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Abstract—Towards explainable affective computing (XAC),
researchers have invested considerable effort into post hoc
approaches and reverse engineering to seek explanations for
deep learning models. However, alternative, intrinsic approaches
that aim to build inherently interpretable models by restricting
their complexity are yet to be widely explored. In this study, we
integrate an explanatory polytomous item response model that
provides a well-established psychological interpretation for ordi-
nal scales with deep neural networks to realize high prediction
performance and good result interpretability. We conducted an
experiment on a growing task (i.e., predicting the idiosyncratic
perception of emotional faces of an individual); as expected
theoretically, the topmost parameters of our model demonstrated
strong correlations with those of the corresponding ordinal
item response model: r = 0.928 to 1.00. Our proposed intrinsic
approach can used as a complementary framework for post-hoc
methods in XAC to coach and support human social interactions.

Index Terms—ordinal model, item-response theory, perceived
emotion, affect dimension, explainable AI

I. INTRODUCTION

Among the goals of affective computing (AC): building
machines that recognize human emotions, behave emotionally,
and have emotions [31], emotion recognition continues to
be a popular interest in the community. Given the com-
municative view of human emotional expression [35], the
research community targets two types of subjective emotions
to recognize: emotions felt by the self (felt emotions) and
emotions perceived by others (perceived emotions) [9], [38].
Both can be represented as basic emotions (e.g., happiness,
anger, surprise) or emotional dimensions (e.g., valence and
arousal); however, there is growing evidence which suggests
ordinal representations may more accurately reflect the under-
lying experience [51]. A major issue for perceived emotions
is determining the ground truth, and several previous studies

© 2021 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or fu-
ture media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or re-
distribution to servers or lists, or reuse of any copyrighted component of
this work in other works. Find the published version of this article under
https://doi.org/10.1109/ACII52823.2021.9597455.

assumed a single ground truth by taking the majority or mean
of the observers’ judgments to eliminate individual differences.

Considering the idiosyncratic perceptions of the observer,
recent trends in the AC community include treating uncer-
tainty as soft classification to maintain labels [42] or to
build personalized recognizers that predict how an individual
perceives a target stimulus [17], [58], although limited, unlike
personalized felt emotion classification [8], [54]. To this end,
deep neural networks play a tremendous role in enhancing
performance [22].

Another trend, in the larger domain of artificial intelligence
(AI), is that many researchers are seeking to develop explain-
able AI (XAI) [1], [3] for applications that require account-
ability for the machine’s decisions to combat the performance-
interpretability tradeoff [33]. Thus far, there are two XAI ap-
proaches: post hoc and intrinsic [1]. On the one hand, the post-
hoc approach is based on a reverse engineering process that
provides the required explanations without altering or knowing
the inner workings of the original model. On the other hand,
the intrinsic method constructs the model to be inherently
interpretable or self-explanatory, which restricts its complexity.
Post-hoc approaches are dominant in deep neural networks
[33]. For example, saliency maps are considered explanatory
for determining the parts of an image that are focused on
by the classifier. However, this does not cover information
regarding how the model uses the relevant information. Thus,
there is a need to enhance interpretability when using intrinsic
approaches, even at the risk of performance [33].

As one of the most central components of positive comput-
ing and subjective well-being [5], AC systems need to explain
how they reach their prediction/decision and how they may
affect the well-being of the user. For instance, systems that
help and guide people to enhance their emotional interactions
with others, such as building rapport, can be easily anticipated.
Broader examples include personnel selection, education, ad-
vertising, autonomous driving (e.g., trolley problem), and court
trials, as summarized in [15]. For such applications, not only
rationality but also affect play key roles, and machines should
account for their decisions. Therefore, we refer to AC equipped
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with explainability as explainable affective computing (XAC),
which is a term that has hardly been used, besides in [40].

The realization of psychological interpretability with high
prediction performance remains a noted challenge in idiosyn-
cratic perceived emotion recognition. For example, in [17],
a naı̈ve Bayes model that separates the effect of observers
and the stimulus based on their conditional independence
assumption was proposed. However, their model is not psy-
chologically parameterized, and therefore, it is challenging to
provide psychological explanations. Further, their model re-
quired handcrafted emotion features, but it did not demonstrate
significant prediction accuracy. Another study [58] achieved
high performance in predicting an individual’s perception of
emotion images using rolling multitask hypergraph learning,
which jointly combines multiple factors such as visual content
and the metadata of images. Their model is not easy to
interpret because of the complexity of the model structure.

