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Abstract—This paper targets small- to medium-sized-group
face-to-face conversations where each person wears a dual-
view camera, consisting of inward- and outward-looking
cameras, and presents an almost fully automatic but accu-
rate off-line gaze analysis framework that does not require
users to perform any calibration steps. Our collective first-
person vision (Co-FPV) framework, where captured audio-
visual signals are gathered and processed in a centralized
system, accurately and jointly undertakes the fundamental
functions required for group gaze analysis, including speaker
detection, face tracking, and gaze tracking. Of particular note
is our self-calibration of gaze trackers by exploiting a general
conversation rule, namely that listeners are likely to look at
the speaker. From the rough conversational prior knowledge,
our system visualizes fine grained participants’ gaze behavior
as a gazee-centered heat map, which quantitatively reveals
what parts of the gazee’s body the participant looked at and
for how long while the gazer was speaking or listening. An
experiment using conversations amounting to a total of 140
min, each lasting an average of 8.7 min and engaged in by 37
participants in groups of three to six, achieves a mean absolute
error of 2.8 degrees in gaze tracking. A statistical test reveals
neither a group size effect nor a conversation type effect.
Our method achieves F-scores of over .89 and .87 in gazee
and mutual gaze recognition, respectively, in comparison with
human annotation.

Index Terms—First-person vision, egocentric vision, wear-
able camera, conversation, gaze, mutual gaze, eye contact,
self-calibration, head pose estimation, speaker diarization

I. INTRODUCTION

FACE-to-face conversation is the primary way by which
we share information, understand others’ skills, per-

sonalities and emotions, and make decisions in daily life,
e.g. meetings or job interviews. It is a highly multimodal
process that mainly involves the use of audio and vi-
sual signals to perceive/understand others’ verbal/nonverbal
behaviors, such as an individual’s speech, gaze, facial
expressions, gestures and postures as well as his/her inter-
actions with the group. In this regard, automatic multimodal
conversation analysis is acknowledged by the multimedia
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research community as a basic research area in relation to
the development of computer-mediated communication or
conversational agents [1], [2]. Measuring these behaviors is
a preliminary step toward inferring high-level states, such
as personality traits [3], functional roles [4], hirability [5],
affective states [6], and empathy [7].

Conversation is often captured by microphones and cam-
eras (as well as depth sensors, as in [8], [9]) installed
in the environment. However, these settings frequently
require human annotation when conversational behaviors
are investigated in detail. This is a particularly severe
requirement for medium-sized (five to ten participants) or
large conversations. For example, the directions of faces
in relation to fixed cameras vary greatly when people look
around at the other participants. In such scenarios, it is
still hard for state-of-the-art passive-vision-based face/gaze
analyzers, e.g. [10], [11], or even human coders [12] to fully
distinguish subtle facial/gaze changes and head movements.

One of the most fundamental of these nonverbal behav-
iors is gaze given its importance in a number of social
functions [13], including monitoring, visual feedback, ex-
pressing emotion, and regulating the flow of a conversation.
Of particular note for this study is that people pay attention
by orienting their gaze toward the speaker [14], [15].
However, even when using off-the-shelf glasses-type eye
trackers, the collection of accurate group gaze behavior,
e.g. who is looking at whom, and at which facial/body
part, and when, is still time-consuming due to the need
for manual intervention. It is for calibrating the gaze
trackers by asking the wearer to fixate on some predefined
points on a screen or in the environment, as in [10], [16];
localizing faces in the field of view (FOV) images or simply
determining the ID of the gazing target [17]; and identifying
the speaker at every moment, although speaker detection is
often automated, as in [17]. The cost increases as the group
size increases. Consequently, most previous conversation
analyses targeted dialogues [14], [18], trialogues [15], [19],
and quadlogues [20], [21], or use head poses in medium-
sized social interactions as rough estimates of the visual
focus-of-attention, e.g. [22], [23].

Our way of overcoming these barriers is to introduce
first-person view or egocentric images thanks to the recent
rapid industrial and algorithmic growth of this field [24].
This paper considers a situation, where the wearer’s FOV
is captured by an outward-facing camera (out-cam), along
with his/her face captured by an inward-facing camera (in-
cam) with microphones. These cameras, called dual-view
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cameras here, are assumed to be attached to a rigid worn
item, e.g. a helmet or glasses. First-person-view images are
inherently superior for measuring certain behaviors of the
wearer because the facial motions and head motions are
mostly separated by these cameras. The wearer’s face is
nearly always stable in the in-cam image, as in [25], while
any head motion yields a large motion flow in the out-cam
image, and this is useful for head gesture recognition, e.g.
[26].

Our basic idea is to unify the series of fundamental com-
puter vision/audio signal processing techniques required
for these analytical steps with the aim of developing an
almost fully automatic system that offers deeper conversa-
tion analysis. We combine two established frameworks. The
first is interpersonal sensor fusion, where signals captured
by multiple sensors (everyone’s cameras in our case) are
collected in a centralized system, or shared among dis-
tributed systems, as in [27]. The second is the exploitation
of the primary characteristic of multi-party conversation
that has already been elucidated, namely that the listeners
in conversation are likely to look at the speaker [13], [15],
[28], as validated once again in Section V-C1. We call this
framework, which subsumes the above two frameworks,
Collective First-Person Vision (Co-FPV). Figure 1 illus-
trates the proposed framework.

We show in Section III-B1 that Co-FPV via interpersonal
sensor fusion makes the face-tracking problem very easy to
deal with. Our key idea is to track a person’s face from the
out-cam image captured by the person. The conversation
rule is used in Section III-A1 as prior knowledge with
which to roughly calibrate everyone’s gaze tracker. This
is the initial stage preceding fine-tuning. Here we employ
only samples where the wearer is estimated to be looking
at the speaker’s face with high likelihood. These techniques
achieve the automatic characterization of the fine-grained
gaze behavior of participants as a gazee-centered heat
map, which reveals which part of the gazee the participant
looked at, and for how long. We demonstrate that Co-FPV
performs promisingly despite its simplicity by undertaking
an experiment involving a total of 140 minutes of conver-
sations engaged by 37 participants in groups of three to
six.

The contributions of this paper are as follows: 1) Co-FPV,
which unifies both the required techniques and everyone’s
observations, is proposed for estimating the gaze behavior
of each interlocutor in a multi-party conversation via self-
calibration. 2) A conversational rule is introduced for
the self-calibration of an eye-gaze mapping function that
transforms the iris position in the in-cam to the gaze point
in the out-cam. 3) Face tracking via interpersonal sensor
fusion in the Co-FPV framework is proposed.

The remainder of this paper is organized as follows.
Section II describes related work. Section III explains the
proposed framework. Sections IV, V and VI detail the
experiment, the results, and the corresponding discussion.
Section VII provides a summary and outlines future work.

II. RELATED WORK

This section positions this study by comparison with
related work as regards the following four topics: fixed-
camera-based automatic gaze analysis in conversation, first-
person vision, gaze analysis with an eye tracker, and self-
calibration of an eye tracker.

A. Fixed-camera-based gaze analysis in conversation

The automatic recognition of the visual focus of attention
in a conversation has been tackled mainly by using cameras
fixed in the environment, as reported in [18], [20], [21],
[29]. This contactless approach is advantageous in terms
of usability, but often suffers from the participant head
rotation mentioned above. Some researchers have tried to
exploit other behaviors of the target person as additional
information, including the head pose and audio signals.
However, the performance is still limited, and this makes
it difficult to handle irregular cases where the assumed
combination of gaze and these behaviors is broken.

B. First-person vision (egocentric vision)

FPV is a hot topic in the computer vision community,
and the number of related papers is increasing rapidly
[30]. Several tasks have already been tackled: including
gaze tracking, activity recognition, and video summariza-
tion [24]. Of particular note is the pioneering work that
targets social interactions in FPV. In [31], the type of
social interaction, i.e. monologue, dialogue or discussion,
is classified from the poses of people in images captured
by a camera that is being worn. A similar task is tackled in
[19] by combining egocentric images with images taken by
a stationery camera installed in the environment. In [32],
social saliency, which is defined in terms of a spot that
many people are likely to look at, is predicted by a single
wearable camera. However, these studies do not consider
situations where everyone has his/her own wearable cam-
era(s). Arev et al. [22] recently focused on such a situation,
they approximated each person’s gaze direction with the
head pose orientation. Although this approach provides a
sufficient approximation for video editing from multiple
egocentric videos, it is hard to fully detect side-glances
without using any information about the eyes.

