Understanding others' emotions is crucial to human communication. However, trying to understand emotions through subjective
questions is often hindered by individual response styles and subjective uncertainties. By mathematically modeling these response
styles and uncertainties, we approach subjective emotions objectively. By statistically analyzing responses to various subjective
questions, we detect individual response styles and the uncertainties in answers that vary on different occasions, even when the
same question is asked repeatedly. Whether someone is overly expressive, reserved, or unclear in their emotional recognition, we
aim to unveil their true emotions behind their responses. Human communication is complex, and emotional expression and cognition
vary among individuals. By creating Al that comprehends human emotions, including response styles and uncertainties, we aim to
reduce misunderstandings caused by unclear communication and foster a more empathetic society.
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