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Abstract— This paper extends the affective computing re-
search field by introducing first-person vision to automatic
conversation analysis. We target medium-sized-party face-to-
face conversations where each person wears inward-looking
and outward-looking cameras. We demonstrate that the fun-
damental techniques required for group gaze analysis, i.e.
speaker detection, face tracking, and gaze estimation, can
be accurately and effectively performed via self-training in a
unified framework by gathering captured audio-visual signals
to a centralized system and using a general conversation
rule, i.e. listeners look mainly at the speaker. We visualize
the characteristics of participants’ gaze behavior as a gazee-
centered heat map, which quantitatively reveals what parts of
the gazee’s body and for how long the participant looked at it
while the gazer speaks or listens. An experiment involving two
groups of six-person conversations demonstrates the potential
of the proposed framework.

I. INTRODUCTION

Face-to-face conversation is the primary way of sharing
information, understanding others’ emotion, and making de-
cisions in social life. Accordingly, to develop conversational
agents or computer-mediated telecommunication, automatic
meeting analysis has been acknowledged as a basic research
area [1], [2]. Most previous studies offer preliminary steps
toward the recognition of the verbal/nonverbal behaviors
of conversation participants, including speech, gaze, facial
expressions, gestures and postures. They use data captured
by microphones and cameras stationed in the environment.

The emotional aspect in face-to-face conversations is now
being addressed mainly in dialogues [3], [4], [5], [6]. To
develop a model that can automatically infer emotion from
behavior, human annotations are often required as the ground
truth; participants’ self report or external observer’s judgment
regarding emotion, e.g. valence-arousal dimensions, and cod-
ing of nonverbal behavior, including gaze, facial expression,
and head gesture. The automatic assessment of nonverbal
behaviors with high accuracy is still challenging for multi-
party conversations, in particular for medium-(five- to ten-
participants) or large conversations. In these scenarios, the
face directions against the fixed cameras varies largely when
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Fig. 1. Flow of collective FPV for self-calibrating gaze analysis

people to look at other participants. Thus, it is hard for state-
of-the-art face analyzers, e.g. CERT [7], or even non-expert
human coders, to fully distinguish subtle gaze/facial actions
and head movements.

Our solution is to introduce first-person vision (FPV),
where the wearer’s field of view (FOV) is captured by
an outward-facing camera (out-cam in short), together with
his/her face by an inward-facing camera (in-cam in short).
FPV is inherently superior for measuring some conversa-
tional behaviors of the wearer because the facial motions and
head motions are completely separated by these cameras. The
wearer’s face is nearly always stable in the in-cam image, as
in [8], while any head motion yields large motion flow in the
out-cam image; this is useful for head gesture recognition.

Among these nonverbal behaviors, one of the most fun-
damental ones is gaze given its importance in several social
functions [9], e.g. monitoring, visual feedback, expressing
emotion/empathy [10], and regulating the flow of the conver-
sation. However, even when using glass-type eye trackers, the
collection of accurate group gaze behavior, e.g. who is look-
ing at whom, which facial/body part, and when, is still time-
consuming due to the requirement of manual intervention
for calibrating the gaze trackers, localizing faces in the FOV
images, and identifying the speaker at every moment. Most
previous conversation analyses actually targeted dialogues
[11], trialogues [12], and four-party [13] conversations, or
used head poses in medium-sized conversations as rough
estimates of visual focus-of-attention, e.g. [14].

Our basic idea is to combine the fundamental CV tech-
niques required for these analytical steps to develop a
(nearly-)fully automatic system that offers deeper analysis.
Targeting a likely new conversational scenario, where each
interlocutor has his/her own in- and out-cams with micro-



phones attached to a rigid worn object, e.g. a helmet or
glasses, we apply two established frameworks: The first is
inter-sensor collaboration, where captured signals are gath-
ered to a centralized system, or shared among distributed
collaborative systems [15]. The second is the active use of the
primary characteristic of multi-party conversation elucidated
so far; listeners in conversation look mainly at the speaker
[9], [12], [16]. We call this framework, which subsumes these
two frameworks, Collective First-Person Vision (Co-FPV).

