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Abstract—Response style (RS) is a tendency to choose specific
categories regardless of content, e.g. extreme or midpoint cate-
gories. It degrades the validity of the analysis of subjective ratings
such as correlation and variance-based analyses. However, the
computational removal of RS has received little attention from
the affective computing community. RS removal techniques have
been proposed in areas such as marketing research. However,
most of these techniques do not exploit the content-independence
of RS; i.e. it should be observed consistently in various tasks,
such as affective judgment tasks and standard psychological
questionnaires. Therefore, this paper proposes a multitask RS
removal method. An individual’s responses in multiple tasks
are modeled using task-independent RS parameters, and task-
dependent parameters, including the item and respondent’s
characteristic parameters based on item response models (IRM).
Through Bayesian modeling, we observed that: i) the proposed
model outperformed traditional IRMs in terms of predictive
accuracy; ii) our multitask framework estimated RS with higher
precision than previous single-task-based RS removal methods;
iii) our model replicated Japanese midpoint RS, which has
been demonstrated repeatedly in previous cross-cultural studies;
and iv) RS-removed predictive ratings showed higher inter-rater
agreement than those including RS in valence/arousal judgment
tasks.

Index Terms—response style, item response theory, multitask,
affect, emotion, perception

I. I NTRODUCTION

Subjective affect rating still plays an important role in
the affective computing community. In fact, the development
of effective rating methods is an active research topic [1],
[2]. Response styles (RS) are of particular concern when
using subjective rating scales. RS is defined as “a systematic
tendency to respond to a range of questionnaire items on
some basis other than the specific item content (that is, what
the items were designed to measure)” [3]. Some of the most
common RSs are acquiescent/disacquiescent RSs (ARS/DRS),
in which an individual tends to use the upper/lower range of
the scale (e.g. yea-saying/nay-saying), and extreme/midpoint
RSs (ERS/MRS), in which a person prefers the ends/center
of the scale [4]. Traditionally, such RSs were quantized in
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a simple manner. For example, extreme RSs are frequently
measured as the proportion of extreme choices compared with
the total number of items or the standard deviation of item
scores within a respondent [4].

Using such simply calculated measures, researchers have
demonstrated how RS degrades the validity of the analysis of
subjective ratings, such as correlation (e.g. correlation between
two scales) and variance-based analyses [4]. For example,
shared RSs inflate interrater agreement [5] and they deflate
it if the RSs differ between raters [6]. This is a serious factor
in cross-cultural studies because of the cultural differences
in RS. For example, American college students tend to have
more extreme RSs than Japanese students [7], [8]. Traditional
methods can provide measurements related to RS, but they
cannot eliminate RS from ratings.

Recently, several ways have been proposed for removing
RS. The first way is to obtain multiple ratings for the same
target and to aggregate them while assuming random indepen-
dent noise across the ratings. The target may be ratings from
multiple people to a visual/auditory stimulus, or ratings from a
single person to a set of items about a psychological construct
(e.g. a psychological questionnaire). This type of study covers
both simple aggregation methods, including averaging and
majority voting, and more advanced truth discovery methods
[9]–[11]. This technique is useful when the research target is
perceived emotion, i.e. an emotion perceived by the general
population. However, if the target is individual-level percep-
tion, such as felt emotion (what the target person is actually
feeling) or how another specific individual perceives it, then
such techniques are difficult to apply because of their high cost
and/or poor reproducibility. The second method involves using
anchors in rating to correct individual differences in the criteria
for selecting a category. Example methods are ordinal rating
[12], and the Anchoring Vignette method [6]. However, such
anchors should be carefully designed so that they are specific
to the target task; the designing per se remains a research topic.

The third way to eliminate RS is to build a rating process
model with RS as a latent variable and remove the effect
of RS. Several RS removal techniques have been proposed
mainly in the marketing research area [6], [13]. Most use
a single task. For example, when emotion judgment is the
target task, RS is estimated solely by using ratings on the
task. The main weakness of this approach is that it is difficult



to distinguish RS from task-dependent response tendencies;
the two types are called dispositional and situational in [4].
For example, depending on the item/stimulus and/or prepared
categories from which to choose, people may tend to select
extreme responses in some tasks (e.g. because of the many
exaggerated facial expressions that are present in an affect
rating task), while choosing the middle category in other tasks
(e.g. as a consequence of the ambiguity of items). In such
cases, the single task framework yields different RS results,
which unfortunately violates the definition of RS.

