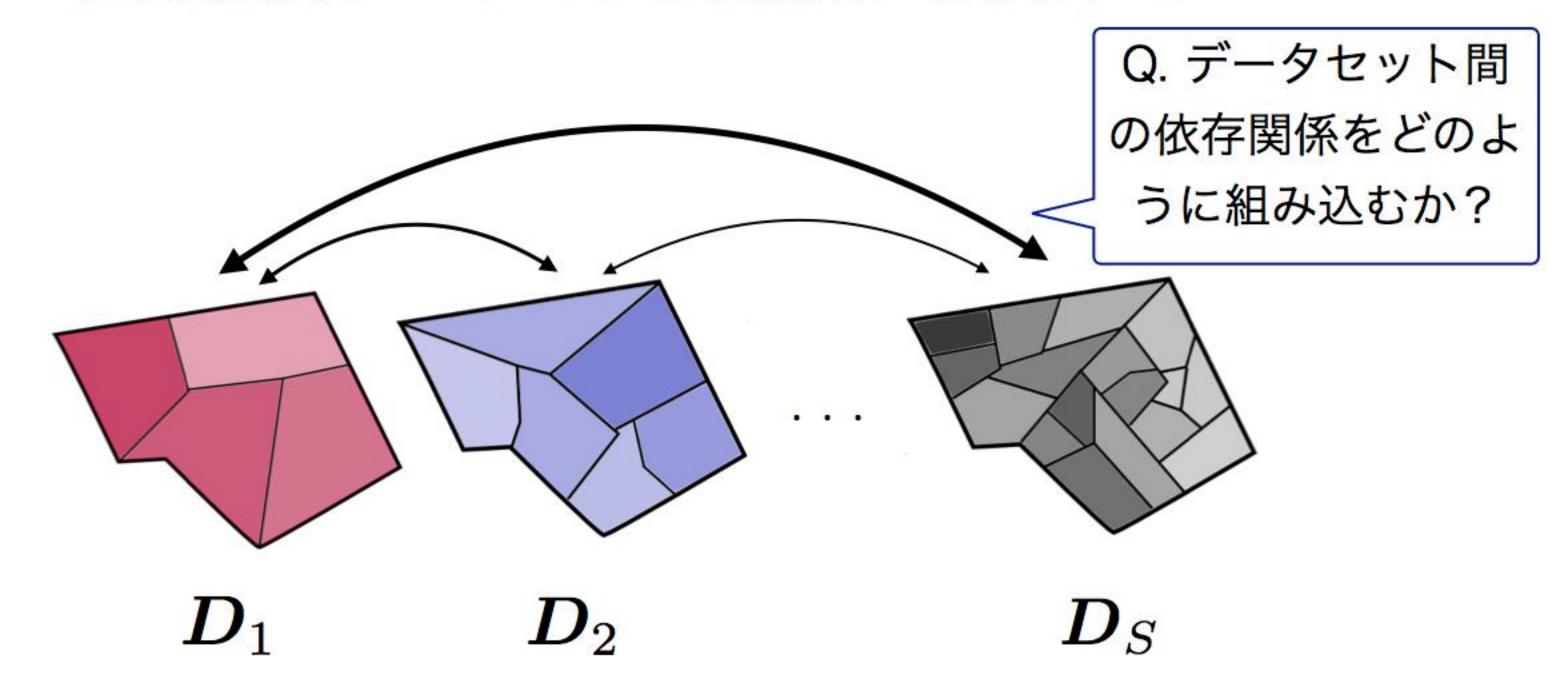
$$f_s(\boldsymbol{x}): \boldsymbol{X} \to \mathbb{R}, \quad s = 1, \dots, S$$



高解像度化のための アイデア

- データの空間相関を捉えて 内挿する
- ・同じ都市における他の種類のデータセットを活用

データの空間分布の類似性を捉えて 低解像度データの空間補完に活用する



Questions

ガウス過程を基礎として,

- Q1. 領域で集約された観測をどのようにモデル化するか?
 - ー> Spatially Aggregated Gaussian Processes with a Single Output (SAGP-S) の定式化
- Q2. データセット間の依存関係をどのように組み込むか?
 - -> 多変量ガウス過程をベースにして集約データを扱うことが可能なSpatially Aggregated Gaussian Processes with Multiple Outputs (SAGP-M) の定式化