The contributions of this paper are as follows: 1) Co-
FPV is proposed for estimating the gaze behavior of each
interlocutor in a multi-party conversation via self-calibration.
2) A conversational rule is introduced for the self-calibration
of an eye-gaze mapping function that transforms the iris
position in the in-cam to the gaze point in the out-cam. 3)
Face tracking via inter-sensor collaboration in the Co-FPV
framework is proposed. These techniques realize the auto-
matic characterization of the gaze behavior of participants
as a gazee-centered heat map, which reveals which part of
the gazee, and for how long, the participant looked at it. We
demonstrate that Co-FPV offers promising performance de-
spite its simplicity. Fig. 1 illustrates the proposed framework.

The remainder of this paper is organized as follows.
Section II describes related work. Section III reports a
preliminary gaze behavior experiment. Section IV explains
the proposed framework. Sections V and VI details the ex-
periment, the results, and a discussion. Finally, our summary
and future work are provided in Section VII.

II. RELATED WORK

This section positions this study by comparison with
related work as regards the following four topics: gaze
behavior in conversation, first-person vision, gaze analysis
with eye tracker, and eye tracker self-calibration.

A. Gaze behavior in conversation

Gaze offers several conversational functions, as described
in Section I. Of particular note for this study is that people
pay attention by orienting their gaze toward the speaker
[11]. These tendencies are also revealed in three-party [12]
and four-party [13] conversations. We demonstrate a similar
trend for conversations involving more participants, six-party
conversations, in III.

B. First-person vision (egocentric vision)

FPV is a hot topic in the computer vision community, and
the number of related papers is rapidly increasing [17]. Sev-
eral tasks have already been tackled: e.g. gaze tracking, activ-
ity recognition, three-dimensional reconstruction, and video
summarization [18]. Of particular note is the pioneering work
that targets social interactions in FPV. In [19], the type of
social interaction, i.e. monologue, dialogue or discussion, is
classified from the poses of people in the images captured by
a camera being worn by a person. A similar task is tackled
in [20] by combining egocentric images with images by a
stationed camera in the environment. However, these studies
do not consider situations where everyone has his/her own
wearable camera(s).
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Fig. 2. Interlocutor arrangement, left) top view and middle) egocentric
view, and right) spatial distribution of face position in the out-cam images.
Colors indicate different locations relative to the wearer.

C. Gaze analysis with eye tracker

The use of eye trackers to understand how human beings
observe photographs or movies has long been a subject of
research. A good example involves investigating the differ-
ence in gaze behavior between typically developed people
and people with autism, e.g. [21]. Another topic involves
building a computational/stochastic model that well explains
human gaze patterns. A variety of models have already
been proposed, e.g. Itti and Koch’s model [22] of low-level
saliency, and a high-level objective model. For example, it
is reported in [16] that while observing a movie depicting
social interaction, people tend to look at the turn holder, and
low-level saliency models fail to explain such gaze patterns.
The main drawback of these studies is that they often rely
on human intervention for eye-gaze calibration, and face and
speaker detection. The proposed framework automates these
processes all together. This makes it easier to analyze the
gaze patterns of both observers of a social interaction and
people involved in that social interaction.

D. Self calibration of eye-gaze mapping function

Various self calibration techniques have already been pro-
posed [23]. Some recent studies on passive vision-based eye
trackers are based on the prediction of the gaze point by using
a low-level visual saliency model, e.g. [24], or use others’
gaze patterns to target images [25]. However, the former fails
when viewing social interaction, and the latter is inapplicable
to unknown conversational scenes. The current study differs
from those studies mainly in the sense that conversational
saliency, namely turn-taking, is used as prior knowledge with
which to predict the gaze point of a target person without
using the gaze behavior of others.

III. PRELIMINARY GAZE BEHAVIOR EXPERIMENT

This paper targets medium-sized, six-party, conversations,
unlike previous studies explained in II-A. Thus, we first
report a preliminary experiment and its results to grasp the
notable characteristics of gaze behavior for self-calibrating
gaze analysis. Moreover, we assume that people are sitting
in a circle, as shown in the left part of Fig. 2, and at most
one speaker exists at any given time. In the preliminary
experiment, the gaze of each person and the speaker were
annotated by one person. The details are provided later in
Section V-B.