A psychological theory such as the explanatory item re-
sponse (IR) theory [46] has the potential to overcome the
above-mentioned challenge. This theory comprises two layers:
The higher layer is the base descriptive IR model, which
assumes a stochastic process to describe how an individual
responds to an observed item. The discrete IR theory assumes
that latent parameters explain the logit of the probability that
a person will provide a score to an item. The lower layer
regresses the latent variables from auxiliary information about
respondents or items, which enables the model to predict re-
sponses to unknown items or respondents. Researchers prepare
easy-to-interpret auxiliary information to allow the explanatory
IR models to be intrinsically interpretable in both the base IR
and explanatory latent regression layers. However, in the AI
community, it is well known that such handcrafted features
degrade the predictive performance of the model [22]. In
addition, it is plausible to employ it as a latent regressor only
in the lower layer and maintain the interpretability of the IR
layer, while exploiting the high feature extraction performance
of the deep neural network.

In this paper, we propose a model for predicting the individ-
ual’s perception of facial emotion images on an ordinal scale
by incorporating a convolutional neural network (CNN) as the
latent regression layer of the IR model to extract visual fea-
tures. We apply the consistent rank logits (CORAL) framework
[6] to ensure the ordinal consistency of the final results, which
is arguably required for valid psychological interpretability.
We theoretically and experimentally demonstrate that the top
layer parameters of the proposed model are interpretable as
psychologically established IR parameters while maintaining
the performance of the CNN in the bottom layer to regress the
latent IR parameters.

The contributions of this paper are two-fold:

1) This is the first AC study that integrates deep neural
networks with explanatory polytomous IR theory to
combat the performance-interpretability tradeoff.

2) We theoretically and experimentally demonstrate that
CORAL can be combined with several types of IR

models, which helps maintain the rank consistency of
the response ratings.

II. RELATED WORK

Recently, ordinal annotation has received substantial atten-
tion in the AC community [51] as an alternative approach to
overcome the validity and reliability issues of nominal (e.g.,
basic emotion categories) and interval (e.g., valence-arousal
dimension) approaches [26], [37]. The primary criticism re-
ceived by the nominal approach is that emotions cannot be
assigned to a single category in reality [39]. The interval
approach aims to solve the issue using emotional dimensions;
however, individual differences of interval labels are large [11]
partly because of the limited ability of humans to express their
preferences directly in terms of values. Recent AC studies have
demonstrated improved performance over interval or nominal
approaches as another alternative to overcome these issues
[32]. However, modeling the subjective ordinal ratings of an
individual in an explanatory way is not extensively explored.

An ordinal deep neural network is a popular topic in the AI
community, e.g., in age estimation [6], [28]. In [28], an ordinal
regression problem was converted into a series of binary clas-
sification subtasks. However, the validity and interpretability
of the model are questionable because it cannot guarantee the
rank consistency of the ordinal ratings. This issue was ad-
dressed in [6]. Their rank-consistent ordinal CNN (CORAL),
which theoretically guarantees rank consistency, inspired us
to combine their model with specific types of polytomous IR
models for combating the performance-interpretability tradeoff
in the problem of idiosyncratic perceived emotion recognition.

Several studies have proposed combining deep learning with
dichotomous or binary IR theory [7], [47], [53]. In [7], multiple
deep learning models were used to regress the parameters of
the IR model to predict if a student answers the question
correctly. In [53], a dichotomous IR model was integrated
with deep learning to estimate the temporal change in the
knowledge states of a student. In [47], an IR model was placed
in the middle of a deep neural network, instead of on the top,
where it faces difficulties with interpreting the output of the
model using the IR model. Unlike these previous studies, our
study focuses on different technical aspects and application
domains. First, these studies used dichotomous responses,
whereas we handled polytomous (more specifically, ordinal)
affective ratings by incorporating the CORAL framework with
the IR theory. Second, the previous deep IR models were
trained in two steps from deep neural networks to IR models,
whereas our model is trainable end-to-end.