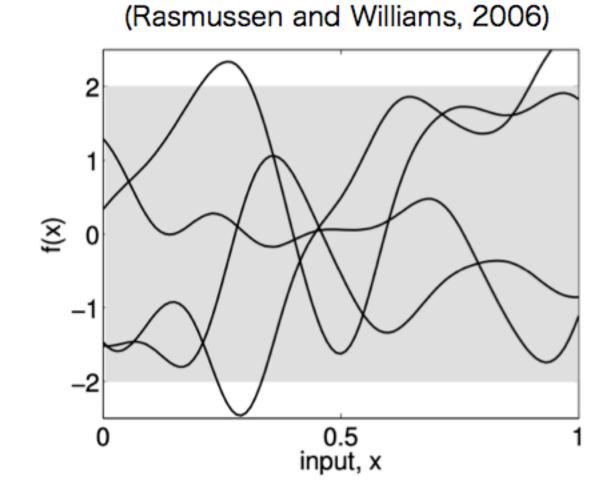
- ・ガウス過程
- ・ 集約プロセスを持つ観 測モデル
- · 推定

lackbox 関数 $f(oldsymbol{x})$ の確率的生成モデル

$$f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$

†

平均関数 共分散関数



ガウス過程の定義

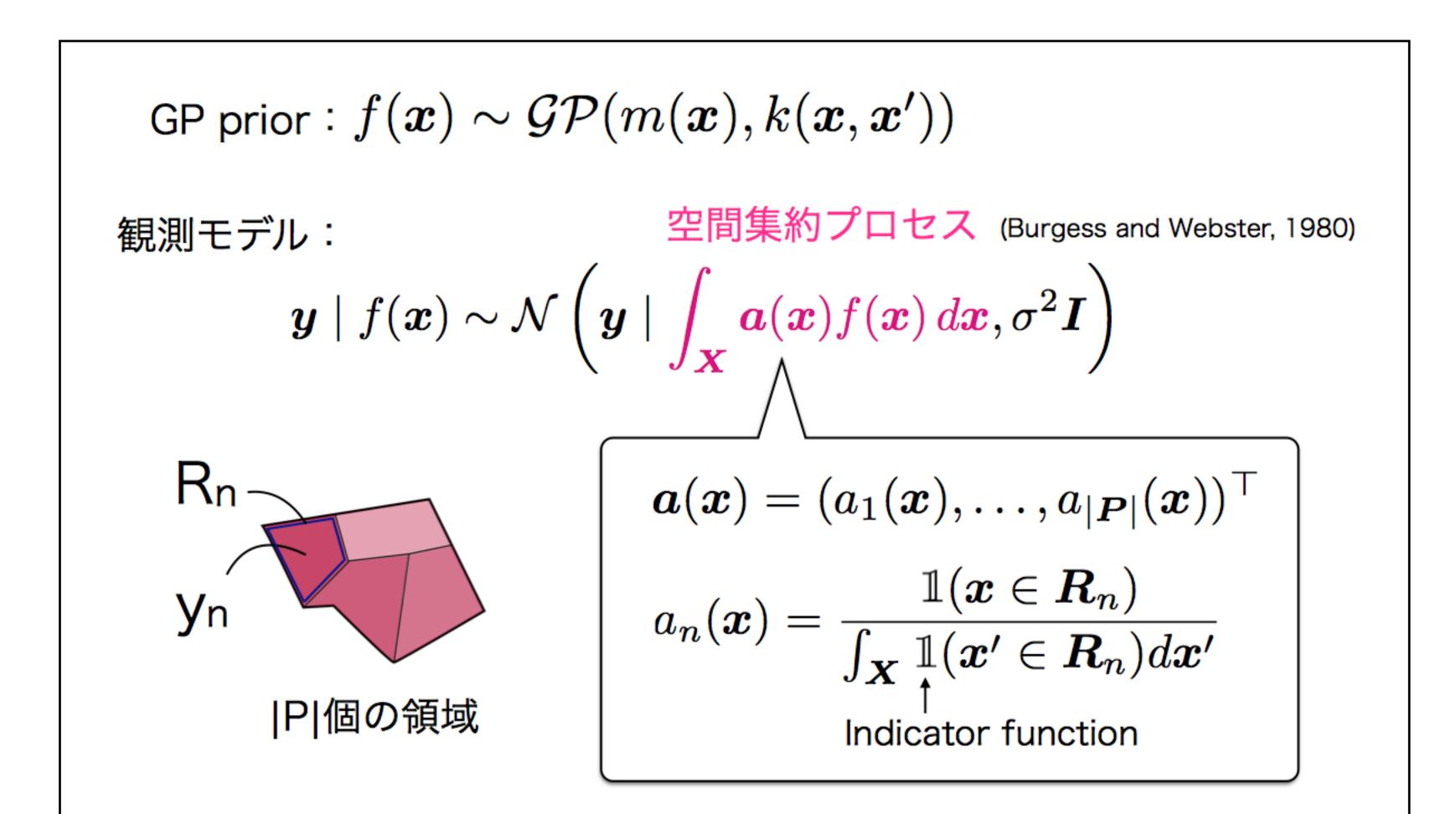
N個の点 x_1, \ldots, x_N が与えられたとしたとき、 $f = (f(x_1), \ldots, f(x_N))^{\top}$ は以下のN次元ガウス分布に従う

$$oldsymbol{f} \sim \mathcal{N}\left(oldsymbol{f} \mid oldsymbol{m}, oldsymbol{K}
ight)$$

 $m{m}$:N次元平均ベクトル。n番目の要素 $m(m{x}_n)$

 $m{K}$:N×N 共分散行列。(n,n')番目の要素 $k(m{x}_n,m{x}_{n'})$

- ・ガウス過程
- 集約プロセスを持つ観 測モデル
- · 推定



※ GP f(x)が積分可能であると仮定.積分可能な条件は,GPのsample pathが連続かどうかを調べることで議論.十分条件が知られている (Adler and Taylor, 2007)

- ・ガウス過程
- ・集約プロセスを持つ観 測モデル
- ・推定

GP prior:
$$f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$

観測モデル: $\boldsymbol{y} \mid f(\boldsymbol{x}) \sim \mathcal{N}\left(\boldsymbol{y} \mid \int_{\boldsymbol{X}} \boldsymbol{a}(\boldsymbol{x}) f(\boldsymbol{x}) \, d\boldsymbol{x}\right) \sigma^2 \boldsymbol{I}$
観測データ: $\{(\boldsymbol{R}_n, y_n)\}_{n=1}^{|\boldsymbol{P}|} \longrightarrow \text{Posterior GP}: f^*(\boldsymbol{x}) \mid \boldsymbol{y}$

周辺尤度

Step 1. リーマン和で表してGPを積分消去

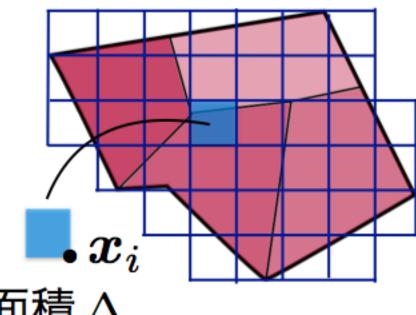
$$p(oldsymbol{y}) = \int \mathcal{N}\left(oldsymbol{y} \mid ar{oldsymbol{a}} ar{oldsymbol{\sigma}} \sigma^2 oldsymbol{I}
ight) \mathcal{N}\left(ar{oldsymbol{f}} \mid ar{oldsymbol{m}}, ar{oldsymbol{K}}
ight) \, dar{oldsymbol{f}}$$
 個のグリッド点 におけるGP

一
$$oldsymbol{w}$$
 $oldsymbol{(y}|oldsymbol{\mu},oldsymbol{C})$ における GP 但し, $ar{oldsymbol{a}}=(oldsymbol{a}(oldsymbol{x}_1),\ldots,oldsymbol{a}(oldsymbol{x}_I))$ Δ

$$ar{m{\mu}} = \sum_{i=1}^I m{a}(m{x}_i) m(m{x}_i) \Delta$$

$$ar{oldsymbol{C}} = \sum_{i,i'=1}^I k(oldsymbol{x}_i,oldsymbol{x}_{i'})oldsymbol{a}(oldsymbol{x}_i)oldsymbol{a}(oldsymbol{x}_{i'})^ op \Delta^2 + \sigma^2 oldsymbol{I}$$

I個のグリッド



面積Δ

- ・ガウス過程
- 集約プロセスを持つ観 測モデル
- ・推定

GP prior :
$$f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$

観測モデル:
$$m{y} \mid f(m{x}) \sim \mathcal{N}\left(m{y} \mid \int_{m{X}} m{a}(m{x}) f(m{x}) dm{x}, \sigma^2 m{I}\right)$$

観測データ:
$$\{(\boldsymbol{R_n}, y_n)\}_{n=1}^{|\boldsymbol{P}|}$$
 — Posterior GP: $f^*(\boldsymbol{x}) \mid \boldsymbol{y}$