Focusing on the task independence of RS, we propose
using various tasks together to allow us to extract RSs shared
across tasks. In fact, in many affective computing studies,
Likert-type psychological questionnaires are additionally used
to examine the relationship between the results of the main
task and the summary statistics (primarily the total score)
of the additional tasks. Modern test theories, including the
item response theory (IRT), make it possible to estimate both
an individual’s characteristics and each item’s characteristics
jointly from answers to such questionnaires. Therefore, we
propose a multitask item response model for RS removal.

We believe that this paper makes two major contributions.
First, this is the first attempt in the affective computing com-
munity to computationally remove RS from affective ratings.
Second, it is the first IRM-based multitask framework for
estimating/removing RS. This paper demonstrates how our
multitask framework works in one of the most fundamental
tasks in the affective computing area, namely valence and
arousal judgment tasks. The proposed framework can po-
tentially open new horizons for future affective computing
studies.

II. M ETHOD

Our model is an extension of item response models (IRMs)
that contain response style (RS) parameters for polytomous
ratings. This section first introduces basic IRMs which have
no RS terms, and more advanced IRMs with RS. After that,
we describe our model.

A. Single task models

1) Basic item response models:IRMs constitute a family of
multivariate generalized linear mixed models (MGLMM) [14].
An IRM consists of three elements: 1) the distribution of data,
2) a link function, which determines which transformation of
the mean of the distribution should be modeled linearly, and
3) predictors.

In conventional IRMs, a multivariate Bernoulli distribution,
namely a multinomial distribution with a total count equal to
one, is used with an adjacent-categories logit. Such IRMs are
expressed as

log(
P (yij = s|XΘ)

P (yij = s− 1|XΘ)
) = XΘ (1)

where yij denotes the response of personj to item i, and
XΘ is a linear predictor that consists of a set of parameters
Θ including a person (respondent) parameter and an item

(stimulus for affective judgment or item in psychological
questionnaire) parameter.

One of the most fundamental item response models is the
partial credit model (PCM) [15], in whichXΘ is defined as
θj − βis. θj is the trait of personj (such as ability in the test
theory domain), whileβis represents the characteristics of item
i for categorys (e.g. the difficulty of the item to obtain a score
s or the selection threshold/criterion for ratings). Generalized
PCM (GPCM) [16] is an extended version of PCM, where
the effect of a person’s ability is assumed to be different
across items; namelyXΘ = αiθj − βis, where α(> 0)
is called a slope parameter (or discrimination parameter),
because it determines the slope of the characteristic curve
(a cumulative distribution) that represents the relationship
between the probability of obtaining the category and the
individual’s ability. As with many other IRMs, both models
ignore any temporal structure, and assume that the model does
not change over time.

One of the key properties of PCM is that it inherits from
the specific objectivity property of the original Rasch model;
that is, the comparison of items does not depend on person
parameters, and the comparison of persons does not depend
on item parameters [13]. A similar assumption has also been
made in the affective computing community to build compu-
tational models of social cognition, e.g. [17]. When two items
i andi′ are compared for the same personj, the difference of
their logits has no person term:

log(
P (yij = s|XΘ)

P (yij = s− 1|XΘ)
)− log(

P (yi′j = s|XΘ)

P (yi′j = s− 1|XΘ)
)

= (θj − βis)− (θj − βi′s) = βi′s − βis. (2)

This property also holds for the difference between two
persons for the same item. On the other hand, GPCM does
not preserve the property due to the interaction termαiθj .

2) Response style models for a single task:Recently, sev-
eral researchers have proposed incorporating RS into tradi-
tional IRMs. They are divided into two categories depending
on the definition of response styles. In terms of extreme RSs,
some focus on respondent’s tendency to select the extreme end
points, while others exploit their greater variability of scores
assigned to items [18].