Fig. 3. Prototype camera mount. Left: In- and out-cams (GoPro Hero3+ x
2) are attached to a lightweight mountain climbing helmet. Right: Captured
images of those cameras.

A. Measurement device

Fig. 3 shows our prototypical measurement device in this
study. Note that designing a smart hardware is out of the
main scope of this paper. The total number of cameras is 2N ,
where N is the number of people in the social interaction.
N = 6 in this study. The spatial resolutions of the cameras,
i.e. the number of pixels and FOV angles, are assumed to be
already known.

B. Validity of our basic assumption

Fig. 4 shows the frequency at which speakers and listeners
were looked at. As in previous studies [9], [12], the listeners
more frequently looked at the speaker than at another listener
(paired t-test with Bonferroni correction, t(11) = 12.8, p <
.005, r = .99), or other target (t(11) = 4.0, p < .01, r =
.94). These tests used the probabilities that each participant
was looking at them. In comparison, the speakers looked at
the listeners to the same extent as other targets (t(11) =
.61, p > .05, r = .39); at worse, it was not clear who the
gazee was among the listeners. These results suggest that
eye-gaze self-calibration can be realized by identifying the
iris center position of the wearer in the in-cam image, the
speaker that the wearer was listening to, and the face position
of the speakers in the out-cam image.

C. Spatial characteristics of our data

Right part of Fig. 2 shows the spatial distribution of others’
faces in the out-cam images. Although specific in our settings
and unusual in other settings, e.g. standing or in-motion
conversations, the face positions cover the full range of the
horizontal axis, but only a narrow range of the vertical axis.
These characteristics originate from the fact that the people
were sitting on adjacent chairs. Although the wearer’s head
sometimes moves vertically when nodding or looking upward
or downward, it is difficult to cover the entire vertical range
with this setting.

The spatial distribution of the faces suggests that even
if we know precisely the gazee that the wearer is looking
at every moment, the number of samples of the eye-gaze
calibration will be biased, i.e. large on the horizontal axis, but
small on the vertical axis. To enhance the accuracy along the
y-axis, joint calibration for both directions is advantageous.
Moreover, the horizontally spread distribution in the mid-
level of the image suggests that the radial distortion of the
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Fig. 4. Gaze targets of speaker (left) and listener (right). The most salient
gazee is the speaker for listener.

out-cam is insignificant, because it mainly affects the upper
and lower parts of the image.

IV. PROPOSED SELF-CALIBRATING GAZE ANALYSIS

This section describes the proposed self-calibrating gaze
analysis for Co-FPV. Fig. 1 summarizes the flow. It mainly
consists of three steps. Step A) First, faces in the out-cam
images are tracked by the proposed two-stage coarse-to-fine
Co-FPV analysis. Step B) The eye-gaze mapping function
is then self-trained by assuming that the listener is looking
at the speaker’s face. The speaker is identified by using the
power of the audio signals obtained from everyone’s in-cam.
Step C) Next, the gaze point of each person in the out-cam
images is estimated by using the iris center and the trained
eye-gaze mapping function. Finally, a gazee-centered heat
map of each wearer is developed through gazee recognition.

A. Fine face localization in out-cam images

This subsection explains how we obtain, in an out-cam
image of the target wearer p ∈ {1, · · · , N}, the face center
of each person, q ∈ {1, · · · , N |q �= p}, m

(p)
q . The face

center is defined as the mid-point between the eyes. Hereafter
superscript p is omitted because we consider that the target
wearer is p. We assume that a rough estimate of the face
location of each person in the image is already known by
using an object detection/tracking technique, described in
Section V-A, in the first stage. The aim of the second step
is to refine the face center position.

1) Overview: We obtain the face center in out-cam im-
ages precisely by rotating a three-dimensional frontal face
template. In previous FPV studies, the head rotation angle is
often estimated from the out-cam image of the target wearer,
p, e.g. [19]. On the other hand, we obtain person q’s head
pose from q’s own out-cam image. Fig. 5 shows the flow of
the proposed face localization.