▶ 周辺尤度

Step 2. Δ→ 0 の極限をとる

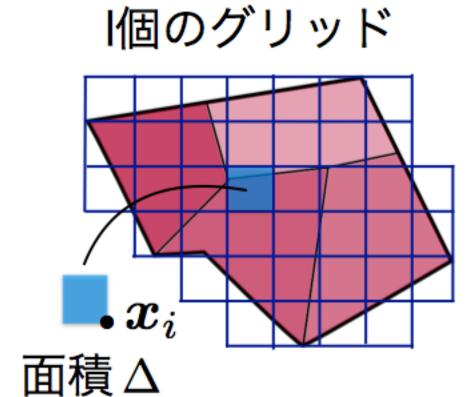
$$p(oldsymbol{y}) = \; \mathcal{N}\left(oldsymbol{y} \mid ar{oldsymbol{\mu}}, ar{oldsymbol{C}}
ight)$$

$$ar{m{\mu}} = \sum_{i=1}^{I} m{a}(m{x}_i) m(m{x}_i) \Delta
ightarrow \int_{m{X}} m{a}(m{x}) m(m{x}) \, dm{x} = m{\mu}$$

$$ar{m{C}} = \sum_{i,i'=1}^I k(m{x}_i,m{x}_{i'})m{a}(m{x}_i)m{a}(m{x}_{i'})^{ op}\Delta^2 + \sigma^2m{I}$$

$$\rightarrow \int\!\!\!\int_{\boldsymbol{X}\times\boldsymbol{X}} k(\boldsymbol{x},\boldsymbol{x}')\boldsymbol{a}(\boldsymbol{x})\boldsymbol{a}(\boldsymbol{x}')^{\top}\,d\boldsymbol{x}\,d\boldsymbol{x}' + \sigma^2\boldsymbol{I} = \boldsymbol{C}$$

観測領域{R_n}と{R_{n'}}の共分散



- ガウス過程
- ・ 集約プロセスを持つ観 測モデル
- ・推定

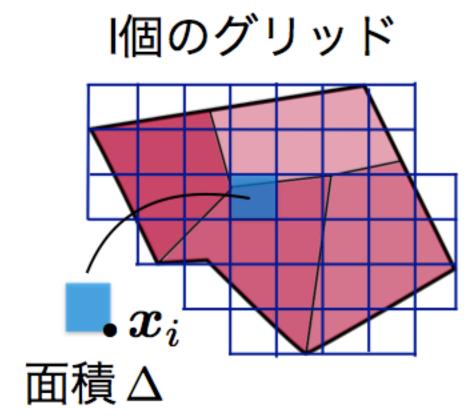
GP prior :
$$f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$

観測モデル:
$$m{y} \mid f(m{x}) \sim \mathcal{N}\left(m{y} \mid \int_{m{X}} m{a}(m{x}) f(m{x}) dm{x}, \sigma^2 m{I}\right)$$

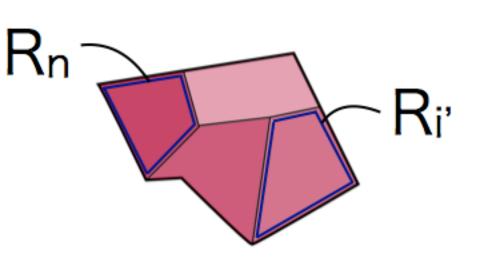
観測データ:
$$\{(\boldsymbol{R_n}, y_n)\}_{n=1}^{|\boldsymbol{P}|}$$
 — Posterior GP: $f^*(\boldsymbol{x}) \mid \boldsymbol{y}$

● 周辺尤度

$$egin{aligned} p(oldsymbol{y}) &= \mathcal{N}\left(oldsymbol{y} \mid oldsymbol{\mu}, oldsymbol{C}
ight) \ oldsymbol{\mu} &= \int_{oldsymbol{X}} oldsymbol{a}(oldsymbol{x}) m(oldsymbol{x}) \, doldsymbol{x} \ oldsymbol{C} &= \iint_{oldsymbol{X} imes oldsymbol{X}} k(oldsymbol{x}, oldsymbol{x}') oldsymbol{a}(oldsymbol{x})^{ op} \, doldsymbol{x} \, doldsymbol{x}' + \sigma^2 oldsymbol{I} \end{aligned}$$



- → 領域のサイズや形を考慮した共分散を算出可能
 - ・領域が大きいほど分散は小さく(サンプルが増える)
 - ・特異な形(細長い領域等)をした領域にも対応



- ・ガウス過程
- 集約プロセスを持つ観 測モデル
- ・推定

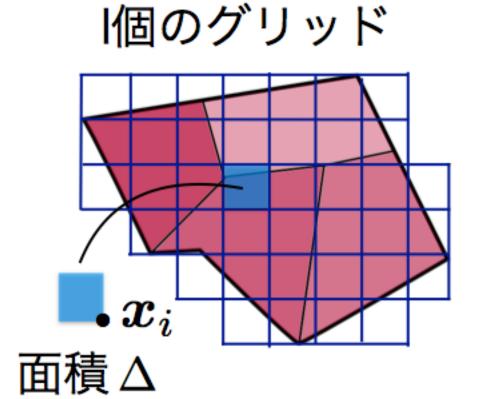
GP prior:
$$f(\boldsymbol{x}) \sim \mathcal{GP}(m(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$

観測モデル: $\boldsymbol{y} \mid f(\boldsymbol{x}) \sim \mathcal{N}\left(\boldsymbol{y} \mid \int_{\boldsymbol{X}} \boldsymbol{a}(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}, \sigma^2 \boldsymbol{I}\right)$
観測データ: $\{(\boldsymbol{R}_n, y_n)\}_{n=1}^{|\boldsymbol{P}|} \longrightarrow \text{Posterior GP: } f^*(\boldsymbol{x}) \mid \boldsymbol{y}$

Posterior GP (導出の手順は同じ)

$$f^*(oldsymbol{x}) \mid oldsymbol{y} \sim \mathcal{GP}(m^*(oldsymbol{x}), k^*(oldsymbol{x}, x'))$$
 $m^*(oldsymbol{x}) = m(oldsymbol{x}) + oldsymbol{h}(oldsymbol{x})^ op oldsymbol{C}^{-1}(oldsymbol{y} - oldsymbol{\mu})$ $k^*(oldsymbol{x}, oldsymbol{x}') = k(oldsymbol{x}, oldsymbol{x}') - oldsymbol{h}(oldsymbol{x})^ op oldsymbol{C}^{-1}oldsymbol{h}(oldsymbol{x}')$ 但し, $oldsymbol{h}(oldsymbol{x}) = \int_{oldsymbol{X}} oldsymbol{a}(oldsymbol{x}') k(oldsymbol{x}', oldsymbol{x}) doldsymbol{x}'$