C. Gaze analysis with eye tracker

The use of eye trackers to understand how people observe
photographs or movies has long been a subject of research.
A good example involves investigating the difference be-
tween the gaze behaviors of typically developed people
and people with autism, as described in [33]. Another
topic involves building a computational/stochastic model
that well explains human gaze patterns. Various models
have already been proposed, such as Itti and Koch’s model
[34] of low-level saliency, and a high-level objective model.
For example, it is reported in [28] that while observing
a movie depicting social interaction, people tend to look
at the turn holder, and low-level saliency models fail to
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Fig. 1. Overview of the proposed Co-FPV gaze analysis (the flow for wearer p only): Our key contributions are highlighted in blue. a) The first step
is fundamental processes: face localization in p’s out-cam images, speaker diarization from in-cam audio signals, and iris center localization in p’s
in-cam images. The face positions (and orientations) and speaker are inferred by using all group members’ signals (i.e. Co-FPV approach), while the
iris centers are localized by using only p’s own in-cam images (i.e. a non-Co-FPV approach). b) By using sets of the speaker’s face positions mp

s

and the corresponding iris positions e as hypotheses, the parameters of the eye-gaze mapping function f (i.e. f : e �→ mp
s ), Θ, is trained. c) After

self-calibration, p’s gaze point g at each moment is estimated by substituting e into f , and the gazee is recognized as the nearest person to the gaze
point. Finally, p’s gazee-centered heat map is generated by using the gaze point and the gazee’s face coordinate system (i.e. the gazee’s face location
and orientation) at each moment.

explain such gaze patterns. Gaze trackers are also used for
automatic meeting analysis, e.g. [17]. The main drawback
of these studies is that they often rely on human intervention
for eye-gaze calibration, and face and speaker detection.
The proposed framework automates all these processes.

D. Self-calibration of eye-gaze mapping function

Although there are numerous gaze tracking techniques
[35], only a few self-calibration techniques for passive
vision-based eye trackers have been proposed. These stud-
ies are based on stochastic prediction of the gaze point
by using a low-level visual saliency model [36], [37],
[38], the coordination of eye, head and hand movements
in object manipulation tasks [39], or use others’ gaze
patterns to target images [40]. However, the first two are
not expected to work well when viewing multi-party social
interaction [28], and the last is inapplicable to unknown
conversational scenes. The current work differs from those
studies mainly in the sense that conversational saliency,
namely the dominant visual focus of attention of the turn
holder, is used as prior knowledge with which to predict
the gaze point of a target person without using the gaze
behavior of others1.

1We have already proposed our research framework in [41]. This paper
provides; a more sophisticated two-stage self-calibration procedure (only
the first stage was proposed in [41]); an extended experiment, includ-
ing various conversation group sizes (different numbers of participants)
and spatial arrangements; more comprehensive theoretical bases of the
proposed method, including a more rigorous hypothesis testing our basic
assumption; improved iris center detection; a more substantial survey of
related work; and a comparison with state-of-the-art methods.

III. PROPOSED METHOD

This section describes our proposed automatic gaze anal-
ysis for Co-FPV. Our main task is to estimate, without
manual intervention, where each camera-wearer looked at
at each moment during group conversation. We always
consider in this section that the target wearer is p ∈ Q,
where Q = {1, · · · , N}, and N is the number of people
in the conversation. Hereafter symbol p is omitted, unless
necessary. The gaze point is defined as two-dimensional
coordinates in p’s out-cam image, g = (gx, gy)

T. For this
purpose, we incorporate the iris center coordinates localized
in p’s in-cam image at that moment, e = (ex, ey)

T. The
task is now replaced with the estimation of a bijective map-
ping function, f , that associates iris center coordinates e
with the corresponding gaze point g, namely g = f(e; Θ),
where Θ denotes the parameters of f . Moreover, the origins
of g and e are the image centers.

The flow of our system is as follows and is also illustrated
in Fig. 1. The headings in the manuscript correspond to
those in the figure. Our system is mainly characterized by
its self-training of parameters Θ in multi-person conversa-
tion scenarios by assuming that the listener is looking at
the center of the speaker’s face, defined as the mid-point
between the eyes. Our processes, described below, mostly
run in parallel for all the conversation participants, although
some run for the entire group.

a) Fundamental processing: We receive all the partici-
pants’ in- and out-cam signals as input. First, we localize
the speaker’s face in p’s out-cam image, mp

s , and iris center
in p’s in-cam image e at each moment. The speaker’s
face localization consists of speaker diarization and face
center localization. a-1) Everyone’s face in p’s out-cam is
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accurately localized with her ID by using a two-dimensional
object tracking technique and the proposed Co-FPV head
pose estimation (Section III-B1). A notable difference be-
tween our Co-FPV method and the traditional methods is
that we use not only p’s own out-cam images but also the
others’ out-cam images to improve efficacy and accuracy. a-
2) The speaker s is identified as the person generating the
maximum acoustic power in everybody’s in-cams at any
given moment (Section III-C3). As a result of the above
processes, mp

s is obtained. a-3) Iris center e is localized
in p’s in-cam images by using an existing technique [42]
(Section III-C4).

b) The eye-gaze mapping function f is then self-trained
by assuming that the listener is always looking at the
speaker’s face, i.e. g ≈ mp

s (Section III-A1). This is
performed in two steps. b-1) All the samples are used in
the first stage, but false samples, detected by using the
estimated gaze point (explained next), are ignored in the
second stage. b-2) Parameters Θ of f are then trained as
those minimizing the distance between the resulting g and
mp

s .
c) Gaze analysis: c-1) The gaze point of each person in

the out-cam images is then estimated by substituting the
iris center e into the trained mapping function f . c-2) The
gazee is recognized as the person nearest to the gaze point.
c-3) Finally, a gazee-centered heat map for each wearer is
generated through gazee recognition (Section III-A2).

The following subsections describe these processes. Note
that Sections III-A1 and III-B contain our key proposal,
while the other subsections describe fundamental tech-
niques, which have less novelty or can be easily replaced
with alternatives.

A. Proposed automatic gaze analysis framework

1) Self-calibration of eye-gaze mapping function: Pa-
rameters Θ of the mapping function f are obtained by
minimizing the following objective function:

Θ = arg min
Θ

Σjdist(f(ej ; Θ), g̃j), (1)

where dist is a distance function, and j denotes a sample
index in a sample set, {g̃j , ej}j . The concrete form of map-
ping function f used in this study is given in Section III-C1.
We used the Random Sample Consensus (RANSAC) [43],
which is a frequently used robust estimation technique. One
of the main advantages of the RANSAC algorithm is that
it requires no detailed prior knowledge about parameters.

We propose a two-stage coarse-to-fine self-calibration to
solve Eq. 1; that is, we use different training sets in the first
and second stages. The first set, by assuming that the gaze
point is the face center of speaker s at that moment, i.e.
g̃ = mp

s , consists of all samples that satisfy the following
two conditions: the face in the out-cam is the speaker, and
the wearer’s gaze is in a state of fixation. Fixations are
detected based on the dispersion as a short temporal block
with a small variation in e without blinking or eye closure;
this is the dispersion-threshold identification [44]. These
constraints are not perfect and sometimes yield outliers.

For example, in some cases the wearer may look at another
listener.

To further eliminate such outliers, we, in the second
stage, update the parameters solely by using the samples
where the wearer is, after the first stage, estimated to
be really looking at the speaker’s face according to the
procedure explained next.

2) Gaze analysis (gaze point estimation and heat map
generation): After the mapping function parameters have
been learned, the gaze point at each time g is obtained by
substituting the iris center coordinates e at that time into
f . The gazee, q̂ ∈ Q\p (where Q\p = {1, · · · , p − 1, p +
1, · · · , N}), is recognized as the person nearest to the gaze
point, as determined by Euclidean distance, namely the task
is a multi-class classification task. If the distance exceeds
threshold τd, the wearer is not considered to be looking at
anyone’s face. After the gazee has been determined for each
participant, namely mutual gaze or eye contact, whether a
pair of people are looking at each other or not, is identified.
Although this is a binary classification task, it is more
challenging than the individual’s gazee recognition, because
both mutual gazers must be correctly recognized.