Our approach is based on the fact that q’s head pose to
p has a one-to-one correspondence (nearly linear) with p’s
position in q’s out-cam image. For example, if q’s face and
the out-cam are facing in the same direction and p is located
in the middle (or left) part of q’s image, then it means that
q is directly facing p (or is facing the right side of p), as
shown in Fig. 6. This approach is much more useful than the
traditional approach. Consider the case where the front of q’s
face, width of 30 pixels in p’s image, is rotated horizontally
by one degree. If the camera horizontal FOV is 1920 pixels
and 122.6 degrees, the face center shifts by 16 (=1920/122.6)
pixels in q’s image (the proposed approach), while the center
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Fig. 5. Flow of the proposed face center localization: a) First, frontal face
images with eye positions are collected continuously from the images of
everyone’s out-cams. b) Then, the face center coordinates of person q in
the out-cam image of wearer p are determined by using person q’s out-cam
image and the frontal face database.

moves by only 0.3 (=30/2 · sin(1◦)) pixels in p’s image (the
traditional approach).

2) Facial model: The face model of each person consists
of a three-dimensional shape and the position of the face
center on the shape. Face models are automatically generated
selectively from images captured by the out-cams of all the
people that satisfy the following conditions: First, the cap-
tured faces are almost frontal. The images are not necessarily
captured by p’s out-cam. Second, both eyes are detected in
the image by an eye detector. The position of the face center
is obtained as the mean position of the centroid of the eyes
in the selected images.

As a face shape model, we use a cylinder, like [26], with a
radius of rf . The face center is assumed to be positioned on
its surface. The directions of the face coordinate system of
the axes are horizontal, vertical and facial-frontal, as shown
in Fig. 7. The face center coordinate is xc = (0, hf , rf )

T.
Height hf is the mean y-coordinate of the mid-point between
the two eyes in the bounding boxes of skin region. Radius rf
is set at the mean of the half width of the boxes, w. The skin
region is detected by color-based skin masking in the HSV
space around the rough estimate of face position obtained in
the first step, the red areas in Fig. 7.

3) Face localization in out-cam images: A refined face
center coordinate in the out-cam is obtained as

m̂ = fp(Rxc) + m̄, (1)

where R denotes a three-dimensional rotation matrix, and
m̄ is the image coordinate of the center of the skin region.
As camera model fp, we use a weak-perspective camera, i.e.
fp(x) = (x, y)T, where x = (x, y, z)T.

B. Self-training of eye-gaze mapping function

The objective of eye-gaze calibration is to find a mapping
function, f , that associates iris center coordinates in the in-
cam, e = (ex, ey), with the corresponding gaze point in
the out-cam, g, namely g = f(e; Θ), where Θ denotes the
parameters of f . The proposed self-calibration assumes that
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Fig. 6. Relation between facial pose and position in out-cam images. P1’s
face positions in the images of P2 (middle) and P3 (right) provide the face
poses of P2 and P3 in P1’s image (left). In this case, the horizontal angles
of P2 and P3 relative to P1 are close to -5 and -50 degrees, respectively.
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Fig. 7. a) Detected skin regions (red masks), the centroid of both eyes,
i.e. face center, (yellow dot) in frontal faces. b) The face center is mapped
onto a cylinder, and rotated according to estimated head pose.

the gaze point is the face center of speaker s at that moment,
i.e. g = m̂s, when the wearer p is not the speaker.

Parameters Θ are obtained by minimizing the following
objective function:

Θ = arg min
Θ

Σjdist(f(ej ; Θ), gj) + λ(Θ− Θ̄)2, (2)

where dist is a distance function, and j denotes a sample
index. The second term is a regularization term that restricts
Θ so that it remains around Θ̄, a rough estimate of Θ.

1) Mapping function f : To evaluate the basic validity
of our framework, this paper performs model-based two-
dimensional eye-gaze calibration. Note that the form of
the mapping function is not the main focus of this study,
and different forms of mapping functions to suit different
hardware designs are applicable to the proposed framework.