任意の点xと観測領域{Rn}との共分散

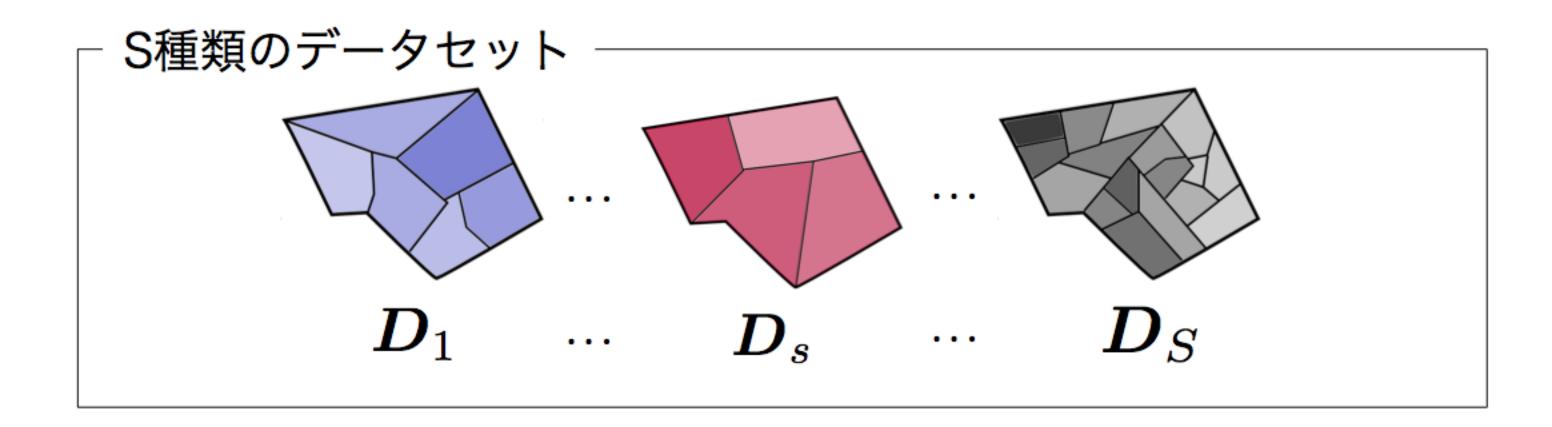


Questions

ガウス過程を基礎として,

- Q1. 領域で集約された観測をどのようにモデル化するか?
 - ー> Spatially Aggregated Gaussian Processes with a Single Output (SAGP-S) の定式化
- Q2. データセット間の依存関係をどのように組み込むか?
 - -> 多変量ガウス過程をベースにして集約データを扱うことが可能なSpatially Aggregated Gaussian Processes with Multiple Outputs (SAGP-M) の定式化

- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ



$$m{D} = igcup_{s=1}^S m{D}_s$$
 但し, $m{D}_s = \{(m{R}_{s,n}, y_{s,n}) \mid n=1,\ldots, |m{P}_s|\}$

$$p(\boldsymbol{y}_1, \boldsymbol{y}_2, \dots, \boldsymbol{y}_S)$$

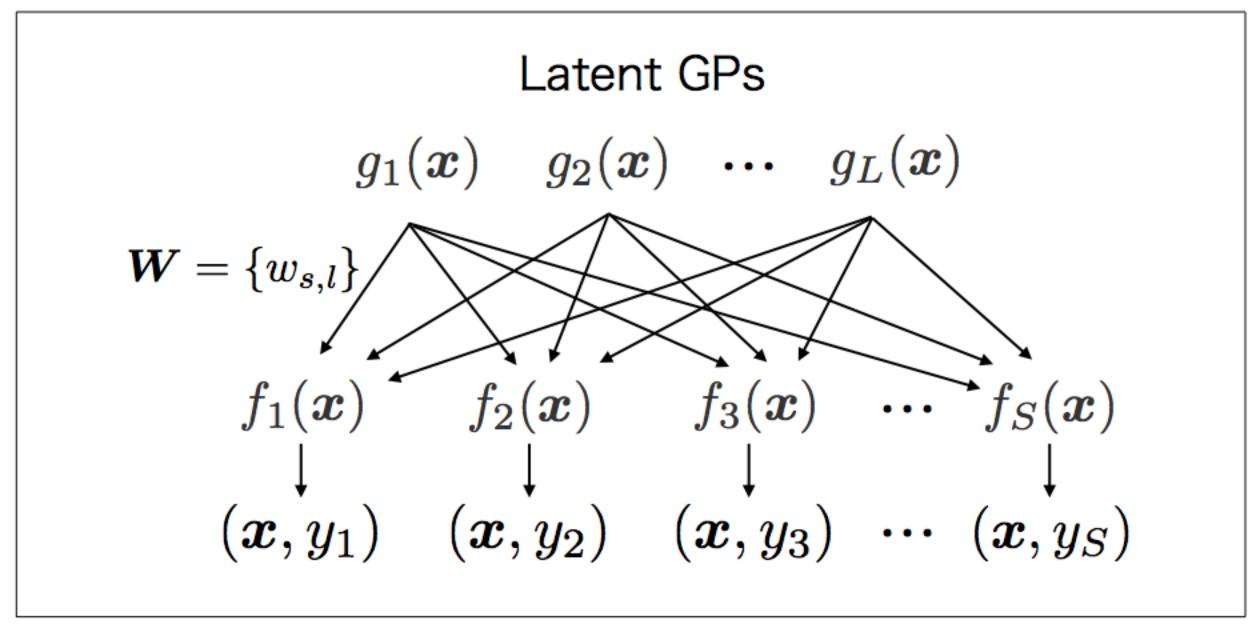
- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

。 S次元ガウス過程 $\boldsymbol{f}(\boldsymbol{x}) = (f_1(\boldsymbol{x}), \dots, f_S(\boldsymbol{x}))^{\top}$

L個の潜在ガウス過程の線形混合により依存関係を導入

Linear Model of Coregionalization (LMC) (Alvarez, Rosasco, and Lawrence, 2012)

$$m{f}(m{x}) = m{W}m{g}(m{x}) + m{n}(m{x})$$
 (回帰残差) $m{\uparrow}$ $m{\uparrow}$ S×L 重み行列 L個の潜在ガウス過程