III. PROPOSED MODEL

A. Consistency-reserved Deep Neural Network for Ordinal
Regression

CORAL [6] is a framework for incorporating neural net-
works with ordinal regression to predict a target label (in
our case, the emotional rating for a facial image) 𝑦𝑜𝑟𝑔 in
an ordered set 𝑌 = {𝑟1, · · · , 𝑟𝑆 |𝑟1 ≺ · · · ≺ 𝑟𝑆 , 𝑆 ∈ N}. The label
extension transforms the rating 𝑦𝑜𝑟𝑔 into 𝑆 − 1 binary labels



[𝑦 (1)
𝑖
, ..., 𝑦

(𝑆−1)
𝑖

]⊺, each of which indicates whether 𝑦𝑖 exceeds
rank 𝑠, i.e., 𝑦 (𝑠)

𝑖
= 𝟙{𝑦𝑖 ≻ 𝑟𝑠}. The indicator function 𝟙{·} is

one if the inner condition is true, and zero otherwise. For
example, let 𝑦𝑜𝑟𝑔 = 𝑟3 and 𝑆 = 5; then, we have 𝑦 (1)

𝑖
= 1, 𝑦 (2)

𝑖
=

1, 𝑦 (3)
𝑖

= 0, and 𝑦 (4)
𝑖

= 0.
Let the output of the penultimate layer be denoted as

𝐻 (x𝑖 ,W). Here, W denotes the parameters of the neural
network excluding the bias units of the final layer. The
CORAL framework ensures prediction consistency by allow-
ing 𝐻 (x𝑖 ,W) to share the same weight with all nodes in the
final output layer; this helps minimize model complexity by
downsizing the number of parameters. However, each node
has an independent bias parameter 𝜅𝑠 . Let the output of the
𝑠-th binary classifier for an input image x𝑖 be denoted by
𝑔𝑠 (x𝑖) ∈ {0,1}. The value of 𝑔𝑠 (x𝑖) is calculated from 𝑔𝑠 (x𝑖) =
𝟙{𝑃( �̂� (𝑠)

𝑖
) > 0.5}. Here, 𝑃( �̂� (𝑠)

𝑖
) indicates the probability that

�̂�𝑖 exceeds 𝑟𝑠 , i.e., 𝑃( �̂�𝑖 ≻ 𝑟𝑠).
The predicted rank �̂�𝑖 for x𝑖 is then obtained as �̂�𝑖 = 𝑟𝑞 ,

where 𝑞 = 1 +∑𝑆−1
𝑠=1 𝑔𝑠 (x𝑖). The probability that the rank of

the predicted item is likely to exceed the rank 𝑟𝑠 is defined as

𝑃( �̂� (𝑠)
𝑖

) = 𝑃( �̂�𝑖 ≻ 𝑟𝑠) = 𝜎(𝐻 (x𝑖 ,W) + 𝜅𝑠), (1)

where 𝜅𝑠 denotes a score-specific bias unit and 𝜎(𝑧) = 1/(1+
𝑒𝑥𝑝(−𝑧)) represents a logistic sigmoid function. This is a
cumulative logistic form where the cumulative probability on
the left-hand side is linked with the linear component, i.e., the
argument of the logistic sigmoid function on the right-hand
side.

CORAL minimizes the following cross-entropy loss func-
tion of 𝑆−1 binary classifiers:

𝐿 (W, 𝜅) =−
𝑁𝑖∑︁
𝑖=1

𝑆−1∑︁
𝑠=1

[log(𝜎(𝐻 (x𝑖 ,W) + 𝜅𝑠))𝑦 (𝑠)𝑖

+ log(1−𝜎(𝐻 (x𝑖 ,W) + 𝜅𝑠)) (1− 𝑦 (𝑠)𝑖
)] .

(2)

Weight sharing in the final output layer guarantees that
the global optimum satisfies the rank consistency, i.e., 𝑆 − 1
cumulative probabilities are monotonically decreasing: 𝑃(𝑦𝑖 ≻
𝑟1) ≥ 𝑃(𝑦𝑖 ≻ 𝑟2) ≥ . . . ≥ 𝑃(𝑦𝑖 ≻ 𝑟𝑆−1). In addition, the proba-
bility of each rank can be obtained by taking the difference
between adjacent cumulative probabilities 𝑃(𝑦𝑖 = 𝑟𝑠) = 𝑃(𝑦𝑖 ≻
𝑟𝑠−1) −𝑃(𝑦𝑖 ≻ 𝑟𝑠), except for 𝑃(𝑦𝑖 = 𝑟1) = 1−𝑃(𝑦𝑖 ≻ 𝑟1) and
𝑃(𝑦𝑖 = 𝑟𝑆) = 𝑃(𝑦𝑖 ≻ 𝑟𝑆−1). The estimated rank is determined
to have the maximum probability.

