

Project page

Unsupervised Learning of Depth and Depth-of-Field Effect from Natural Images with Aperture Rendering Generative Adversarial Networks

Takuhiro Kaneko

NTT Communication Science Laboratories, NTT corporation

Overview

Unsupervised learning of depth and DoF effect from natural images

Unlabeled natural images

AR-GAN

Deep DoF Shallow DoF Depth

Training data

- No ground-truth depth
- No paired data
- No pretrained model

Generated data

$$G: z \mapsto (I_d^g, I_s^g, D^g)$$

Positioning of research

Fully unsupervised 3D representation learning

Only a collection of unlabeled natural images are available for training

Viewpoint-aware

Learn 3D representation using *viewpoint* cues

HoloGAN

[Nguyen-Phuoc+2019]

Szabó et al.

[Szabó+2019]

RGBD-GAN

[Noguchi+2020]

Unsup3d

[Wu+2020]

Positioning of research

Fully unsupervised 3D representation learning

Only a collection of unlabeled natural images are available for training

Focus-aware

Learn 3D representation using focus cues

Applicable to a viewpoint-biased dataset if the dataset includes various DoF images

Training data (e.g., Oxford Flowers dataset)

AR-GAN

[ours]

Positioning of research

Fully unsupervised 3D representation learning

Only a collection of unlabeled natural images are available for training

Viewpoint-aware

Learn 3D representation using *viewpoint* cues

HoloGAN

[Nguyen-Phuoc+2019]

Szabó et al. [Szabó+2019]

RGBD-GAN

[Noguchi+2020]

Unsup3d [Wu+2020]

AR-**HoloGAN** [ours] Compatible AR-**RGBD-GAN** [ours]

Learn 3D representation using *focus* cues

Focus-aware

AR-GAN

[ours]

Viewpoint change

Overall pipeline 1/3

Overall pipeline 2/3

Overall pipeline 3/3

Overall pipeline

Standard learning (baseline)

Learn real image distribution without any constraints

Standard learning (baseline)

$$\mathcal{L}_{GAN} = \mathbb{E}_{I^r}[\log C(I^r)] + \mathbb{E}_z[\log(1 - C(G(z)))]$$

DoF mixture learning (proposed)

Learn real image distribution while generating diverse DoF images

DoF mixture learning (proposed)

$$\mathcal{L}_{AR-GAN} = \mathbb{E}_{I^r}[\log C(I^r)] + \mathbb{E}_{z,s}[\log(1 - C(R(G_I(z), sG_D(z)))]$$

Difficulty in unsupervised learning

Ambiguity between fore/background blur

Center focus prior

Solve ambiguity between fore/background blur by providing prior

Examples of center focused images

Center focus prior

Examples of generated data

Examples of data generated from AR-GAN

Portability analysis

Examples of data generated from AR-RGBD-GAN (AR-GAN + RGBD-GAN)

RGBD-GAN functionality

Generated data [FFHQ]

AR-GAN functionality

DoF

DoF

Application in shallow DoF rendering

Learn shallow DoF renderer (Deep DoF → **Shallow DoF) using generated data**

Input (iPhone photo)

Shallow DoF

Depth

AR-GAN-DR

(proposed)

W/ **no** supervision

Shallow DoF

CycleGAN (baseline)

W/ set-level supervision

Deep or shallow DoF

Project page

Unsupervised Learning of Depth and Depth-of-Field Effect from Natural Images with Aperture Rendering Generative Adversarial Networks

Takuhiro Kaneko

NTT Communication Science Laboratories, NTT corporation