One example of the former was proposed by Tutz et al.
[13] who incorporated a RS term̃γ into the thresholdβis as
β̃is = βis − γ̃js (which this paper calls PCMRSt):

XΘ = θj − (βis − γ̃js), (3)

where γ̃js = (m − s + 1)γj , m is the midpoint category
(e.g. m = 2 when s ∈ {0, 1, 2, 3, 4} and m = 2.5 when
s ∈ {0, 1, 2, 3, 4, 5}). Positive γ represents a midpoint RS,
while negativeγ indicates an extreme RS. Ifγ is positive, the
intervals ofβ between categories expand around the middle
categorym, which means that the probability of category
m increases (i.e. midpoint RS). Ifγ is negative, it has
the opposite effect, namely the intervals move toward the
middle category, and consequently the probability of extreme
categories increases (i.e. extreme RS).



For the latter definition of extreme RSs, researchers por-
trayed ERS in reference to person characteristics that reflect
expanded or contracted use of the rating scale (represented
by β here) [18]. For example, Jonas and Markon [6] incor-
porated extreme/midpoint RSs and positive/negative bias into
the GPCM1 (which this paper calls GPCMRSj) as

XΘ = αiθj − γj(βis − γ′
j). (4)

Here, γ represents extreme/midpoint RSs, as in Tutz et al.’s
model (although in Jonas & Markon’s model,γ > 0 and a
smaller/larger value means an extreme/midpoint RS), whileγ′

represents a bias toward a positive/negative category repre-
senting an acquiescent/disacquiescent RS. Tutz et al.’s model
satisfies the specific objectivity property because there is no
interaction between person and item parameters. On the other
hand, Jonas & Markon’s model does not satisfy the specific
objectivity property because of the interaction term.

B. Proposed multitask models

We extend Tutz et al.’s [13] and Jonas & Markon’s [6]
models to a multitask framework. We incorporate a set of
tasks simultaneously using task-independent parameters that
describe RS. Our multitask version of Tutz et al.’s model
(mtPCM RSt) is defined as:

XΘ = θjk − (βiks − γ̃js), (5)

wherek is a task index. Note that RS parameterγ̃ excludes
subscriptk because of the task-independence. Our extension
of Jonas & Markon’s model (mtGPCMRSj) is:

XΘ = αikθjk − γj(βiks − γ′
j). (6)

We also a built GPCM version of mtPCMRSt and a
PCM version of mtGPCMRSj by replacingθjk andαikθjk
(called mtGPCMRSt and mtPCMRSj, respectively). Only
mtPCM RSt satisfies the specific objectivity property, while
mtGPCM RSt, mtPCM RSj and mtGPCMRSj do not. Table
I compares all four proposed models with the baseline models.

After estimating model parameterΘ, we can predict the
ratings that are likely to be obtained from the model. Predictive
rating ŷ is estimated as:

ŷijk ∼ categorical(π) (7)

πs = P (y = s|XΘ) (8)

In addition, the RS-removed ratings are estimated by ex-
cluding the RS term̃γ from the predictor in Eq. 8. This can
be expressed as:

πs = P (y = s|XΘ′) (9)

whereXΘ′ = θjk − βiks for the PCM family andXΘ′ =
αikθjk − βiks for the GPCM family.

1To be exact, Jonas and Markon’s model [6] is based on Graded Response
Model (GRM), which uses cumulative logit, rather than adjacent-categories
logit.

TABLE I
L IST OF ITEM RESPONSE MODEL FAMILIES

Model PredictorsXΘ

Models w/o response style
Baseline models

PCM [15] θjk − βiks

GPCM [16] αikθjk − βiks

Models w/ response style
Baseline models

PCM RSt [13] θjk − (βiks − γ̃jks)
GPCM RSj [6] αikθjk − γjk(βiks − γ′

jk)

Proposed models
mtPCM RSt θjk − (βiks − γ̃js)

mtGPCM RSt αikθjk − (βiks − γ̃js)
mtPCM RSj θjk − γj(βiks − γ′

j)

mtGPCM RSj αikθjk − γj(βiks − γ′
j)

All models use adjacent-categories logit as a link function.β is an item
parameter subscripted with item indexi (and in some cases category index
s). θ is a person parameter subscripted with person indexj (and in some

cases category indexs). α is a scale parameter subscripted with item index
i. k is a task index. Note that we also include task indexk in the baselines

for comparison.
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Fig. 1. Main task: valence-arousal judgment task. First, a fixation cross was
displayed in the center of the screen for 500 msec. Then, a target face was
shown for 1,000 msec. Next, the screen was blank for 500 msec. Finally, a
valence or arousal scale was displayed until the participant selected one of
the answers.