We then generate a gazee-centered heat map as a (rela-
tive) gaze duration heat map [45], which shows the accu-
mulated time the wearer spent looking at the different areas
of the other interlocutors. The estimated gaze point g in the
gazer’s out-cam coordinates is mapped into gazee q̂’s face
coordinate system as: ξ = 2/wq̂ · (g − mq̂), where wq̂ is
the width of q̂’s facial skin bounding box. Heat maps are
then obtained by collecting ξ values during gaze fixation
and visualizing their density.

B. Proposed fine face localization in out-cam images

The face center location of each person in the out-cam
image of another m at each moment is required for self-
calibration in Section III-A1 (mp

s), head pose estimation in
Section III-B1 (mq

p for all q ∈ Q\p ), gazee recognition
in Section III-A2 (mp

q), and gazee-centered heat map
generation in Section III-A2 (mp

q̂). This subsection explains
how we obtain the face center locations.

We assume that the face location of each person, m̃·
·, has

already been roughly estimated by using an object tracking
technique [46] (described in Section III-C2) in the first step;
e.g. m̃q

p represents p’s rough face center coordinates in q’s
out-cam image. The aim of the second step is to refine the
face center position. We achieve this by rotating a three-
dimensional frontal face model around x (horizontal), y
(vertical) and z (in-plane) axes according to the head pose,
φ = (φx, φy, φz), accurately estimated by our method.
Figure 4 shows the flow of the proposed face localization.

1) Head pose estimation: In most previous FPV studies,
the head orientation of person q is estimated from the out-
cam image of the target wearer (i.e. p), e.g. [31], relying
on the change in q’s facial appearance when observed
from different relative view orientations. On the other hand,
we propose obtaining person q’s head pose from p’s face
position in q’s own out-cam image (i.e. mq

p); for this we
use geometrical optics.
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Previous approaches, e.g. [31], are basically very similar
to traditional fixed-camera-based approaches, which have
been well surveyed in the literature, e.g. [47]. In short, they
often rely on the change in relative spatial arrangement of
facial landmarks or small patches caused by head rotation.

We, on the other hand, use the fact that the geometrical
optics of typical lenses provide a one-to-one (roughly lin-
ear) correspondence between q’s head pose in relation to p,
φ, and p’s position in q’s out-cam image. For mathematical
simplicity, we here assume that everyone’s face and out-
cam are facing in the same direction (although considered
in the mapping function, as in Section III-C1) and the
locations of their centers are the same, the images are
captured through the equidistance projection [48] (which
is frequently used for wide-angle camera perspectives,
e.g. [49]), and no one rotates their head in the in-plane
direction2, i.e. φz = 0. Now, the correspondence can be
approximated as (φy, φx)

T = m̃q
p/αo, where αo is the

out-cam’s scale factor that relates degrees to pixels in both
axes3, namely the ratio between the number of pixels and
the degrees of the camera’s FOV. For example, if p is
located in the middle (or on the left side) of q’s image,
then it means that q is directly facing p (or is facing the

2This rough approximation worked well in our experiment, as demon-
strated in Section V-A2. However, if large roll rotations occur frequently,
a sophisticated motion estimation algorithm, e.g. [50], would be required.

3If the scale factor is different for both axes, then φx and φy should
be obtained with different αos.
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faces, although only a single image is shown here. d) Their mean vertical
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right side of p), as shown in Fig. 2.
We can theoretically compare our approach with the

traditional approach by considering an example case where
the front of q’s face, with a width of 40 pixels in p’s
image, is rotated horizontally by one degree, i.e. φy = 1◦.
If the camera horizontal FOV is 1920 pixels and 122.6◦

(i.e. αo = 1920/122.6 = 16), then p’s face center shifts
by mq

p,x = αo · 1◦ = 16 pixels in q’s image (proposed
approach), as shown by the red arrow in the lower left
of Fig. 2; while q’s face center moves by only 0.35
(=40/2 · sin(1◦)) pixels in p’s image (traditional approach),
as shown by the short blue line sandwiched between the
blue arrows in the lower-left of Fig. 2. Even when we
consider the face alignment error (8 pixels = αo · 0.43◦, as
later assessed in Section V-A2), the shift in our approach
is much larger than the shift in the traditional approach.

2) Face model: The face model of each person consists
of a three-dimensional shape and the position of the face
center is indicated on the shape. Face models are auto-
matically generated selectively from images captured by
the out-cams of all the people that satisfy the following
conditions: First, the captured faces must be almost frontal;
this is judged by using φ, and is estimated in Section III-B1.
Second, both eyes are detected in the image with an eye
detector. The position of the face center is obtained as the
mean position of the centroid of the eyes in the selected
images. Moreover, the face model of each person is shared
among the group members. The frontal face condition often
forced each person’s face to be captured by the person who
was sitting in front of her. This is because, for example, the
person between p and q, wearing a purple cardigan, in Fig.
2 rarely turns her head completely toward p or q when
changing gaze direction [20].

We use a cylinder as a face shape model, as in [51].
The face center is defined on its surface. The directions
of the face coordinate system of the axes are horizontal,
vertical and facial-frontal. The face center coordinate is
xc = (0, hf , 1)

T. The height hf is the mean y-coordinate
of the mid-point between the two eyes in the bounding
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skin pixels around the rough face region and scaling and rotating q’s face
model, where the location of the face center is defined. The scaling factor
is determined by using the skin region.

boxes of the skin region divided by the half width of the
boxes. The skin region is detected by color thresholding-
based masking in the hue, saturation and value (HSV) space
[52] around the rough estimate of the face position obtained
in the first step. Moreover, more sophisticated skin detection
methods, e.g. found in [53], can be applied, if necessary4.
Figure 3 shows the flow of our face model generation.

3) Fine face localization: The face center coordinate in
an out-cam is refined as

m = wfc(Rφxc) + m̄, (2)

where w represents the half width of the skin bounding
box of the target person in the current out-cam image, Rφ
denotes a three-dimensional rotation matrix for φ, and m̄
is the image coordinate of the center of the skin region. We
here assume, like the orthographic projection, that the depth
of the skin region along the line of sight is small compared
to the distance from p’s out-cam, i.e. fc(x) = (x, y)T,
where x = (x, y, z)T. Figure 4 shows the flow.

C. Existing models and techniques

This subsection describes the remaining models and tech-
niques, required for the proposed method. Note that they
are not the main part of our proposal and are replaceable.

1) Mapping function f : The exact form of the eye-gaze
mapping function f is complex and nonlinear due the three-
dimensional geometry of the camera optics and eyeball ro-
tations. To focus on evaluating the self-calibration proposed
in Section III-A1, we use a practical two-dimensional linear
model, called a similarity transformation; i.e. we assume a
linear relationship between the iris centers in the in-cam
and the corresponding gaze point in the out-cam as

f(e;Θ) ≈
(−a 0 bx

0 a by

)
e′, (3)

where e′ denotes the augmented vector of e. In this model,
there are three parameters: Θ = (a, bx, by)

T. Parameter a
indicates the slope of the linear function (identical for both

4Because all the participants in this study were Japanese, as explained
in Section IV-A, we predefined the thresholds empirically. If the group
consists of various ethnicities, it would be possible to train the skin
detector individually by using faces detected in each participant’s own
in-cam images.

axes), and parameters bx and by are their intercepts. See
Appendix for the derivation of Eq. 3.

The linear approximation introduces large errors when
the gaze direction exceeds roughly 60◦. However, such
cases are infrequent with our settings, and we demonstrate
in Section V-C2 that this linearization is sufficient. If the
camera is very close to the face and has significant radial
distortion, e.g. for glasses-type devices, the more exact form
introduced in Appendix would be superior. Furthermore,
we simply consider the centroid of both eyes as e in Eq. 3,
although Eq. 3 can be trained for both eyes independently.
This hampers gaze estimation in the depth direction but is
practical and beneficial for avoiding overfitting.