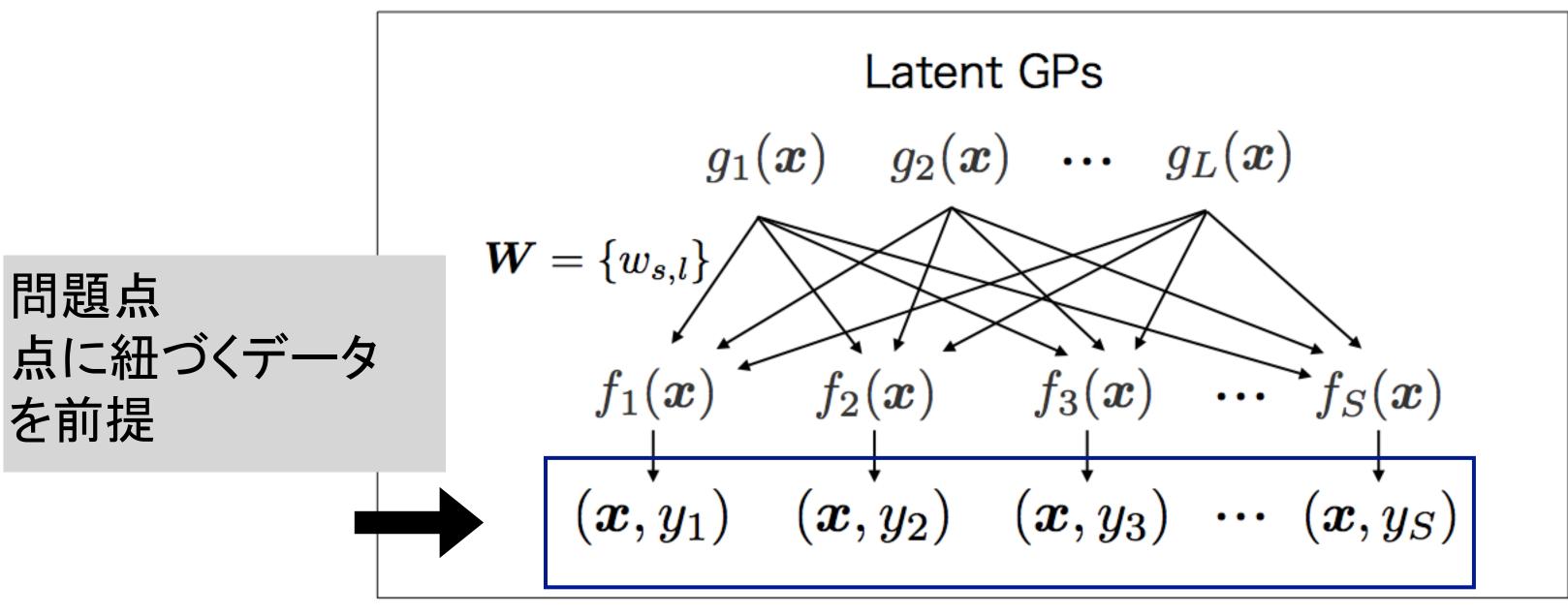


- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

。 S次元ガウス過程 $\boldsymbol{f}(\boldsymbol{x}) = (f_1(\boldsymbol{x}), \dots, f_S(\boldsymbol{x}))^{\top}$

L個の潜在ガウス過程の線形混合により依存関係を導入

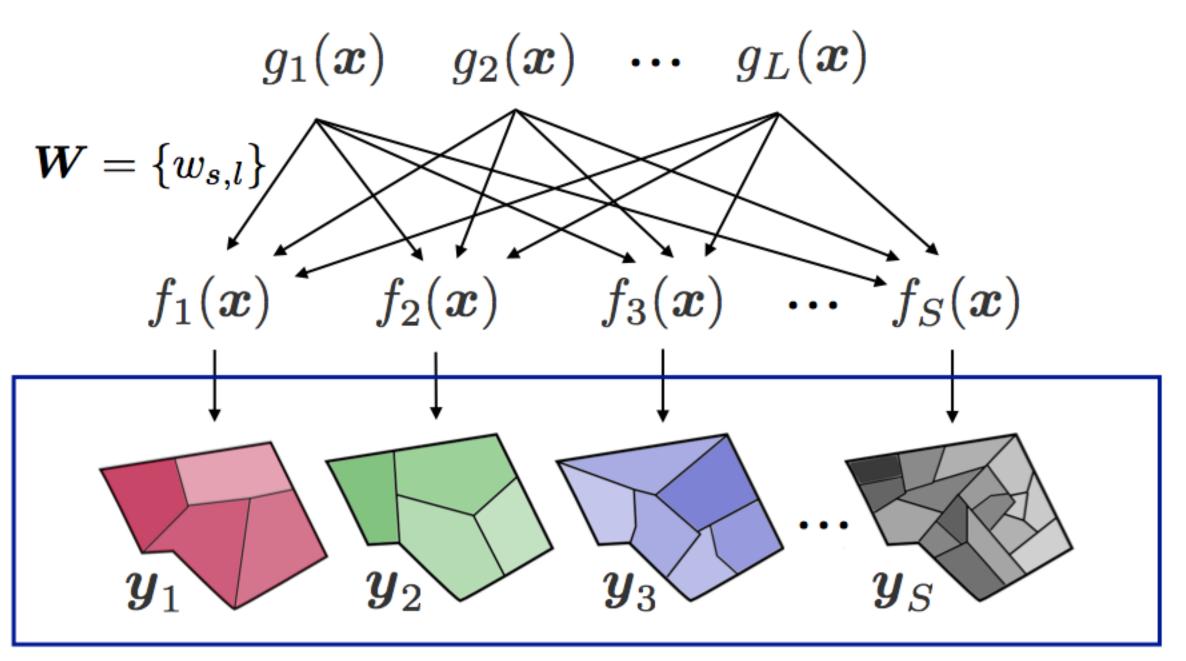
$$m{f}(m{x}) \sim \mathcal{GP}\left(m{m}(m{x}), m{K}(m{x}, m{x}')
ight)$$
 $m{m}(m{x}) = m{W}m{
u}(m{x})$ 潜在ガウス過程の平均関数 $m{K}(m{x}, m{x}') = m{W}m{\Gamma}(m{x}, m{x}')m{W}^{ op} + m{\Lambda}(m{x}, m{x}')$ 潜在ガウス過程の共分散関数 ノイズプロセスの共分散関数



- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

- S次元ガウス過程の観測モデルに集約プロセスを組み込む
 - ▶ 集約データから多変量GP f(x)を学習可能
 - 潜在GPをデータセット間で共有することで、低解像度データの共分散を効果的に学習可能