III. E XPERIMENTAL DATA

To evaluate the proposed framework, we performed valence
and arousal judgment tasks using computer-generated static
emotional faces as the main tasks. We also used psychological
questionnaires as subtasks.

A. Observers

Fifty Japanese university students (25F) participated in the
experiment. This homogeneity facilitated our verification of
whether or not the estimated RS parameters really matched
the Japanese midpoint RS, which has been repeatedly reported
in previous studies [7], [8].

B. Main tasks: affective rating

The participants were asked to rate the valence and arousal
level of artificial faces. This was a blocked design: one
block for valence judgment and the other block for arousal



judgment. Each consisted of a forced choice on a 5-point
scale: the extremes were labeled “Positive” and “Negative”
in the valence block, and “High” and “Low” in the arousal
block. Figure 1 shows the timeline of each trial. Each block
consisted of 150 trials. In 120 of the 150 trials, a total of
120 original faces were displayed. The remaining 30 trials
were a repetition of 30 trials that were randomly selected
from the 120 trials. The aim was to calculate the test-retest
reliability, i.e. the frequency with which participants gave the
same rating to exactly the same face in different trials. The
block order was counter-balanced, and the stimulus order and
the 30 repeated faces in each block were randomized across
the participants. All the labeling was performed in isolation,
and all the observers successfully completed both tasks.

Various mixed facial expressions were included to make it
possible to observe inter-individual differences in perceptions
among respondents. The 120 stimulus faces were created
using the FaceGen modeler. The faces consisted of 29 facial
expressions (1 neutral and 28 non-neutral expressions) from
8 different artificial identities. Specifically, we extracted 15
expressions (1 neutral and 14 non-neutral expressions) from 4
virtual identities (called Face Set 1), and other 15 expressions
(also 1 neutral and 14 non-neutral expressions) from 4 other
identities (called Face Set 2). The expressions were manipu-
lated by changing the modeler’s expression-specific parameters
(anger, disgust, fear, sadness, surprise, and closed- and open-
mouthed smiles; a total of seven categories). Of the non-
neutral expressions in Face Set 1, four were pure anger, fear,
surprise and an open-mouthed smile, and the remaining 10
were combinations of the seven categories. Three of the non-
neutral expressions in Face Set 2 were pure disgust, sadness
and a closed-mouthed smile, and the remaining 11 were other
combinations of the seven categories. The eight identities were
drawn from Caucasians, Africans, Indians and Asians: each of
which consisted of both masculine and feminine faces. This
procedure yielded 120 (=15×4+15×4) faces.

C. Subtasks: psychological questionnaires

The participants were also asked to answer seven psy-
chological questionnaires after the main tasks: Empathizing
Quotient (EQ) [19], Systemizing Quotient (SQ) [19], Autism-
Spectrum Quotient (AQ) [20], Interpersonal Reactivity Index
(IRI) [21], Emotional Skills and Competence Questionnaire
(ESCQ) [22], Neo-FFI or Big Five (B5) [23], and the Tokyo
University Egogram (TEG) [24]. EQ, AQ, IRI and ESCQ are
commonly used to measure empathy-related traits, while B5
and TEG are used for more general personality traits. They
are not completely independent of each other, nor are they
fully independent of valence/arousal decision tasks. However,
the entire questionnaire set reasonably covers various types of
traits and the number of points (ranging from a 3-point scale
to a 7-point scale and including both even and odd points).

Table II summarizes the number of items and the number of
points in the questionnaires. The total number of ratings was
579 items× 50 respondents= 31, 950. There were no missing
data. However, our models accept missing data in the current

TABLE II
SUMMARY OF USED TASKS

Task #items #points
Main tasks

1. Valence judgment 150 5
2. Arousal judgment 150 5

Sub-tasks
3. EQ [19] 60 4
4. SQ [19] 60 4
5. AQ [20] 50 4
6. IRI [21] 28 4
7. ESCQ [22] 28 5
8. B5 [23] 60 7
9. TEG [24] 53 3

Sum 639

form, thanks to Bayesian generative modeling as described in
IV-A.