2) Coarse head tracking: The tracking-learning-
detection (TLD) tracker [46] was used to obtain the
coarse location of faces in the out-cam images m̃·

·. It
was initialized by manually assigning each person’s face
region, which included the neck and the bottom part
of the helmet. The tracker roughly but quite robustly
detected the faces, even though the initialized faces were
often non-frontal and blurred, and the left- and right-most
persons in the image repeatedly appeared/disappeared
from the FOV during conversation because of the wearer’s
head rotation. Initialization is the only manual intervention
needed for the proposed method, and this can be automated
by employing the multi-view face detector, introduced in
[54], and person identification. The face captured by the
in-cam would be used as the person’s face model.

3) Speaker diarization: We defined the speaker s as
the person generating the maximum acoustic power v in
everybody’s in-cams at any given moment. If the maximum
power is lower than the threshold τv , no one is assumed to
be speaking. The speaker diarization is written as:

s =

{
arg maxp vp, if vs ≥ τv
∅, otherwise,

(4)

where ∅ means no one is speaking. This ignores simulta-
neous utterances5.

4) Iris center localization: The in-cam images were
aligned in advance to ensure that the horizontal coordinates
of both eyes are the same and their centroid is located
at the center of the image. This eliminates occasional
slight helmets shift during conversation. The alignment was
accomplished in the following steps: first, both eyes were
localized by an eye detector [55]. Then, the eye positions
were smoothed with a temporal filter to compensate for
errors and missing observations. Finally, the resulting trans-
lation vector and rotation matrix were applied to the images.

To localize the iris centers in the eye-aligned images,
we used the Fast Radial Symmetry Transform (FRST)
[42] for both eyes. We made several modifications to the
FRST. i) L0 smoothing [56] was applied to the input
images as preprocessing to eliminate noisy edges, such as

5We also tried using a person-wise binary threshold to determine
whether a person was speaking or silent. This increased the recall but
reduced the precision. However, as discussed in Section V-A1, precision is
a more important factor for our framework. Thus, we chose the maximum-
power-based method.
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eyelashes, while preserving the iris edges. ii) We adopted
a coarse-to-fine strategy; i.e. we ran the FRST twice. The
results in the first stage were fed into the second stage
as initial gaze directions. The initial gaze directions were
used to selectively ignore unreliable edges with reference
to [16]. For example, if the gaze was assumed to be
leftward in the first stage, only the edges on the right
hand side were used to determine the final results. We call
it orientation-controlled FRST. Blinking and eye closures
were determined by thresholding the vertical coordinate of
the upper eyelashes detected as a dark region.

IV. EXPERIMENTAL SETTINGS

This section describes the experimental settings that we
used to evaluate the performance of the proposed method.
Our framework presented in Section III is so general that
various hardware implementations (and the corresponding
mapping functions) could be applied. Thus, the main aim of
this experiment was to evaluate the validity of the principle
of the proposed framework mainly by focusing on group
size and conversation type. Designing smart hardware is
beyond the main scope of this paper.

A. Conversation dataset

This paper targets various small- to medium-sized-group
(N = 3 − 6) conversations. Thirty-seven Japanese women
in their twenties to forties participated in this experiment.
They were divided into non-overlapping groups consisting
of three three-person groups, four four-person groups, and
two six-person groups. Here, “M N -person groups” means
that there are M groups, in each of which N people are
interacting. Members of the same group had not met before
the experiment.

The groups are categorized into four types according
to their size and seating arrangement: G3, G4, ∗G4, and
G6. Here, the superscripts indicate the group sizes, and
the asterisk denotes whether their seating arrangement is
symmetric (no asterisk) or asymmetric (asterisk). Those in
the symmetric (asymmetric) groups sat equidistant from
each other in a circle (semicircle) with a radius of around
1.3 m. These seating arrangements are simply experimental
setups, and our system automatically estimates the relative
location of other participants for the target wearer via face
center localization, as explained in Section III-B1.

All the symmetric groups engaged in two conversations.
First, each member spent about 1.5 min introducing herself.
The group members then participated in discussions and
built a consensus as a group, that is they agreed on a single
answer, related to a given topic within 10 min. Each of
the asymmetric groups also held both self-introduction and
discussion sessions, but only the discussion sessions were
recorded. Moreover, the participants were not informed
about the focus of this study and no instruction was
given regarding gaze behavior. The spatial resolution of the
cameras was mostly set at around full-HD, except for the

TABLE I
SUMMARY OF OUR CONVERSATION DATASET

Group types
Properties G3 G4 ∗G4 G6

#Participants (N ) 3 4 4 6
#Groups 3 2 2 2
Seat arrangement Sym Sym Asym Sym
In-cams: Resolution 1080p 1080p 1080p WVGA

FOV 16x9W 16x9W 16x9W 16x9W
Out-cams: Resolution 1080p 1080p 1080p 1440p

FOV 16x9W 16x9W 16x9W 4x3W
Avg. conv. length [min]

Self-introduction 4.7 6.0 7.9
Discussion 12.0 10.8 9.3 10.7

Marker-based calibration � � �
“1080p”, “1440p” and “WVGA” indicate 1920× 1080, 1920× 1440

and 848× 480 pixels, respectively. “16x9W” and “4x3W” denote
118.2◦ × 69.5◦ and 122.6◦ × 94.4◦, respectively.

in-cams for G6. The temporal resolution of all the videos
was set at 30 fps6. Table I summarizes our settings.

These cameras were synchronized by starting them si-
multaneously using a remote control. Moreover, in this
work we did not eliminate the lens distortion of the cam-
eras, namely we did not calibrate the cameras to obtain the
intrinsic parameters7. The aim was to keep the original FOV
angles, which were already close to the human horizontal
visual FOV, more correctly the binocular field of view
of 120◦ [57]. When the distortion is very severe, camera
calibration would be required.

A crucial factor as regards the proposed framework,
in addition to the precondition on the gaze behavior of
interlocutors, i.e. the listeners are likely to look at the
speaker, would be the turn-taking structure, i.e. whether
they simply spoke in turn, as in the self-introduction
sessions, or not, as in a heated discussion; we call these
two types of conversations ordered and unordered conver-
sations, respectively. In most discussion sessions, the group
members spoke their own opinions in turn (34± 7 sec per
subject) at the beginning (but not at the end), although they
were not instructed to do so by the experimenters. That
is, in terms of structure, such discussion sessions can be
considered as a mixture of ordered (at the beginning) and
unordered (subsequent) conversations.

We expected unordered conversations to be more chal-
lenging in our task, because the assumed conversational
rule would be often violated. In ordered conversations,
there is only a single speaker at any given moment, and
the listeners are expected to be more likely to look at
the speaker than in unordered conversations. However, in
unordered conversations, overlapping speech would often
occur as a result of listeners’ backchannel behavior, and
listeners occasionally look at other listeners to understand
the conversation situation as regards obtaining a turn.

6To be precise, the frame rates of the cameras differed during recording,
and they were re-rendered at 30 fps after the recording. In this step,
we verified that there were no dropped frames and that the frames were
synchronized.

7The radial distortion was insignificant in our experimental settings,
because the faces were mainly located at the mid-level in the out-cam
images.
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B. Measurement device

Two cameras were attached to a lightweight mountain
climbing helmet. The in-cam was mounted on a carbon
shaft around 20 cm in front of the face without impeding
eye contact with others, while the out-cam was placed at
the top of the helmet. The helmet was counter-balanced
to alleviate any shift during head motion. The spatial
resolutions of the cameras, that is the numbers of pixels
and FOV angles, were assumed to be already known, as
summarized in Table I. The usability issues with this design
are discussed in Section VI-A.

C. Parameter settings

Mapping function f was trained separately for each
person and each target conversation session to avoid the
severe drift caused by helmet shift. In Eq. 2, the head
was assumed to rotate only along the vertical (y) axis (i.e.
φx = φz = 0), because horizontal head rotations were
frequent and large while vertical and in-plane rotations
were infrequent and small, and thus hardly affected face
localization.