First, we impose several assumptions to simplify the
mapping function. By ignoring gaze parallax, i.e. assuming
that both eyes are always oriented in the same direction,
we simply consider the centroid of the eyes. Second, the
following geometrical parameters are considered: eyeball
radius r, the distance between the center of the eyeball and
the focal point of the in-cam, d, and the yaw and pitch angles
of the in-cam relative to the eyeball, θx and θy , respectively.
The remaining geometrical parameters, i.e. the locations of
the centroid of the eyeballs and the focal point of the out-cam
are the same, the roll angles of both the in- and out-cams, and
the yaw and pitch angle of the out-cam relative to the eyeball
are assumed to be zero by the following pre-processing: The
in-cam is aligned as both eyes lie on a horizontal line and
the eye centroid is located at the image center. The out-cam
is aligned as the faces of the person in front of the wearer
is located at the image center. Fig. 8 shows the geometrical
relationship between the cameras and the eyeball.
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In this model, mapping function f is approximated by1

f(e) = αo[arcsin{d/r · tan((−ex, ey)
T/αi)}+ (θx, θy)

T], (3)

where αi and αo are the scale factors of the in- and out-cams
that relate degrees to pixels in both axes, respectively, namely
the ratio between the degrees and the number of pixels of
the camera’s FOV. The sign of ex is changed because the
x-axis is flipped in the in-cam, as shown in Fig. 8.

Assuming that e is close to (0, 0) in (3), we can approx-
imate mapping function f as a similarity transformation:

g = f(e) ≈ f̄(e) =

(−a 0 b
0 a c

)
e′, (4)

where e′ denotes the augmented vector of e, and Θ =
(a, b, c). This makes the training more robust. This approx-
imation introduces large errors when the gaze direction is
roughly over 60 degrees, which is infrequent in our settings,
or when the camera is very close to the face and has
significant radial distortion, e.g. for glass-type devices. To
avoid such errors, the exact form in Footnote 1 is superior.

2) Sample selection: Training samples are selected that
satisfy the following three conditions: the speaker’s face,
fixation, and inlier. Fixations are detected based on the
dispersion as a short temporal block with small variation in e
without blinking; this is the dispersion-threshold identifica-
tion [27]. Inliers are determined by |f̄ ′(e)−m̂s| < τe, where
f̄ ′ is identical to f̄ except for a = ā and b = c = 0 in f̄ ′.
Cases where the wearer is looking at another listener can be
removed by this thresholding. Outlier removal is based on the
geometry-based calibration, which gives a prior knowledge
of parameter ā.

These constraints are not perfect and sometimes yield
incorrect samples. Accordingly, we eliminate their effect
by using, as a distance function in (2), a robust function
dist(m1,m2) = |m1−m2|2/(κ2+ |m1−m2|2). Note that
other robust estimation techniques, e.g. the Random Sample
Consensus (RANSAC), are also applicable.

C. Estimation of gaze point and gazee

After mapping function f is trained, the gaze point at each
time, ĝ, is obtained by substituting the iris center coordinates

1 This equation is obtained as follows. Considering x-axis in Fig. 8, gaze
angle ψ changes the iris center position at r sin(ψ − θx) in the physical
space, while the change is (d − r cos θx) tan(−ex/αi) pixels in the in-
cam image in weak-perspective projection. Assuming d� r approximates
ψ as arcsin(d/r · tan(−ex/αi)). The gaze shift in the out-cam image
is gx = αoψ. Linking these equations with regard to ψ yields gx =
αo[arcsin{d/r · tan(−ex/αi)}+ θx], i.e. (3). The derivation for y-axis is
equivalent except for the signs of ex and ey .

e at that time into (4). The gazee, q̂, is identified as the
person nearest to the gaze point as determined by Euclidian
distance. Moreover, if the distance exceeds threshold τd, the
wearer is not considered to be looking at anyone’s face.

We generate the gazee-centered heat map as a (relative)
gaze duration heat map [28], which shows the accumulated
time the wearer spent looking at the different areas of the
other interlocutors. The estimated gaze point ĝ in the gazer’s
coordinates is mapped into gazee q̂’s face coordinate system
as: ξ = 2/w·(ĝ−m̂q̂), where w is the width of the bounding
box of the detected face, described in Section IV-A. Heat
maps are then obtained by collecting ξ values during gaze
fixation and visualizing the density of the collected ξ values.

V. EXPERIMENT

This section describes the experiment conducted to eval-
uate the performance of the proposed method.