Latent GPs

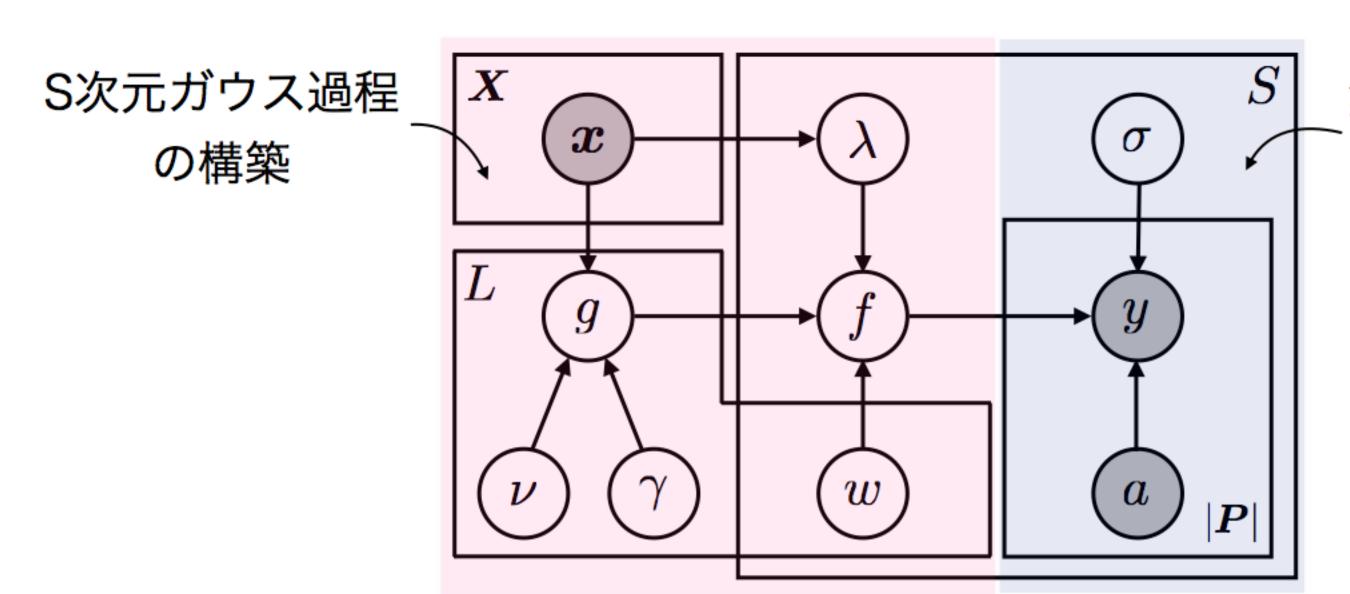


Aggregated data sets

- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

- S次元ガウス過程の観測モデルに集約プロセスを組み込む
- 。 S次元ガウス過程 $f(x) \sim \mathcal{GP}(m(x), K(x, x'))$
- 観測モデル

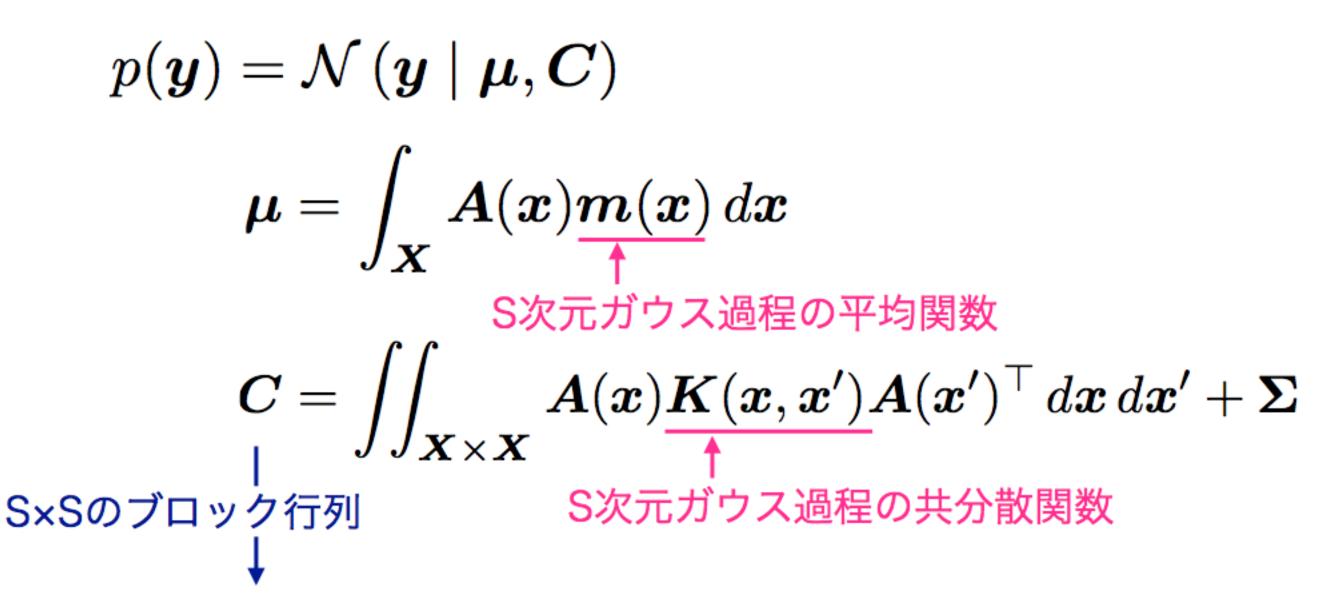
$$egin{aligned} oldsymbol{y} \mid oldsymbol{f}(oldsymbol{x}) & \sim \mathcal{N}\left(oldsymbol{y} \mid \int_{oldsymbol{X}} oldsymbol{A}(oldsymbol{x}) oldsymbol{f}(oldsymbol{x}) \cdot oldsymbol{f}(oldsymbol{y} \mid f(oldsymbol{x}) \cdot oldsymbol{v} \setminus oldsymbol{y} \cdot oldsymbol{A}(oldsymbol{x}) = (oldsymbol{a}_1, oldsymbol{y}, oldsymbol{y}, oldsymbol{y} \cdot oldsymbol{f}(oldsymbol{x}) \cdot oldsymbol{A}(oldsymbol{x}) = (oldsymbol{a}_{s,1}(oldsymbol{x}), \ldots, oldsymbol{a}_{s,l}(oldsymbol{x}))^{ op} \\ oldsymbol{a}_s(oldsymbol{x}) = (oldsymbol{a}_{s,1}(oldsymbol{x}), \ldots, oldsymbol{a}_{s,l}(oldsymbol{x}))^{ op} \end{aligned}$$

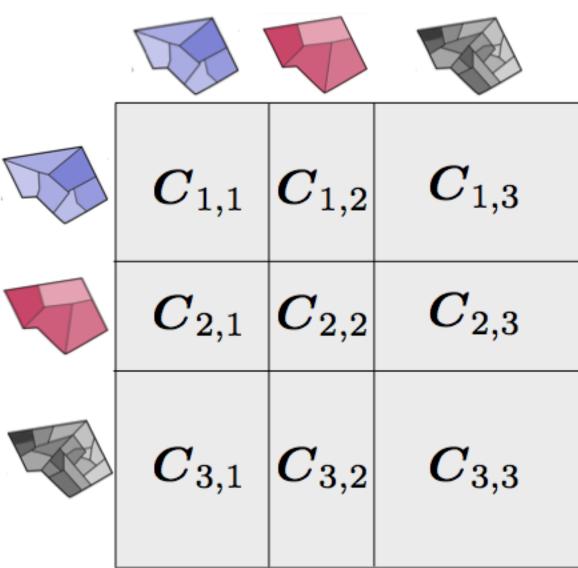


集約プロセスを 持つ観測モデル

- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

● 周辺尤度(導出手順はSAGP-Sと同様)