The threshold for gazee recognition in the first-stage
training was fixed at τd = 2.25◦, while the best threshold
for the second stage, i.e. final gazee recognition, is assessed
in Section V-A4. In RANSAC, 4,000 random sample sets
were generated, and inlier judgment was performed with
a threshold of 5◦. Moreover, each sample set consisted
of two samples as the minimum set needed to determine
the mapping function Eq. 3. The original audio signals
were normalized to the zero-mean-unit-variance in a pre-
processing step, and τv was set at half of the mean power
for each person.

D. Manually-generated data for performance evaluation

Although our system is almost fully automatic, we pre-
pared three types of additional data manually for perfor-
mance evaluation.

The first were samples for assessing the estimated gaze
points. After the conversation sessions, each symmetric
group member was asked to look at specified physical
markers placed in space, as shown in Fig. 5. Five (hori-
zontal) × three (vertical) markers were used in this study8.
Consequently, in relation to the wearer’s FOV, the markers
were located roughly in the ±40◦ range for the x-axis and
the ±23◦ range for the y-axis. The markers in the out-cam
images were localized by an annotator.

Second, to assess the error yielded by the fundamental
techniques, the annotator assigned the image coordinates
of the face center in the out-cams and of the iris center in
the in-cams. 374 face and 360 eye images were randomly
selected from G6, where the spatial range of the participants
was the widest in the out-cams.

8Some additional markers were also placed, but they were omitted from
this study; their horizontal angles (±60◦) were too extreme for some
subjects to look at them correctly, or the eyes were almost closed while
looking these markers with our camera setting.

r = 1.4 m
Subject

0.6 m

0.6 m

0.6 m

x 5

Marker pole

Floor

Front viewTop view

40°

20°

Fig. 5. Marker-based calibration scene for performance evaluation

Third, to evaluate the gazee and speaker recognition
performance, the annotator also gave them frame-by-frame
labels throughout the conversation sessions. As for the
largest groups, that is G6, to increase the reliability of
the gazee annotation, two additional coders were employed
and the final labels were determined by these three coders
who used majority voting9. Moreover, the gazee annotation
was accomplished by using videos recorded by additional
cameras that were fixed in the environments; each of which
captured the entire bodies of several participants.

E. Performance measures

The continuous estimations, namely gaze point estima-
tion (and face and iris detection with the fundamental
techniques), are evaluated in terms of the mean absolute
errors (MAEs) in angle from the ground truth of the
manually-provided marker coordinates (and face and iris
image coordinates). The angle errors of the iris detection
were calculated from pixel errors with the angle to pixel
scale, which was obtained by using a rough estimate of the
eyeball radius (r in Fig. 13) of 1.25 cm, with reference to
[60], and that of the distance between the in-cam and the
eyeball center (d in Fig. 13) of 17 cm. Gaze point estimation
errors were obtained by using the physical markers, while
the remaining performance characteristics were obtained by
using the conversation data.

As performance measures for classification tasks, i.e.
gazee recognition, mutual gaze recognition and speaker
diarization, we use accuracy and precision/recall/F-score.
Accuracy means the percentage of frames whose classifica-
tion was the same as that obtained with human annotation,
while F-score is the harmonic mean of precision and recall.

These scores were calculated as follows: A confusion
matrix was first generated by using all the target data. See
Table V as an example. Then, for a binary classification
problem, i.e. mutual gaze recognition (mutual gaze or not),
accuracy was calculated as (tp+tn)/(tp+tn+fp+fn), where tp,
tn, fp and fn mean true positives, true negatives, false pos-
itives and false negatives, respectively. Precision and recall
were obtained as tp/(tp+fp) and tp/(tp+fn), respectively. For
multi-class problems, i.e. gazee recognition and speaker
diarization, these scores were obtained as the average per-
class scores [61]; that is, the score for each class or person

9The additional coders only judged frames where the first annotator gave
a person’s face label. For these three coders, Fleiss’ kappa coefficient [58],
which was used to show the mean pair-wise inter-coder agreement, was
.88. This is judged as an excellent level according to [59].
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TABLE II
LOCALIZATION ERRORS OF FACE CENTERS AND IRIS CENTERS

MAE [degrees]
Hor Ver Mean

Face centers
TLD [46] only 1.40 1.38 1.39
TLD [46] + Co-FPV (Eq. 2) 0.37 0.48 0.43

Iris centers
Orientation-controlled FRST 2.28 3.37 2.83

number was first calculated individually, and then averaged.
We used overall scores and per-group scores. They were
calculated from the confusion matrices that were obtained
by using all the data (called overall scores) and only the
target group type, e.g. G3, respectively. Moreover, only the
fixation samples were used for the evaluation.

V. RESULTS

We first report the gaze point estimation errors, face
localization errors, iris center localization errors, gazee
recognition rates, and speaker identification rates. We then
present generated gaze heat maps. We finally verify the
rationale of the proposed framework.

A. Quantitative evaluation: accuracy assessment

We first evaluate the fundamental techniques, and then
the proposed framework.

1) Fundamental techniques: Table II shows the local-
ization errors of face centers and iris centers. The MAEs
of the face center localization obtained with the TLD
tracker were 1.4◦ for both axes The MAEs of iris center
localization were 2.3◦ and 3.4◦ for both axes, respectively.
We employed bias-removed errors to gain a better under-
standing of the performance, because we observed that
the orientation-controlled FRST tends to bias the results
compared with manual localization.

The overall precision and recall of our speaker detec-
tion were 0.82 and 0.43, respectively. The reason for the
low recall is that we ignored low voices and overlap-
ping speech among interlocutors. However, precision has
a greater influence on the MAEs than recall in the first
self-calibration stage. This is because precision roughly
indicates the reliability of the training samples. Recall
determines the required conversation length, but numerous
frame-by-frame samples can be obtained in several minutes,
as demonstrated later in Sections V-A3 and V-A4.

2) Face center localization in Co-FPV: Table II also
shows that the proposed framework greatly improves coarse
face center localization with the TLD tracker. The MAEs
were reduced by 1.0◦ and 0.90◦ in the horizontal and ver-
tical directions, respectively. Strictly speaking, we should
note the ratio of the decrease on the horizontal axes (74%)
to that on the vertical axes (65%), because Co-FPV refined
the face center only along the horizontal axis in this study.

For a more intuitive assessment, we further converted
the absolute angle errors to face-size-normalized errors,
because the target’s face size in the out-cam images changes
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Fig. 6. Face center localization error (normalized by face-size) versus
distance of target person from wearer: Red and blue indicate our Co-FPV
and TLD only, respectively. Solid and dashed lines, respectively, indicate
the actual data with its standard deviation and regression line.

approximately linearly according to the distance between
the target and the wearer in the real space, d′. The face-size-
normalized errors were calculated as the pixel errors (angle
errors multiplied by αo) divided by the half target’s face
height estimated in the out-cam image10. The mean face-
size-normalized error of our Co-FPV was 0.10, meaning
that it localized face centers with the error of 10% of the
face size.

Our method is robust against the distance to the target
face. Figure 6 shows the relationship between the face-size-
normalized error versus the distance of the target person
from the wearer. The face-size-normalized error of our Co-
FPV is regressed as 0.11 − 0.014d′ (Pearson’s correlation
r = −.98). The slope is very small (one-ninth of the bias).
For example, even when d′ = .46 m, the shortest distance
for good friends or family [62], the unnormalized error
remains as small as 0.53◦ (24% increase from our settings,
average distance of 1.9 m). The regression function of the
TLD tracker was 0.20 + 0.043d′, r = 0.83; both the bias
and slope are much larger than those of our Co-FPV11.

3) Gaze point estimation: Table III shows the MAEs of
the gaze point estimation with three methods, namely self-
calibration, which uses training samples where both the iris

10We estimated the actual face size as the half face size inferred by the
TLD tracker, because we included non-face regions when initializing the
tracker, as described in Section III-C2. Moreover, to focus on the basic
property of our Co-FPV, here we only used samples that yielded errors of
less than 3◦ when using the TLD tracker.