IV. EVALUATION SETTINGS

A. Bayesian parameter estimation

All the models were implemented using the Stan proba-
bilistic programming language and its interface with the R
(Stan Development Team, 2015a, b), and the edstan (v1.0.6;
Furr, 2017) package. The model parameters were estimated
using Stan’s No-U-Turn Sampler (NUTS). As weak priors, we
used zero-mean normal distributions forγ̃ (for the Tutz et al’s
family), γ′ (for the Jonas & Markon family),β andθ, and unit-
mean lognormal distributions forγ (for the Jonas & Markon
family) andα. Four MCMC chains were run from random start
values. The chain convergence was assessed by theR̂ statistic
(R̂ < 1.1). The first 7,200 iterations were used as a warm-up
and discarded, and then 2,400 iterations were obtained and
stored from each chain, yielding 9,600 iterations that served
to empirically approximate the posterior distribution.

Predictive RS-inclusive ratings and RS-removed ratings (ŷ)
were obtained for the main tasks as follows. The ratings for
all respondents and items (50× 300 samples) were simulated
according to Eq. 7 and Eq. 8 for RS-inclusive ratings, and
Eq. 9 for RS-removed ratings. This procedure was repeated
9,600 times. This yielded a posterior distribution consisting of
9,600 random samples for eachŷ for both types of predictive
ratings. Furthermore, a point estimate was determined for each
ŷ by majority voting with the 9,600 samples. The following
analysis used the point estimates unless otherwise specified.

B. Performance measure

For the main valence and arousal tasks, we report the
following four measures to indicate how well each model
explains the observed ratings: accuracy (percent agreement,
κ), Pearson’s correlation coefficient (r), mean absolute error
(MAE), and intra-class correlation coefficient (ICC), following
[25], which recommend the joint use of multiple measures.
As evaluation criteria for model comparison in term of overall
generalizability to both main and sub tasks, the approximate
widely applicable information criterion (WAIC) [26] and



Pareto smoothed importance sampling leave-one-out cross-
validation (PSIS-LOO) [27] (an approximated LOO) were
also calculated using the loo package (v.2.0.0; https://mc-
stan.org/loo/). Both measures penalize model complexity, and
a smaller value indicates a better model.

V. RESULTS

This section reports various validation results, including a
model comparison, and a prediction performance evaluation.
All the results support the validity of our proposed framework.

A. Rating results

1) Basic statistics:The proportions of the rating categories
(the marginal distribution of ratings) were (09, .32, .35, .20,
.04) (from negative to positive) for valence, and (.09, .25, .31,
.28, .07) (from low to high) for arousal.

The test-retest reliability (calculated in a manner similar
to that used for accuracy)κ was .525 for valence and .475
for arousal. This is a percent agreement, meaning that the
participants gave the same rating for the test and retest pairs
at a rate ofκ. Fleiss’ generalizedκ, κF , the chance-corrected
agreement, were .345 and .300, respectively, for the valence
and arousal ratings. Pearson’sr was .556 for valence and .550
for arousal. This value is comparable to that reported in the
literature, e.g. [28]. The ICC(2,1) was .48 for valence and .35
for arousal. Both are considered to be between poor and fair
[29], [30]. These values provide a good demonstration of how
differently people rate affective faces.

However, it is uncertain whether it is caused by an indi-
vidual difference of perception or by the RS. Therefore, we
investigate the impact of RS on these reliability measures in
V-D.

B. Model comparison

All models successfully converged on learning. Table III
summarizes their performance. For the main tasks (in terms
of κ, r, MAE and ICC), our mtGPCMRSt outperformed both
the baselines (PCM and GPCM) and our remaining multitask
models2. In terms of the overall criteria (i.e. WAIC and
LOO), mtPCM RSj was the best preferred model. However,

