Gaussian process model incorporating energy conservation law
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Machine learning that reproduces physical phenomena

Abstract

Our research question aims to reproduce the underlying behavior that adheres to the laws of physics using machine learning
techniques. We propose a novel Gaussian process model that incorporates the theory of Hamiltonian mechanics. One advantage of
our technology is that it can simulate physical phenomena without handcrafted equations. Our experiments show that our
technology accurately simulates physical phenomena that follow energy conservation laws even in noisy and small data scenarios.
This research enables us to automatically construct simulators for complex physical phenomena from observed data. We expect our
research to contribute to the development of such science/industries as weather forecasting as well as improving the efficiency
and the quality of aircraft design.

Data-driven physics simulator

We use machine learning to reproduce underlying behavior that
follows laws of physics from data. Our technology allows for
simulating physical phenomena without handcrafting equations.
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Limitations of existing methods

Our experiments show difficulty of existing methods to accurately
reproduce physical phenomena. Significant performance degradation
was observed especially in noisy and small data scenarios.
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Difficulty

Machine learning models are quite
expressive and have potential to
adequately model large, complex
physical phenomena. However, due to
their high expressive power, itis
complicated to infer models that
accurately reproduce physical
phenomena from a vast search space.

Vast search space
of machine learning models

Key idea
By introducing prior knowledge of physics, search space can be
narrowed down to effectively estimate a model that accurately
reproduces physical phenomena.

Proposed method [1]
We present a novel technology that incorporates
"Hamiltonian mechanics" into "Gaussian process."
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Experimental results
Our proposed method accurately simulated physical phenomena that
follow energy conservation law even in noisy and small data scenarios.
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