11The positive slope means that it yielded larger errors for distant
people. This is probably because their resolution was very low (the
captured faces were too small), compared with closer people.
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TABLE III
LOCALIZATION ERRORS OF GAZE POINT IN DEGREES WITH

COMPARISON WITH PREVIOUS METHODS

Method Hor Ver Mean

Proposed method
Self-calibration (Co-FPV)

Two-step training 3.2 2.5 2.8
1st training stage only 3.5 2.5 3.0
1st training stage only w/ man. speaker 4.2 2.7 3.4

Manual-calibration
Marker + man. iris 2.6 2.7 2.7
Marker + auto. iris 2.1 2.6 2.4
Marker + auto. iris (person-independent) 6.7 5.1 5.9

Passive-vision-based methods
Self-calibration-based

Chen and Ji [36] 1.8
Sugano et al. [37] 3.5
Alnajar et al. [40] 4.3

Person-independent
Zhang et al. [63] 4.5

IR-lighting-based methods
Manual-calibration-based

Tsukada et al. [16] 0.7 0.9 0.8
Commercial products (from [36], [37]) 1 - 2.7

Errors of previous methods are from the original papers.

TABLE IV
MEAN ABSOLUTE ERRORS OF GAZE POINT ESTIMATION IN DEGREES

FOR DIFFERENT CONDITIONS

Group size
Conversation type G3 G4 G6

Self-introduction 3.0 (3.4/2.6) 2.8 (3.4/2.2) 3.0 (3.5/2.5)
Discussion 2.5 (2.5/2.5) 2.8 (3.2/2.3) 2.8 (3.2/2.4)

Values in bracket denote accuracies on x-axis (left) and y-axis (right).

positions and gaze points were automatically determined12

(Co-FPV), a method using samples where the markers
were manually determined but the irises were automatically
localized (“Marker + auto. iris”), and a method using
samples where both were manually localized (“Marker +
man. iris”)13.

In Co-FPV, the second training stage succeeded in in-
creasing the accuracy from an MAE of 3.0◦ in the first
stage to an MAE of 2.8◦. The improvement is mainly
achieved on the x-axis. The difference in the x-axis of 0.3◦

is both statistically and practically significant, t(57) = 3.2,
p < .005, d = .22 (Cohen’s d), while the differences in
both the overall (the mean of both axes) and y-axis MAEs

12We observed that the aligned eye position was slightly biased between
the conversation sessions and marker-based calibration due to differences
in the spatial distribution of the gaze direction. Because one of our
main proposals is sample selection rather than accurate helmet slip
compensation, we removed the bias using the following steps: first, the
bias was calculated for a marker point, and then removed from all the
remaining marker points. This yields (the number of markers - 1) bias
estimates for each point. The mean of these estimates is considered to be
the bias at that point. Note that the bias was not directly calculated from
the target point, and the slope factor estimates were not affected by this
process at all. The bias removal was just applied to this evaluation, not
applied to gazee/mutual gaze recognition in Section V-A4. The validity of
this evaluation is supported by the training failure with narrow windows
in shown Fig. 7 and the high classification performance levels in Section
V-A4. To alleviate the helmet shift problem, the idea of sliding-window-
based adaptive calibration, as described in [38], would be beneficial.

13For a qualitative assessment, a movie is available from
http://www.kecl.ntt.co.jp/people/kumano.shiro/research/gazeanalysis.htm.

are statistically significant p < .05 but practically trivial
d = .09. Based on the average face width/height of around
3.0◦, this suggests that it is possible to determine whether
the wearer looked at face or body, although it is difficult
to distinguish between different parts of the face, e.g. eyes
from mouth.

“Marker + man. iris” and “Marker + auto. iris” yielded
MAEs of 2.7◦and 2.4◦, respectively. Our iris localization
outperforms manual localization. Although the MAE on the
x-axis of Co-FPV is larger than both that of “Marker + man.
iris” (t(57) = 4.1, p < .001, d = .62) and that of “Marker +
auto. iris” (t(57) = 7.1, p < .001, d = .90), their MAEs on
the y-axis are comparable (t(57) = 1.1, p > .05, d = .21,
and t(57) = 1.6, p > .05, d = .14, respectively).

Furthermore, the mean increase rate in MAE of self-
calibration that we obtained with manual calibration is also
comparable to or smaller than that obtained with previous
self-calibration methods. For example, the increase rate
reported in [37] was 30% (from 2.7◦to 3.5◦), while that
with our two-step training was 17% (from 2.4◦to 2.8◦).
These similar trends support the validity of our evaluation.
Moreover, these methods are difficult to compare directly
due to the differences in the data and target situations,
as mentioned in Section II-D. For example, most previous
methods were evaluated in a narrower range, especially on
the x-axis, than our evaluation range, i.e. ±40◦.

To assess the interpersonal difference in the parameters
of the mapping function, “Marker + auto. iris (person-
independent)” in Table III represents the errors when the
parameters were determined by a leave-one-subject-out
cross-validation scheme; i.e. the parameters were set at the
means of those obtained in “Marker + auto iris” for other
participants with the same camera resolution. The large
errors suggest the need for person-specific calibration.

Table IV shows the effect of conversation type and
group size on gaze point estimation. Our method is robust
against both conversation type and group size. A two-way
ANOVA revealed that the main effects of both factors were
neither statistically (p > .05) nor practically significant
(η2 < .01), according to Cohen’s criteria [64]. A reason
for the high performance with the discussion session is that
more widely distributed training samples were available due
to more frequent turn-changing than in the self-introduction
sessions.

Another possible reason is the conversation length. Thus,
to validate its effect, Figures 7 and 8 show how the errors
vary when only a part of the conversation data taken
from the beginning and the end, respectively, is used for
training. In summary, 5-6 min was sufficient for our two-
stage training; the errors reached the lower bound for all
conversations on both axes at 5-6 min in these figures. If
there is a strong demand for a shorter conversation but a
larger error is acceptable, we have the option of using only
the first training stage, which requires only 3-5 min.

Figures 7 and 8 suggest that the proposed method can
handle all types of conversations, namely ordered and
unordered conversations (defined in Section IV-A) and a
mixture of the two. First, Fig. 7 suggests that our method
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Fig. 7. Change of gaze point estimation MAE in x-direction (left column)
and y-direction (right column) when varying the length of the conversation
data used for training (horizontal axes); (Top) overall, (middle) first
training stage only, and (bottom) two-stage training: Solid lines denote
the MAE (scaled by the left vertical axis), while dotted lines indicate
the success rate of conversation sessions in training (scaled by the right
vertical axis); i.e. if the success rate is not one, it means that some sessions
failed in the training and they were not considered in calculating the mean
MAE. Thickness represents training stages: first stage (thin), and two
stages (thick). Color indicates conversation types: overall (black), self-
introduction (blue), or discussion (orange).
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Fig. 8. Change of overall gaze point estimation MAE when varying
the length of the conversation data used for training; (Top) overall, and
(bottom) two-stage training: The only difference from Fig. 7 is that the
end of the window was fixed to the end of the conversations, while, in Fig.
7, the start of the window was fixed to the beginning of the conversations.
The middle panels of Fig. 7 are not included here.

can handle ordered conversations (see the blue lines) and
mixed conversations (see the orange lines). Moreover, it
is natural with respect to the turn-taking structure that the
self-introduction session required a longer conversation (the
fact that the blue lines are almost all above the orange
lines in Fig. 7). This is because everyone’s speech lasted
about 1.3 min and thus it took a long time to reach the last
speaker’s turn, while it lasted 34 sec at the beginning of the
discussion sessions, as described in Section IV-A. Second,
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Fig. 9. Accuracy (left) and F-score (right) of gazee recognition versus τd:
Blue, Green, Orange and Red indicate G3, G4, ∗G4, and G6, respectively.
Best accuracies are .94, .86, .90, and .78, respectively, at τd = 15.0◦. Best
F-scores are .94, .90, .92, and .84, respectively, at τd = 14.4◦.

TABLE V
CONFUSION MATRIX OF GAZEE RECOGNITION AT THE BEST F-SCORE

1 2 3 4 5 6 0

1 84952 111 78 0 0 182 10262
2 566 66001 234 16 0 13 8430
3 0 237 78692 66 0 0 8760
4 7 0 171 39732 54 4 6327
5 0 18 0 268 16302 78 3640
6 106 9 0 5 215 13663 3124
0 1505 1532 2126 1381 788 814 14155

Rows and columns indicate human annotation and our method’s
estimation. Classes in the rows and columns (0 to 6) denote person

numbers, which are shared among groups (i.e. “1” means the first person
in all groups). “0” represents not-person.

similar results were obtained in Fig. 8 even by training the
model using only the tails of the conversations, i.e. the end
of the window was fixed at the end of the conversation.
Although we expected unordered conversation to prove a
more challenging scenario, this suggests that our method
can also handle unordered conversations.