S=3の場合

(s,s')番目のブロック

$$egin{aligned} oldsymbol{C}_{1,3} & oldsymbol{C}_{s,s'} = \iint_{oldsymbol{X} imesoldsymbol{X}} k_{s,s'}(oldsymbol{x},oldsymbol{x}')oldsymbol{a}_s(oldsymbol{x})oldsymbol{a}_{s'}(oldsymbol{x}')^ op doldsymbol{x} doldsymbol{x}' \ + \delta_{s,s'}\sigma_s^2oldsymbol{I} \ \end{pmatrix}$$

集約データセット間の共分散を 評価可能

- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

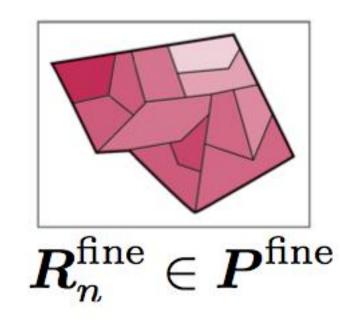
■ Posterior GP (導出手順はSAGP-Sと同様)

任意の点xでの予測が可能

$$f^*(x) \sim \mathcal{GP}\left(m^*(x), K^*(x, x')\right)$$

$$egin{aligned} m{m}^*(m{x}) &= m{m}(m{x}) + m{H}(m{x})^{ op} m{C}^{-1}(m{y} - m{\mu}) \ m{K}^*(m{x}, m{x}') &= m{K}(m{x}, m{x}') - m{H}(m{x})^{ op} m{C}^{-1} m{H}(m{x}') \ m{H}(m{x}) &= \int_{m{x}} m{A}(m{x}') m{K}(m{x}', m{x}) \, dm{x}' \end{aligned}$$

所望の領域において $f^*(x)$ を積分すれば領域における予測が可能



- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

ニューヨーク、シカゴで公開されている実データを使用して提案 モデルの有効性を検証

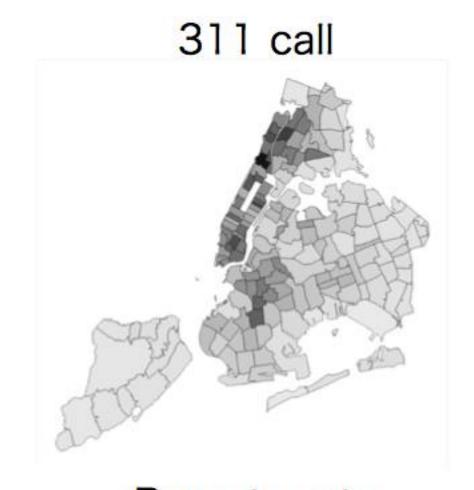
(a) New York City

Data	Partition	#regions	Time range
PM2.5	UHF42	42	2009 - 2010
Poverty rate	Community district	59	2009 - 2013
Unemployment rate	Community district	59	2009 - 2013
Mean commute	Community district	59	2009 - 2013
Population	Community district	59	2009 - 2013
Recycle diversion rate	Community district	59	2009 - 2013
Crime	Police precinct	77	2010 - 2016
Fire incident	Zip code	186	2010 - 2016
311 call	Zip code	186	2010 - 2016
Public telephone	Zip code	186	2016

(b) Chicago

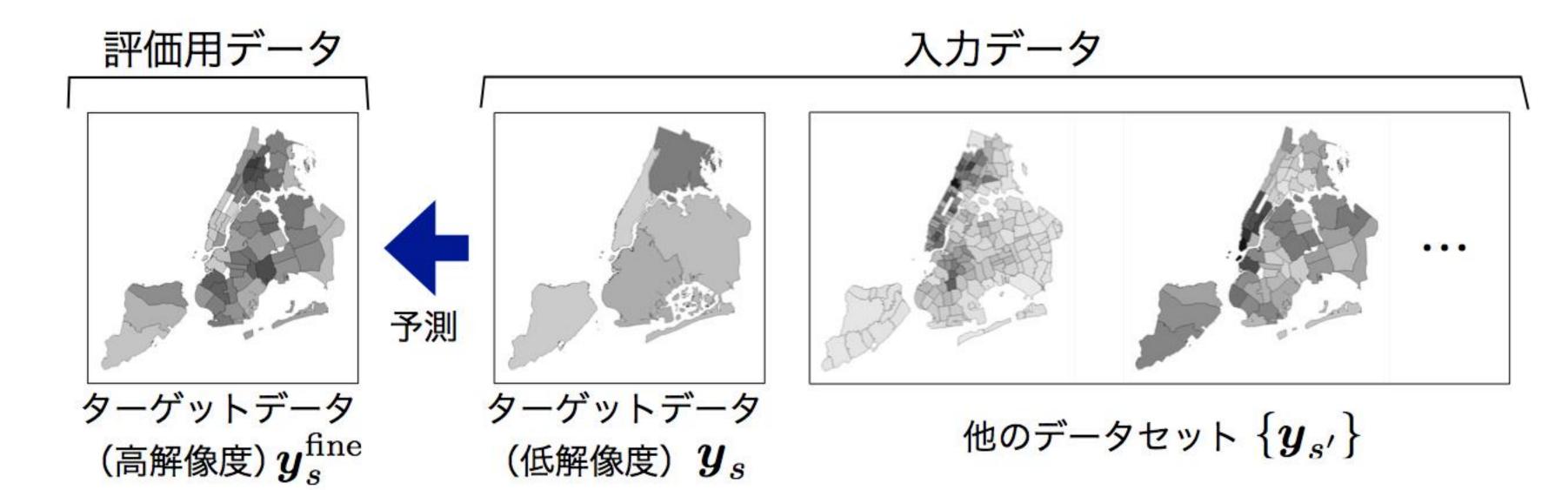
Data	Partition	#regions	Time range	
Crime	Police Precinct	25	2012	
Poverty rate	Community district	77	2008 - 2012	
Unemployment rate		77	2008 - 2012	

https://opendata.cityofnewyork.us/ https://data.cityofchicago.org/



- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

検証方法



評価指標: Mean Absolute Percentage Errors (MAPE)

$$egin{array}{c|c} egin{array}{c} eta ert egin{array}{c} eta \end{array} \end{array} egin{array}{c} egin{array}{c} eta \end{array} \end{array} egin{array}{c} eta \end{array} \end{array}$$

- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

SAGP-Mの設定

- 全てのGPの平均は0に固定.
- 共分散関数はSquared-exponential kernelを使用
- 領域積分は300m × 300mのグリッドで近似
- ▶ 最適化問題はL-BFGS (Liu and Nocedal, 1989) を使用
- ▶ 潜在ガウス過程の個数Lは{1,...,S-1}の中から交差検証で決定

比較手法

- ・ SAGP-S: 集約プロセスを考慮したガウス過程回帰
- → 2-stage SAGP model: Regression approachに基づく提案法
- ・ SLFM: 多変量ガウス過程回帰(サンプルは領域の重心に紐づけ)

