Tiny eye movements reflect cognitive states

Relation of eye-movement dynamics with cognition and pupil

Abstract

Recent studies have shown that the characteristics of the eye movements reflect the cognitive state varying moment by moment. In this study, we investigated the relationship between cognitive states and the detailed dynamics of eye movements which have been regarded as mere mechanical oscillation. We found that the dynamic properties of eye oscillation after saccade reflect the task difficulty in gaze shift task. In addition, we showed that the oscillation dynamics was greater for pupil-centric motion than motion of entire eyeball. The correlation between the pupil-centric oscillation and pupil size indicates that it reflects the instantaneous states of eye tissue inside iris (e.g., stiffness of muscles controlling pupil size). There is a potential that the measurement of the tiny eye movements can be applied to a tool for monitoring the time-varying cognitive state (for example, monitoring the worker who engages in task requiring attention or cognitive load).

Relation between dynamics of saccadic eye movement and cognitive task

- The gaze position after a saccade does not stop exactly at the target position but oscillate around it (overshoot)
- We tested the relationship between overshoot, which has been regarded as mere mechanical vibration, and cognition Gaze shift task overshoot Target position Gaze position Comparison of dynamics properties of oscillation Anti-saccade > Pro-saccade Time We found that the dynamic properties of eye oscillation after saccade reflects the task difficulty Anti-saccade Pro-saccade Look to stimulus Look away from stimulus Time (High-load task) (Low-load task) Correlation between pupil size and Eye-movement dynamics reflects dynamics of pupil-centric motion the physical properties of eye tissue Calculates the correlation coefficient between eye-Extracts the pupil-centric and iris-centric motions movement dynamics and pupil size or task difficulty Oscillation of pupil center Cognitive factor Eye-movement dynamics Correlation Pupil-centric motion Pupil size Oscillation of iris center Task (eyeball motion) Entire eyeball motion difficulty No significant correlation Dynamics correlate with pupil size Viscoelasticity of the pupil-centric oscillation is as well as task difficulty greater than iris-centric one (entire eyeball) Reflects state of muscles controlling pupil size

References

[1] S. Yamagishi, M. Yoneya, S. Furukawa, "Relationship of postsaccadic oscillation with the state of the pupil inside the iris and with cognitive processing," *J Neurophysiol*, 2020.

Contact

Shimpei Yamagishi Email: cs-openhouse-ml@hco.ntt.co.jp Sensory Resonance Research Group, Human Information Science Laboratory