4) Gazee/mutual-gaze recognition: Figure 9 shows the
accuracy and F-score curves of the gazee recognition for
each group size when τd is gradually changed. The best
overall accuracy of .86 and the best overall F-score of .89
(precision = .91 and recall = .87) were obtained at τd =
15.0◦ and τd = 14.4◦, respectively14. It is natural that the
performance degrades as the group becomes larger, because
the task is a N -class problem.

These results suggest the upper limit of human coding,
although they can be changed slightly if more coders are
employed. First, the best threshold angles are much larger
than the errors in the gaze point estimation shown in Section
V-A3. These angles are in fact similar to those reported
in [12], which reported that the human accuracy when
distinguishing targets separated by a visual angle of 8◦-
10◦ is around 40%. Second, the recognition performance
strongly depends on the group size, although the gaze point
estimation does not.

The best thresholds obtained separately for each group
type reveal the characteristics of human annotation. The F-
score results were 14.9◦, 18.6◦, 14.5◦, and 14.4◦for G3, G4,
∗G4, and G6, respectively. These thresholds are, except for
G3 (the most sparse arrangement), slightly smaller than a

14We also have tried an ellipse-based thresholding, where the thresholds
are different for x- and y-axes, and obtained the best thresholds similar to
that of the circular thresholding.
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TABLE VI
ACCURACY OF GAZEE RECOGNITION

Group size
Method 2 G3 G4 ∗G4 5 G6

Co-FPV - .94 .86 .90 - .78
Fixed-cam-based methods

Gorga+ [21] - - - .82 - -
Stiefelhagen+ [20], [65] - - .76 - .69 -
Ba+ [29] - - .56 - - -
Mora+ [18] .86 - - - - -

Dyadic and five-person groups are included to stress the strong relationship
between the accuracy and group size; i.e. poorer performance in larger groups. The
accuracy for [29] was obtained as a seven-class classification task, including other

objects, such as a screen. To obtain a fair comparison, we estimated the
performance of our approach for a similar task, that is the performance of our

approach for a seven-party conversation, by fitting a linear model. The estimated
accuracy was .73, which is much higher than that reported in [29].

TABLE VII
F-SCORE OF MUTUAL GAZE RECOGNITION

Group size
Method 2 G3 G4 ∗G4 G6

Co-FPV (self-calibration) - .94 .85 .89 .68
Manual-calibration-based methods

Ye+ [66] .76 - - - -
Martinez+ [19] - .87 - - -

half of the (minimum, for the asymmetric groups) interval
angles between participants from the viewpoint of each
wearer. The half intervals are 30◦, 22.5◦, 15◦, and 15◦

for these arrangements. Furthermore, Table V shows the
confusion matrix at τd = 14.4◦. 95% of the confusions are
those between person and not-person, and 54% of them
were created in G6, the most crowded setting.

Table VI compares the mean accuracies with previous
studies’ reports. Our results exceed previous ones for all
group sizes, although these previous methods used human
annotation for model training [18], [29], marker-based
calibration [21], and additional sensors [20]. These rates
are difficult to compare statistically due to differences in
the experimental settings. Note that these measures are also
sensitive to class skewness, i.e. the ratio of positive and
negative samples (in our case, the frequency with which
interlocutors look at others).

Table VII shows the F-score for mutual gaze recognition.
The overall F-score is .87. Although the performance de-
creased slightly from that of individual gazee recognition,
it is still higher than that in previous manual-calibration-
based studies [19], [66]. The sudden drop at G6 again
suggests the limitations of human annotation for medium-
sized parties. Finally, Table VIII shows the accuracies; the
overall accuracy is very high at .98. However, the fact that
the accuracy is much higher than the F-score is not very
informative, because the mutual gaze samples are highly
skewed and the accuracy uses true negative samples, i.e.
those correctly recognized as no mutual gazes, which were
92% (79%, 92%, 87%, and 97% for G3, G4, ∗G4, G6,
respectively) of our data; while the F-score does not take
account of them. For more details regarding the effect of
class imbalance on the performance measures, see [61].

TABLE VIII
ACCURACY OF MUTUAL GAZE RECOGNITION

Group size
Method G3 G4 ∗G4 G6

Co-FPV (self-calibration) .97 .97 .98 .98

Speaking Listening
Self-introduction Discussion

ListeningSpeaking
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Fig. 10. Gazee-centered heat maps: Top) the mean map of all participants,
middle and bottom) the maps of two subjects. Although the gaze points
are mainly on the face, S1 while speaking for both conversation sessions
and S2 while speaking for the self-introduction session avoided looking
at other’s face. The background image is just an illustration; it means the
image of a participant captured from the out-cam of another person who
sat in front of the participant, while the heat maps were generated from
the gaze toward N − 1 persons.

B. Qualitative assessment: gaze heat maps

Figure 10 shows the mean gazee-centered heat maps of
all the participants and two distinctive persons (denoted
S1 and S2). They are separated into those obtained un-
der speaking and listening conditions, and from the self-
introduction and discussion sessions. It is natural that the
gaze point while listening is mainly centered on the face,
i.e. the red area, meaning the most frequent point is on the
face, because we imposed such a constraint during training.

The gaze points while speaking thus provide notable dif-
ferences between the participants that suggest the effect of
conversation type, social pressure, and participants’ person-
ality and emotional state, as previously suggested in [67].
For example, the more distributed gaze points for the self-
introduction than for the discussion session while speaking
suggest higher pressure on the conversation. Focusing of
the interpersonal differences, S1 avoided looking at others’
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Fig. 11. Frequencies of gaze targets of speaker (left) and listener (right).
The most salient gazee is the speaker.

faces for both conversation sessions; i.e. she appeared to
avoid eye contact with the listeners. S2 showed a similar
tendency only in the self-introduction session. Although
further psychological analysis is required, these results are
promising as regarding demonstrating the effectiveness of
the proposed method for such studies.

C. Verification of basis of proposed framework

We verify the basis of the proposed framework, including
the reason for it working well. We first test our basic
assumption, i.e. listeners are likely to look at the speaker’s
face, and then investigate how our formulation, Eq. 1 and
Eq. 3, work under this conversation rule.

1) Validity of our basic assumption: Figure 11 shows
the mean frequencies at which speakers and listeners were
looked at obtained using all our conversation data. The
frequencies were created by using the human annota-
tion. It demonstrates that speakers showed clearly domi-
nant gaze targets. We test if their differences are statisti-
cally/practically significant.

As regards listeners’ gaze targets, we use a three-way
ANOVA; the three factors are gaze target (speaker’s face,
(an)other listener’s face, or others), group size N , and
conversation type (self-introduction or discussion). Each
sample has the probability (normalized frequency) of the
occurrence of one person, and there are 66 samples. It
reveals that the only main effect is gaze target, p < .001,
η2 = .63 (large effect). The other effects and all the
interactions are non-significant (p ≥ .05) or have only
small or trivial effects (η2 < .06). Post-hoc paired-t tests
with Bonferroni correction reveal that listeners preferred the
speaker’s face to (an)other listener’s faces, t(65) = 16.5,
p < .001, d = 3.3 (large effect), and to other targets,
t(65) = 8.8, p < .001, d = 2.1 (large effect), respec-
tively. Moreover, (an)other listener’s face was looked at
less frequently than other targets, t(65) = 4.2, p < .001,
d = 0.8 (large effect). These results suggest that our basic
assumption is true, and they match those found in previous
studies [13], [15]. Our new findings are that the listener’s
gaze tendency is not strongly dependent on either group
size or conversation type.