A. Fundamental techniques

The TLD tracker [29] was used to obtain the coarse
location of faces in the out-cam images. It was initialized
by manually assigning each person’s face region, which
included the neck and the bottom part of the helmet.
The tracker roughly but quite robustly detected the faces,
even though the initialized faces were often non-frontal
and blurred, and the left- and right-most persons in the
image repeatedly appeared/disappeared from the FOV during
conversation because of the wearer’s head rotation in our
settings. Initialization is the only manual intervention needed
when employing the proposed method; this can be automated
by the multi-view face detector, introduced in [30].

The in-cam images were aligned in advance as the hor-
izontal coordinates of both eyes are the same and their
centroid is located at the center of the image. This re-
moves occasional slight helmets shift during conversation.
The images were aligned in the following steps: First, both
eyes were localized by an eye detector [31]. Then, the eye
positions were smoothed with a temporal filter to compensate
errors. Finally, the translation vector and rotation matrix were
calculated and applied to the images.

To localize iris centers in the eye-aligned images, we
used Invariant Isocentric Patterns (IIPs) [32]. Although the
original paper [32] found the iris centers of both eyes
independently, this paper jointly localizes the iris centers
by imposing the constraint that their horizontal coordinates
should be the same and their separation is constant. This
hampers gaze estimation in the depth direction, but makes
it robust in the horizontal and vertical directions. Blinking
was determined by thresholding the vertical coordinate of
the upper eyelashes which were detected as a dark region.

Speakers were identified as the person generating the
maximum acoustic power in everybody’s in-cams at each
moment. If the maximum power is lower than threshold τa,
no one is assumed to be speaking. This ignores overlap-
ping speech among interlocutors; in practice, simultaneous
utterances occasionally occurred in the discussion sessions.
However, the results show that their impact is limited.
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Alternatively, it is possible to employ person-wise binary
thresholding to decide whether each person is speaking or
silent.

B. Conversation settings

Twelve Japanese women in their twenties to forties par-
ticipated in this experiment. They were divided into two
six-person groups. Members of the same group had not
met before the experiment. Both groups were instructed
to engage in two conversations and did so. First, each
member introduced themselves taking about 1.5 min for each
introduction. The groups then held discussions and built a
consensus as a group, i.e. they agreed on a single answer,
related to a given topic within 10 min. The radius of their
circular arrangement was 1.4 m, as shown in Fig. 2.

Noticeable conversational characteristics are: 1) in the
self-introduction session, the subjects spoke simply in turn.
Consequently, there was a single speaker at any given
moment, and the listeners mainly looked at the speaker,
as we assumed and as reported in some papers [9], [12].
2) The discussion session was more challenging for our
task; this conversational rule was often violated. Overlapping
speech often occurred as a result of listeners’ backchannel
behavior, and listeners occasionally looked at other listeners
to understand the conversation situation for obtaining a turn.

C. System settings

The spatial resolution of the out-cams was set at 1920 ×
1440 pixels (122.6 × 94.4 degrees), while that of the in-
cams was set at 848×480 pixels (118.2×69.5 degrees). The
temporal resolution of all cameras was set at 30 fps. The 2N
cameras were synchronized by starting them simultaneously
by remote control. Mapping function f was trained sepa-
rately for each person and each target conversation session
to avoid the severe drift caused by helmet shift. Only slope
a was regularized in (2). Its rough estimate ā is obtained as
αod̄/αir from the first-order derivative of (3) at e = (0, 0)T;
d̄ is a rough estimate of d. In (1), the head was assumed to
rotate only along the vertical (y) axis by angle φ, because
horizontal head rotations were frequent and large while
vertical and in-plane rotations were infrequent and relatively
small.

The model parameters were set as follows: Eyeball radius
r was set at 1.25 cm with reference to [33], and d̄ = 17 cm
(this yields ā = 30). Threshold τe was set at 200 pixels, and
κ = 100 and λ = 0.01. Threshold τd was set at 80 pixels (= 5

Fig. 10. Typical estimation results: left) speaker’s view and right) the
gazee’s view. The in-cam images of the wearers are superimposed at the
bottom after horizontal flipping. Red circles indicate the gaze points of
the wearers. Green and gray circles/lines denote the others’ gaze to the
wearer or another, respectively. Cyan and white boxes are tracked faces; cyan
indicates the gazee of the wearer. Red waves denote the speaker. This movie
is available from http://www.brl.ntt.co.jp/people/kumano/emospace2015/.

degrees) with reference to [34], which investigated the range
of the human gaze point while looking at another person.
The original audio signals were normalized to the zero-mean-
unit-variance in a pre-processing step, and τa was set at half
of the mean power for each person.