2The accuracy of mtGPCMRSt was higher than the test-retest reliability.
This may sound strange, but it is possible. Theupper boundof the prediction
accuracy was estimated to be .83 for valence and .81 for arousal. The upper
bounds were obtained as follows. Our data can be divided into two types
and they should be considered separately. Of the 120 images (150 trials), 30
(60) were shown twice, and the remaining 90 (90) were used only once. For
the 60% (=90/150) samples, perfect accuracy is possible if a very complex
model is used (although this probably results in overfitting). This is because
the training and test sets were identical. For the 40% (=60/150) samples,κF

percent of samples, where the test and retest ratings are identical (not by
chance), perfect accuracy is also possible. The remaining1− κF percent of
samples were however rated differently in a pair of trials, and thus perfect
accuracy is not possible. This is because the proposed models (as well as the
baselines) give the same predictive rating for each pair of trials. If the random
sampling of ratings from the marginal distribution is assumed for the samples,
the maximum chance levels (pmax) are .35 and .31 for valence and arousal
tasks, respectively. Therefore, the estimated upper bound for the 40% data is
κF × 1+ (1−κF )× pmax = .574 for valence and.517 for arousal. Taken
together, the overall upper bound is expected to be.574×40%+1×60% =
0.83 for valence, and.517 × 40% + 1 × 60% = 0.81 for arousal. The
observed accuracies are within this range.

0.0

0.2

0.4

0.6

Within single tasks Between single tasks

and multitask

C
o

rr
e

la
ti
o

n

0.000

0.001

0.002

0.003

0.004

Single task Multitask

M
e

a
n

 S
E

M

a) b)

Fig. 2. (a)Correlation of estimatedγ within single tasks (using GPCMRSt)
and those between single tasks (using GPCMRSt) and multitask (using
mtGPCM RSt). (b) Mean SEM ofγ’s posterior distribution: GPCMRSt vs
mtGPCM RSt. Error bar indicates SEM.

mtPCM RSj performed worse on the main tasks suggesting
that it well fitted only on the sub tasks. Therefore, we conclude
that mtGPCMRSt is the best model.

C. Single-task vs multitask

In Table III, (G)PCM RSt outperformed our
mt(G)PCM RSt in terms of WAIC and LOO. This means
that if the objective is to describe the observed ratings as
accurately as possible, (G)PCMRSt should be selected.
However, as mentioned in I, the single task framework
confuses task-dependent response tendencies with RS.

To further illustrate the need for the multitask framework
quantitatively, Fig. 2 (a) shows the pairwise correlation of esti-
matedγ (a 50-d vector) within 9 single tasks using GPCMRSt
(yielding a within-single-task correlation for each of9C2 = 36
pairs of tasks). It also includes the correlation between the
γ values and those obtained using our mtGPCMRSt. The
estimatedγ in the single task was closer to the estimate in the
multitask than that in a different single task. This reasonably
demonstrates the task-independence of RS.

In addition, Fig. 2 (b) shows another benefit of using
multiple tasks; the multitask framework gave a more precise
estimate. The posterior distribution ofγ was narrower in
the multitask scenario (mtGPCMRSt) than in the single
scenarios (GPCMRSt). This is an important property because
γ parameters are interconnected with the other parameters and
thus a precise estimate ofγ is expected to lead to precise
estimates of the remaining parameters.

D. Estimated parameters and response style removal

Figure 3 shows a histogram of the estimatedγ across 50
participants using mtGPCMRSt. The mean value was positive
(M = 0.42 (±0.07 SEM), p< .001, d = .81), indicating that the
participants had a midpoint RS overall. The midpoint RS of
Japanese people is in line with that reported in previous studies
[7], [8]. Furthermore, the estimatedγ values were reasonably
correlated with the traditional measure of extreme RS, i.e. the
proportion of extreme choices in relation to the total number
of items [4] (Spearman’sρ = −.91, p < .001). These results
validate our method. Moreover,̃γ of GPCM RSt andγ of
PCM RSj showed strong correlation;ρ = .78, p < .001.



TABLE III
PREDICTIVE PERFORMANCE OF THE PROPOSED MODELS AND BASELINES FOR ALL NINE TASKS

Model WAIC ↓ LOO ↓ Valence task Arousal task
Mean SEM Mean SEM κ ↑ r ↑ MAE ↓ ICC ↑ κ ↑ r ↑ MAE ↓ ICC ↑

Single task models
PCM [15] 78,771 272 78,957 277 .599 .672 .457 .664 .466 .557 .665 .552
GPCM [16] 77,016 277 77,273 283 .606 .687 .446 .681 .482 .582 .638 .576
PCM RSt [13] 73,683 284 73,870 289 .645 .699 .415 .696 .515 .590 .621 .589
GPCM RSt 72,438 287 72,698 292 .653 .717 .401 .714 .523 .599 .606 .598
Multitask models
mtPCM RSt 76,589 279 76,773 284 .615 .681 .443 .676 .484 .570 .649 .567
mtGPCM RSt 75,126 283 75,361 288 .623 .700 .429 .695 .498 .596 .624 .594
mtPCM RSj 72,117 245 72,345 248 .599 .670 .456 .660 .463 .555 .661 .546
mtGPCM RSj 74,881 240 74,949 241 .616 .680 .441 .674 .490 .596 .620 .589

