Series expansion and structure theorem on automorphic forms
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Abstract

Fermat's last theorem is one of the most well-known theorems in mathematics. It was stated by Fermat over 300 years ago and
solved by Wiles in 1995. In his proof, the theory of modular forms, which connects various areas of mathematics, such as algebra,
geometry, and analysis, plays a significant role. Several conjectures are solved via modular forms, for example, the hypersphere
packing problem for 8 and 16 dimensions, and the Moonshine conjecture. However, only a small class of modular forms are used in
proofs. These modular forms are called holomorphic. To obtain more applications of modular forms, it is important to analyze the
non-holomorphic modular forms. In this study, we determined a method of constructing and analyzing a certain class of non-
holomorphic modular forms. On the basis of this research, we will conduct more mathematical investigation and hope to contribute
to major conjectures of mathematics such as Langlands conjecture.
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