D. Manually-generated data for performance evaluation

We manually prepared three types of validation data. The
first were samples for assessing the estimated gaze points.
The subjects were, after the conversation sessions, asked to
look at a specified physical marker placed in space, as shown
in Fig. 9. Five (horizontal) × three (vertical) markers were
used in this study2. The marker positions in the out-cam
images were localized by an annotator. Second, to assess the
error yielded by the fundamental techniques, the annotator
assigned the image coordinates of the face center in the out-
cams and of the iris center in the in-cams. 374 face- and 360
eye-images were randomly selected. Third, to evaluate the
performance of gazee and speaker recognition, the annotator
also gave them frame-by-frame labels throughout the four
conversation sessions.

E. Accuracy assessment

Fig. 10 and Table I and Table II show the performance of
the proposed framework, which generally worked well for
each task. Gaze point estimation errors were obtained by us-
ing the physical markers, while the remaining performances
were obtained by using only the conversation data.

1) Face center localization: The proposed framework
greatly improves the face center localization that is approxi-
mated by using the object tracker. The mean absolute errors
(MAE) were reduced from 1.40 and 1.38 degrees to 0.37
and 0.48 degrees for the horizontal and vertical directions,
respectively. Strictly speaking, the ratio of the decrease on

2Some additional markers were also used, but they were omitted in this
study; their horizontal angles (±60 degrees) were extreme for some subjects
to correctly look at them, or the eyes while looking those markers were
almost closed in our camera setting.



TABLE I

LOCALIZATION ERRORS OF FACE, IRIS, AND GAZE POINT

MAE [degrees]
Target horizontal vertical

Face center (TLD [29] only) 1.40 1.38
(TLD [29] + Co-FPV) 0.37 0.48

Iris center (modified IIP [32]) 4.93 6.32
(modified IIP [32] + bias-shift) 3.95 3.44

Gaze point (manual marker + manual iris) 2.21 2.45
(manual marker + automatic iris) 3.10 2.67
(Co-FPV) 3.69 3.15

TABLE II

CORRECT RECOGNITION RATES OF GAZEES AND SPEAKERS

Target Correct rates [%]

Gazee (total) 91.4
(while wearer is speaking) 84.9
(while wearer is listening) 96.1

Speaker 80.1

the horizontal axes (74%) to that on the vertical axes (65%)
should be noted, because Co-FPV refined the face center
only along the horizontal axis in this study. Moreover, the
angle errors were calculated from pixel errors with the angle
to pixel scale of 2.1, which was obtained by assuming that
all eyes are looking exactly straight ahead and using the
estimated eyeball size in the in-cam images (27.5 pixels).

2) Iris center localization: The MAEs are 4.9 and 6.3
degrees for both axes. Overall, the errors are larger than
those of face center localization. However, we observed
that IIP tends to bias the results especially in the y-axis
compared to manual localization. Accordingly, Table I also
shows the bias-removed errors for better understanding of the
performance. The resulting MAEs are 4.0 and 3.4 degrees.

3) Gazee and speaker recognition: Table II shows that
the proposed framework yields high correct recognition rates
for both gazee and speaker recognition. Although quite
simple, our model identified the speakers accurately enough.
Moreover, gazee recognition is more challenging while the
wearer is speaking than while listening, because speaker’s
gaze frequently switched among the listeners.

4) Gaze point estimation: The last three rows in Table I
show errors in gaze point estimation obtained by comparing
the estimated gaze points with the physical marker locations
for three methods: a) both iris positions e and marker
positions, corresponding to g, were manually localized, b)
the markers were manually determined but the irises were
automatically localized, and c) both were automatically
determined for the conversation data3. Co-FPV (c) yields
comparable performance to marker-based calibration for both
conversation sessions. This suggests that the differences in
conversation types and the iris localization bias were well

3We observed that the eye position aligned with a temporal filter was
slightly but occasionally biased between the conversation sessions and
marker-based calibration, due to differences in the spatial distribution of
gaze direction. Accordingly, the difference in the mean was manually
corrected for the marker-based calibration data to focus on the errors caused
by the sample selection proposal; accurate helmet slip compensation is not
a key focus of this paper.