(Teh, Seeger, and Jordan, 2005) LMCをガウス過程で実現したもの

SAGP-MはSLFMを集約データを扱えるように拡張したもの

- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

● 高解像度データの予測性能の比較

比較手法に比べて同等以上の性能を達成

t検定の結果 ★:P<0.05において有意差あり ★★:P<0.01において有意差あり

(a) New York City

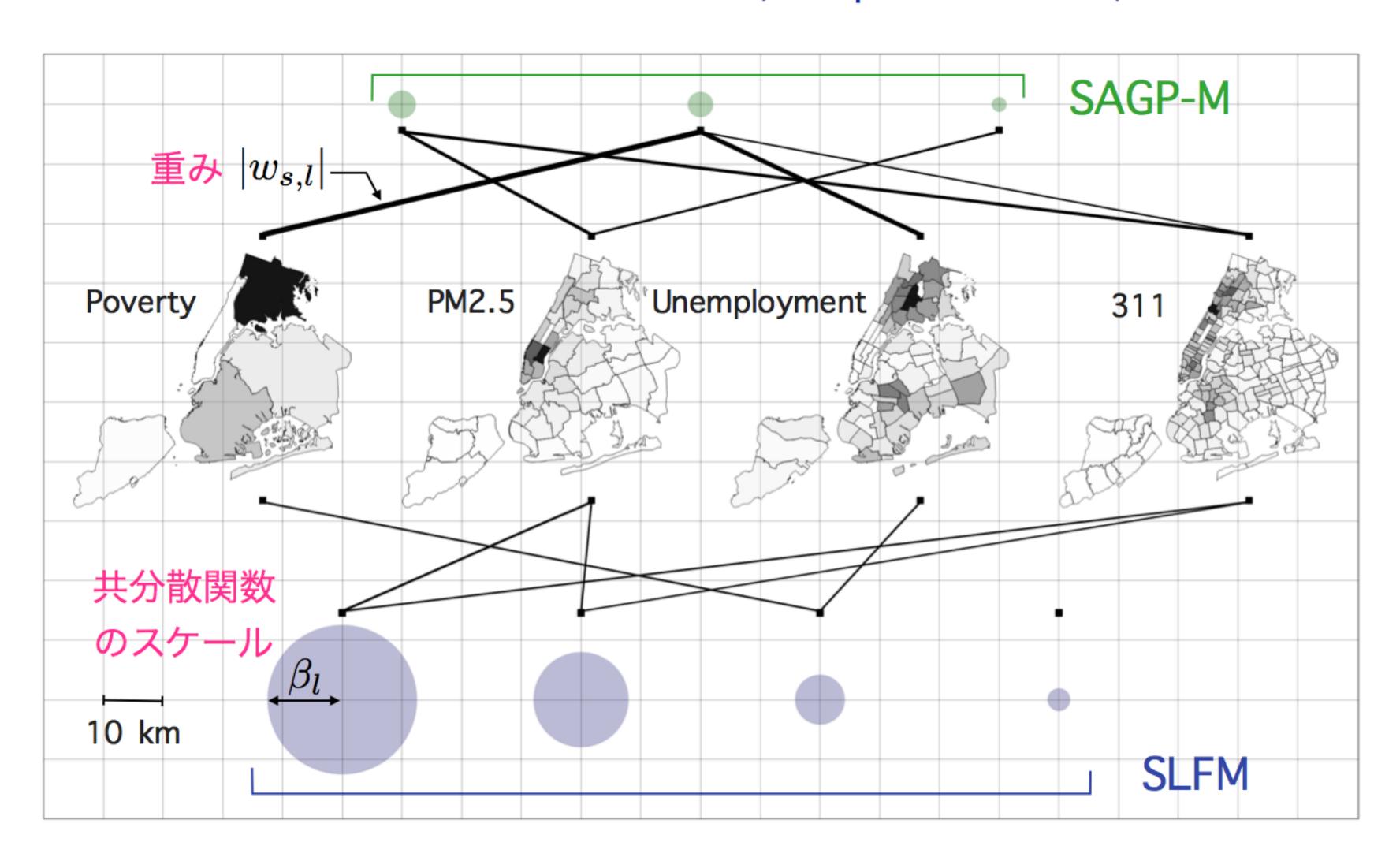
	SAGP-S	2-stage SAGP model	SLFM	SAGP-M
PM2.5	0.053 ± 0.007	0.042 ± 0.005	0.036 ± 0.005 (6)	$0.030 \pm 0.005^*$ (5)
Poverty rate	0.281 ± 0.034	0.218 ± 0.021	0.207 ± 0.025 (4)	$0.181 \pm 0.021^{\star\star}$ (3)
Unemployment rate	0.232 ± 0.025	$\textbf{0.154} \pm \textbf{0.021}$	0.195 ± 0.024 (3)	0.165 ± 0.020 (4)
Mean commute	0.076 ± 0.010	0.052 ± 0.005	0.057 ± 0.007 (4)	0.048 ± 0.007 (5)
Population	0.371 ± 0.040	0.321 ± 0.039	0.337 ± 0.039 (3)	$0.282 \pm 0.034^{\star} \ (4)$
Recycle diversion rate	0.282 ± 0.034	0.191 ± 0.023	0.222 ± 0.032 (4)	$0.162 \pm 0.022^{\star\star}$ (4)
Crime	0.525 ± 0.112	0.413 ± 0.086	0.401 ± 0.053 (2)	$0.334 \pm 0.048^{\star\star}$ (2)
Fire incident	0.793 ± 0.148	0.560 ± 0.106	0.500 ± 0.052 (4)	$0.402 \pm 0.040^{\star}$ (5)
311 call	0.069 ± 0.005	0.061 ± 0.004	0.061 ± 0.004 (6)	$0.050 \pm 0.004^{\star\star}$ (3)
Public telephone	0.099 ± 0.008	0.089 ± 0.008	0.086 ± 0.008 (4)	0.079 ± 0.008 (5)

(b) Chicago

	SAGP-S	2-stage SAGP model	SLFM	SAGP-M
Poverty rate	0.423 ± 0.063	0.274 ± 0.035	0.335 ± 0.052 (2)	$0.255 \pm 0.030^{\star\star}$ (2)
Unemployment rate	0.405 ± 0.041	0.257 ± 0.030	0.278 ± 0.025 (2)	$0.228 \pm 0.021^{\star} \ (2)$

- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

- 推定されたパラメータの可視化 (ターゲット:poverty rate)
 - ▶ SAGP-Mが予測に重要な関係性 (例:pov.とunem.)を抽出



- ・基本的な考え方
- · 先行研究(多変量GP)
- · SAGP-M
- ・実験設定
- ・結果
- ・まとめ

貢献

- 多変量ガウス過程に基づいて、集約データを高解像度化するための確率モデルを提案
 - ・ 潜在GPをデータセット間で共有することで、低解像度データの共分 散関数を効果的に学習可能
- 実データを用いて提案モデルの有効性を検証

今後の展望

大規模なデータ取得が難しい都市への対応.都市間での転移学習技術の開発