“↑” and “↓” denote higher and lower levels of performance. Note that although achieving the best performance in terms of the predictive performance
of ratings, GPCM RSt, a single task framework, confuses task-dependent response tendencies with RS, as mentioned in I.
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Fig. 3. Histogram ofγ estimated using mtGPCMRSt. Positive and negative
values indicate midpoint and extreme response styles.

An ICC(2,1) of the estimated posterior ratings obtained with
Eqs. 7 and 8 for all 9,600 samples (not their point estimates),
namely a recovered ICC, was M = .49 (95% CI [.47, .51])
for valence and M = .36 (95% CI [.34, .38] for arousal. The
observed ICCs (.48 and .35, respectively) were successfully
replicated.

The RS-removed ratings were estimated following Eqs. 7
and 9. This slightly but statistically significantly increased
the recovered ICCs; .51 (95% CI [.49, .54]) for valence and
.41 (95% CI [.38, .44]) for arousal. This suggests that in our
participant set, the observed ICCs were deflated because many
participants had a midpoint RS while some had an extreme RS.
This supports the need for RS correction.

VI. D ISCUSSION

We have provided a body of evidence in support of our
multitask framework. However, several issues still remain.

First, our multitask framework successfully found the
Japanese midpoint RS. However, this was an indirect eval-
uation, and a more direct evaluation is needed. One way
to achieve this is to use an anchoring vignette technique,
such as [6], in which respondents are also asked to judge
imaginary character(s) asanchor that are assumed to result in
the same judgment from everyone, in order to normalize each
respondent’s judgment based on their judgment regarding the
anchor.

Second, our model is probably not thebest modelfor
eliminating RS in a multitask fashion. First, although we use
the same base model (PCM or GPCM) for all tasks, we can
use different models for different tasks in our framework. It is

reasonable to use a simple model (e.g. PCM) for psychological
questionnaires, since they are basically designed to measure a
single construct. However, it would be interesting to find the
best, or at least a better, model for affective judgment tasks.

Thirdly, as secondary tasks this study used seven psycho-
logical questionnaires similar in size to the main task, namely
339 items compared with 300 items. This increases the cost
and complexity of collecting affective ratings, especially when
crowd sourcing is used. Thus, it is necessary to evaluate the
effect of the number of secondary tasks.

Fourthly, this study employed a discrete annotation proce-
dure for both time and emotion space. To apply our work to
continuous annotations, as with the recent trend in the affective
community, e.g. [1], [2], our model must be extended. It is also
interesting to investigate whether or not the rating process is
time invariant, as mentioned in [12].

Finally, this paper focused on decoder or receiver in emo-
tional communication, i.e. the affective judgment of other
people. It is also interesting to target a coder’s or sender’s
judgment, i.e. a self-report of emotional states. This is an
important step because a self-report is available only from
an individual. Therefore, the impact of RS on their ratings
is expected to be stronger than that of a decoder. It would
be interesting to incorporate physiological signals in our
framework, as used in felt-emotion studies [31]–[33].

VII. C ONCLUSION

This paper proposed a multitask RS removal framework,
where an individual’s responses in multiple tasks are mod-
eled using task-independent RS terms, and task-dependent
terms, including item and respondent’s characteristic param-
eters based on the item response model (IRM). Through
Bayesian modeling, we observed that i) the proposed model
outperformed traditional IRMs in terms of predictive accuracy;
ii) our multitask framework estimated RS with higher precision
than previous single-task-based RS removal methods; iii) our
model replicated Japanese midpoint RS; and iv) RS-removed
predictive ratings showed higher inter-rater agreement than
those including RS in valence/arousal judgment tasks. The
proposed RS removal technique has the potential to reveal



new/stronger results that previous methods used by the affec-
tive computing community were unable to find. Validating the
potential constitutes one of the next steps.
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