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Distributed traffic coordination without traffic signals

Abstract

In the era of autonomous vehicles, traffic coordination systems using signals will be replaced. In IOWN's signal-free mobility, it is
suggested that vehicles will autonomously transition their states (e.g., speed acceleration, handle steering, and position) via
communication among vehicles. For signal-free mobility, a recurrent neural network (RNN) architecture is proposed which
alternately iterates (i) communication between closely positioned vehicles (token exchange to prevent vehicle collisions) and (ii)

local state updates. Since our method can be performed in a
in a city in real-time. Via training through digital twins (simu

distributed manner, it is suitable to control a large number of vehicles
lation system linked with the real world), we will obtain a collective

intelligence model. We confirmed the overall efficiency of trained RNN through traffic coordination tests in digital twins and real

experiments using real small vehicles.

The concept of signal-free mobility, in which a set of
automated vehicles coordinates their traffic without
using traffic signals, is shown in [1]. To realize this
concept, we have studied on a distributed control
problem to reduce travel/transportation time to the
limit while vehicles are collision-free [2].

Constrained dynamics learning

Traffic coordination in which each vehicle updates its
states (e.g., speed, position) while imposing constraints
on them to prevent collisions can be represented by an
ordinary differential equation (ODE).
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By discretizing this ODE, we constructed a recurrent
neural network (RNN) in which V vehicles evolve their
states K times. As shown in the figure below, this RNN
consists of alternatingly repeat of (i) local state updates
(x), (ii) communication between vehicles to exchange
token for satisfying collision-free constraints, and (iii)
local updates of input/constraint parameters (4, b). The
size of this RNN is huge with a width of V and a depth of
K. However, it is composed of a set of operations that
can be parallelized, allowing for real-time state updates
as a forward propagation. Meanwhile for backward
propagation, driving dynamics model () is optimized to
have a small loss score designed to increase the averaged
vehicle speed.
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Dynamics model training using digital twins

To efficiently train driving dynamics model, we constructed a
traffic simulation system that evolves states in digital twins of V
vehicles and roads linked to them in real world. By driving digital
twins of vehicles on various road maps including virtual ones (see
figure below), we can efficiently collect data sets. We optimized

driving dynamics mode; though R=300 round iterations of
simulation (forward propagations) and backward propagations.
Traffic simulation system The proposed method showed an averaged
vehicle speed improvement of about 30%
compared to the initialization (random) (red
line). The higher averaged speed compared to
the unconstrained graph neural network (green
line, GAT[3],) and the untrainable traffic
simulator (blue dot line, SUMO[4]) confirm the
effectiveness of the proposed method.
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We constructed a real world system of signal-free mobility using
a set of small real vehicles (see figure below) and conducted
experiments to feedback the optimized driving dynamics model to
the real world. We confirmed that each vehicle autonomously run
without collisions by exchanging tokens to each other.
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