Meta-learning based on neural Gaussian processes

02 Accurate spatial prediction with limited data

Abstract

To improve the prediction accuracy of spatial data using machine learning, a sufficient amount of data are typically required. In this
research, we propose a new meta-learning method that learns how to learn from diverse sensor data collected across multiple
regions. Our method enables improved prediction even when only a small amount of data are available for new regions and sensors.
For effective meta-learning, we introduce a neural Gaussian process model, which combines deep learning - capable of handling
complex data - with Gaussian processes, which allow efficient learning from limited data. Our approach can be applied to tasks
such as estimating air pollution conditions from a small number of observation points or predicting traffic volume from short-term
data. We will further advance meta-learning techniques to build accurate and reliable Al systems, even in data-scarce
environments, thereby expanding the range of applications where Al can be effectively utilized.

What is meta-learning? Proposed method: :
Meta-learning with neural Gaussian processes

Machine learning approaches that improve Neural nets (NNs) and Gaussian processes (GPs)
estimation performance even when only a ) are integrated into meta-learning for effective
small amount of data are available by learning adaptation.
how to learn frorr1 d.ata across multiple tasks. [Featurel] Sharing knowledge across tasks by
[Challenge] Existing methods use neural task-shared NNs

networks as models, and because they require | [Feature2] Handling task-specific characteristics
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difficult to flexibly adapt to small datasets. encoders
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Our method achieved lower errors
than existing GP, finetune, and meta-
learning methods.
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prediction precipitation  prediction points
Test squired Our method GP Task-shared Finetuned task- Gradient-based Neural process
error neural net shared neural net | meta-learning (meta-learning)
North America 0.316 0.476 0.963 0.497 0.710 0.348
Japan 0.653 0.703 1.016 0.871 0.873 0.756
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