Speaking Listening ListeningSpeaking

S2)S1)

Fig. 11. Gazee-centered heat maps obtained from two subjects

compensated in the mapping function training. Moreover,
the MAEs of around 3.5 degrees and the average face
width/height of 2.5-3.0 degrees (=40-50 pixels) suggest that
though it is difficult to discriminate facial parts, e.g. eyes
from mouth, it is possible to determine whether the wearer
looked at face or body.

F. Gaze heat maps

Fig. 11 shows heat maps from the first conversation ses-
sion. They are separated into those obtained under speaking
and listening conditions to clarify the interpersonal differ-
ences4. S1 is a typical subject who yielded similar gaze
patterns in speaking and listening for both sessions. On
the other hand, S2 was, while speaking, mainly looking at
others’ bodies, i.e. she appeared to avoid eye contact with
the listeners. This tendency is expected to originate from her
personality and emotional states, and/or social pressure, as
previously suggested, e.g. [35].

VI. DISCUSSION

The experiment demonstrated the basic validity of Co-
FPV. However, the current method has several issues.

1) Usability: Although our camera configuration, in its
current form, does not seem usable in the wild, it is useful
in the laboratory; it also has the potential to measure other
nonverbal behaviors, such as facial expressions and head
gestures, which are often required for emotion analysis.

2) Applicability: Among the assumptions made in this
study, only the following two are crucial: people often
converse with each other, and they mainly look at the
face of the speaker. They are mostly true for a variety of
conversation scenarios. However, they would be violated
for people with autism, who tend to gaze at the other’s
body [21]. Some of the remaining constraints, e.g. standing
or in-motion conversations, can be relaxed by introducing
crowd tracking techniques, especially tracking-by-detection
with data association, e.g. [36]; glass-type camera devices;
and manual camera (internal parameter) calibration.

3) Conversation settings: The present study focused on
medium-sized-party (group) conversations with the interlocu-
tors sitting in a circle. Accordingly, it should be evaluated
how the number of interlocutors, their spatial arrangement,

4Note that it is natural that the gaze point is mainly centered on the
face in listening; it matches the constraint that we imposed on the training
samples.



and changes in both over time impact the proposed frame-
work. For example, if group size N decreases, the spatial
distribution of others’ faces should become more sparse; this
suggest that training the eye-gaze mapping function would be
difficult. However, on the other hand, the gazee of listeners
would be more likely to be the speaker, since the chance level
is N − 1. This enables comparison of the proposed method
with previous studies targeting small-sized conversations.

4) Gaze model: This paper dealt with gaze point as a two-
dimensional point on the image, and used a simplified camera
and geometry model. Although the experiment demonstrated
that the approach works robustly in the conversation settings
described, full three-dimensional modeling, as in [37], would
be required to increase the accuracy.

5) Heat maps: Although this paper presented gaze dura-
tion heat maps by focusing on fixations, other visualizations
are possible: e.g. other fixation-derived metrics, and saccade-
and scanpath-derived metrics [38]. Additionally, pair-wise
metrics, e.g. gaze following and eye contact, or group-wise
metrics would be notable in social interactions. Determining
the best metrics is another issue.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We introduced the Co-FPV framework for automatic con-
versation analysis. Its eye-gaze mapping function is self-
trained off-line by automatically selecting training samples
based on conversational rules. Speaker diarization and the
head tracking of interlocutors are performed by centralizing
and processing the videos captured from each camera. This
estimation approach yields a gazee-centered heat map for
each interlocutor. An experiment using two six-person groups
demonstrated the potential of the proposed framework.

This paper introduced FPV as a tool for automatically
assessing nonverbal behaviors. However, FPV can also be
an essential tool for obtaining emotion data. Our assumption
is that first-person view images make it easier for the subject
(or external observers) to recall (or read) his/her emotion felt
at that time accurately, because the first-person perspective
(or perspective taking for the observers) plays an important
role in these processes [39], [40]. The evaluation of this
assumption is a future task.
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