The trend regarding the speakers’ gaze was very similar
to that of the listeners’. A three-way ANOVA reveals that
the only main effect is gaze target, p < .001, η2 = .20
(large effect). The other effects and all the interactions
are non-significant or have only small or trivial effects.
Post-hoc paired-t tests reveal that the listener’s face was

Fig. 12. Plot of horizontal position of iris in the in-cam images (x-
axis) and speaker face in the out-cam images (y-axis) for a participant
(p): Orange, red and gray dots denote speaker faces identified by the
audio signals, speaker faces identified at the second training stage, and
all others’ faces, respectively. Gray and black lines represent the fitted
mapping function at the first and second training stages, respectively.

looked at less frequently than other targets, t(65) = 4.1,
p < .001, d = 1.0 (large effect). Furthermore, the listener’s
face is not useful for self-calibration even while the target
wearer is speaking. It was not clear who the gazee was
among the listeners, though the dominance effect, i.e. the
effect whereby a more dominant person is looked at more
frequently than a less dominant person [68], does exist.

2) Spatial characteristics of our data: Figure 12 shows
the relationship between the horizontal face positions in the
out-cams on the y-axis and the corresponding wearer’s iris
centers in the in-cams on the x-axis. Note that the speaker
faces (orange dots) mostly lie on a single line, although
other faces (gray dots) form several clusters. Equation 3,
drawn as a gray line (the first stage) and a black line
(the second stage), well approximates this mapping in
conjunction with the outlier removal in solving Eq. 1.

This figure also suggests that simply fitting the line for
the cluster closest to the origin with or without distinguish-
ing the speaker would be sufficient in this case. However,
it is not applicable to every camera configuration and
participant arrangement15. The clear separation between the
gray dots might be diminished in other scenarios, e.g. in-
motion scenarios, where everyone moves freely. In contrast,
the speaker’s line, formed by orange dots, would remain,
unless the wearer frequently looked at a listener whose
horizontal position is close to the speaker’s. The inliers
were further cleaned at the second training stage (red dots).

VI. DISCUSSION

The experiment demonstrated the basic validity of Co-
FPV. However, several issues remain.

A. Usability

In its current form, our setting using a helmet with two
cameras does not appear very usable in the wild, unlike

15We have already tried to exploit this prior knowledge in [41].
However, we later found that RANSAC works well in our settings without
such prior knowledge.
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other monocular-camera-based approaches, e.g. [22], [63].
However, the dual-view system is useful at least in the lab-
oratory in the sense that it also has the potential to measure
other nonverbal behaviors, such as facial expressions and
head gestures, which are other major focuses of affective
computing and behavioral psychology. If usability is the
crucial factor in terms of the research/application, glasses-
type camera devices, such as that reported in [16], would
be the first choice. Non-camera devices, e.g. electrooculog-
raphy [69], would be also potential candidates. Even with
these devices, the proposed framework could be used to
jointly automate their calibration steps, although evaluation
with an appropriate mapping function is needed. On the
other hand, if social cognition is the main focus, such
helmet-type devices are more beneficial. This is because
the frame of the glasses would change another’s impression
regarding the appearance of the wearer’s face and/or facial
expressions [70].

B. Applicability

This study made several assumptions. However, only the
two are crucial to our framework: people often converse
with each other, and they are likely to look at the face of
the speaker. These assumptions would be largely true for a
variety of conversation scenarios. However, in some more
challenging cases, the latter assumption would not hold
true, and so our method would not work well in its current
form. One such case is where the target is a person with
autism who tends to gaze at the other’s body [33]. Another
case is where there are salient objects in the environment,
e.g. a monitor displaying presentation slides. Moreover, our
framework has the potential to handle meeting with paper
documents by eliminating occasions where the participant
looks downwards from the training samples.

Some of the remaining constraints, e.g. standing or in-
motion conversations tackled in [22], [23], could be tech-
nically relaxed by introducing crowd tracking techniques,
especially tracking-by-detection with data association, e.g.
[71]; and manual camera (internal parameter) calibration.
Moreover, from a psychological viewpoint, such a free dy-
namic scenario makes it difficult to control the experiment,
and it remains unclear whether our key assumptions remain
valid even in such a scenario.

Furthermore, we discuss the applicability when glasses
are worn, because no one wore glasses in this study.
Both the current iris and face localization methods are
probably robust against glasses to a certain extent. As for
iris detection, the effect of the glasses’ frames would be
alleviated by limiting the votes of pixels in the FRST by
their curvatures. Specular reflection on glasses is unlikely
to occur when shooting from above. The effect of glasses
on face localization is expected to be less severe, because
both the TLD tracker and our Co-FPV are holistic methods,
i.e. they use the entire face region.

C. Gaze model

This paper dealt with gaze point as a two-dimensional
point in an image, and used a simplified camera and

geometry model. Although the experiment demonstrated
that the approach works robustly in the conversation set-
tings described, full three-dimensional modeling, as in [72],
would increase the accuracy. This would visualize/describe
three-dimensional gaze interactions among people.

D. Heat maps

Although this paper presented gaze duration heat maps
by focusing on fixations, other visualizations are possi-
ble: e.g. other fixation-derived metrics, and saccade- and
scanpath-derived metrics [73]. Additionally, other pair-wise
metrics, e.g. gaze following, or group-wise metrics, would
be applicable in social interactions. Determining the best
gaze metrics, in conjunction with an analysis of pupil size,
as an indicator of cognitive load [74] or other affective
states [75], is another issue but it is beyond the scope of
this paper.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We introduced the Co-FPV framework for automatic
conversation analysis, where captured audio-visual signals
are gathered in a centralized system, and the fundamental
components required for group gaze analysis are jointly and
effectively processed. Each participant’s gaze tracker is self-
trained off-line by automatically selecting training samples
based on the conversational rule. This estimation approach
yields a gazee-centered heat map for each interlocutor. An
exhaustive experiment using three to six-member groups
demonstrated the potential of the proposed framework.

This paper introduced FPV as a tool for automatically
assessing nonverbal behaviors. However, FPV can also be
used to obtain emotion data. Our assumption is that first-
person view images make it easier for the subject (or exter-
nal observers) to accurately recall (or read) his/her emotion
felt at that time, because the first-person perspective (or
perspective taking for the observers) plays an important
role in these processes [76], [77]. The evaluation of this
assumption is a future task.

APPENDIX

The mapping function in Eq. 3 is obtained as follows.
First, we only consider the following parameters in Fig.

13, which shows the geometrical relationship between the
cameras and the eyeballs: eyeball radius r, the distance
between the center of the eyeball and the focal point of
the in-cam, d, and the yaw and pitch angles of the in-
cam relative to the eyeball, θx and θy , respectively. The
remaining geometrical parameters are omitted by assuming
that the locations of the centroid of the eyeballs and the
focal point of the out-cam are the same, both the in- and
out-cams are horizontally aligned (i.e. no roll rotations),
and the yaw and pitch angle of the out-cam relative to the
eyeball are zero. These assumptions are guaranteed by the
following pre-processing: The in-cam is aligned as both
eyes lie on a horizontal line and the eye centroid is located
at the image center. The out-cam is aligned as the faces of
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Fig. 13. Assumed geometrical relationship of cameras and eye

the person in front of the wearer is located at the image
center.

When we consider the x-axis in Fig. 13, the gaze angle ψ
changes the iris center position at r sin(ψ−θx) in the phys-
ical space, while the change is (d− r cos θx) tan(−ex/αi)
pixels in the in-cam image in a weak-perspective projection.
We assume that d � r approximates ψ as arcsin(d/r ·
tan(−ex/αi)). The gaze shift in the out-cam image is
gx = αoψ. Linking these equations with regard to ψ yields

gx = αo[arcsin{d/r · tan(−ex/αi)}+ θx]. (5)

The derivation for the y-axis is the same except for the
signs of ex and ey . Thus, the mapping function f forms
as:

f(e) = αo[arcsin{d/r · tan((−ex, ey)T/αi)}+ (θx, θy)
T], (6)

where αi is in-cam’s scale factor that relates degrees to
pixels in both axes. The sign of ex is changed because the
x-axis is flipped in the in-cam, as shown in Fig. 13.

Finally, a first-order Taylor series approximation of the
right hand side of Eq. 6 around (0, 0) makes the mapping
function f a similarity transformation

g = f(e) ≈ f̄(e) =

(−a 0 bx
0 a by

)
e′. (7)

This is equivalent to Eq. 3.
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