B. Base Explanatory IR Model

The main idea of this study is combining CORAL with the
explanatory IR polytomous theory to handle the heterogeneity
of the respondents. Among the several types of IR models, we
select the one-parameter rating-scale graded response model
(1P-RS-GRM) [4]. 1P-RS-GRM is expressed as 𝑃( �̂�𝑖 𝑗 ≻ 𝑟𝑠) =
𝜎(𝜃 𝑗 − 𝛽𝑖− 𝜅𝑠). Like in other IR models, 𝜃 𝑗 , 𝛽𝑖 , and 𝜅𝑠 denote
the 𝑗-th respondent (ability) parameter, 𝑖-th item (difficulty)
parameter, and 𝑠-th threshold location parameter of the rat-
ing scale (called the rating scale parameter), respectively. 𝜃
denotes the sensitivity of the respondent to the emotional

Fig. 1. Model architecture of the proposed CORAL-RS-GRM. It comprises
two parts: i) On the left (bottom layer) side, one shared CNN regresses the
item parameter 𝛽 from the input item image for both valence and arousal
dimensions. The input of 𝛽 is the final layer of the CNN module. ii) On
the right (top layer) side, the item-response model (more specifically, 1P-
RS-GRM) layers generate affective rating 𝑦 by considering 𝜃 and the rating
scale parameter 𝜅 for both dimensions separately. Unlike 𝛽, 𝜃 and 𝜅 have
no input. The output is the rating in the extended form. In standard neural
network terminology, 𝛽 is a hidden layer (with a single node), whereas 𝜃

and 𝜅 are bias parameters (but respondent- and score-specific, respectively).
Therefore, the entire model, including the IR layer, can be learned using
ordinary gradient-based algorithms.

dimension. A larger 𝜃 indicates that the person is more
sensitive to the dimension and thus tends to assign greater
ratings [45]. 𝛽 denotes the difficulty of the item to obtain a
greater rating. The threshold parameters 𝜅 represent the (𝐾−1)
threshold locations, each of which determines whether the
perceptual representation 𝜃− 𝛽 exceeds threshold 𝜅. Further, it
plays a similar role as the item difficulty parameter; however,
it is score-specific and item-independent.

In explanatory IR models [49], 𝛽𝑖 is regressed using auxil-
iary information about the item property, x𝑖 , i.e., 𝛽𝑖 = 𝑓 (x𝑖).
Function 𝑓 is frequently a linear regression; however, it can
be in any form. The explanatory 1P-RS-GRM is expressed as

𝑃( �̂�𝑖 𝑗 ≻ 𝑟𝑠) = 𝜎(𝜃 𝑗 − 𝑓 (x𝑖) − 𝜅𝑠). (3)

Here, notice the similarity between (1) and (3): First, the
right-hand side of both equations includes a score-specific
bias in CORAL and the threshold parameter in 1P-RS-GRM,
respectively, as represented by 𝜅𝑠 . Second, 𝐻 (x𝑖 ,W) in (1)
corresponds to 𝑓 (x𝑖) in (3), while (3) includes 𝜃 𝑗 . Thus, we
built a deep explanatory 1P-RS-GRM by adding 𝜃 𝑗 to the
CORAL framework.

C. Proposed CORAL-RS-GRM

We integrate CORAL with 1P-RS-GRM (CORAL-RS-
GRM) as illustrated in Fig. 1. Our model defines the cu-
mulative probability of the rating of respondent 𝑗 to item 𝑖

exceeding rank 𝑟𝑠 as

𝑃( �̂�𝑖 𝑗 ≻ 𝑟𝑠) = 𝜎(𝜃 𝑗 −𝐻 (x𝑖 ,W) − 𝜅𝑠) (4)

The main advantage of the proposed model is that we can in-
terpret 𝜃 𝑗 , 𝐻 (x𝑖 ,W), and 𝜅𝑠 as the respondent parameter, item
difficulty parameter, and rating scale parameter, respectively,
like that in the IR theory.



Following the recent neural-network-based emotion esti-
mation studies [30], [56], we apply the multitask learning
fashion. This is more advantageous than single-task learning,
particularly when training data are limited by sharing low-
level representations for multiple tasks. As shown in Fig. 1,
the model has two-branched networks from the CNN module
to the valence and arousal dimensions separately. They share
the same CNN module as the latent regression layer; however,
they have their own IR layers: W = {W′,W∗}. W∗ denote the
weights shared with all nodes in the final output layer of each
branched network as imposed by the CORAL framework. W′

denotes the rest of the CNN module parameters shared by
the two sub-networks. The two sub-networks have their own
IR model parameters, 𝜃 𝑗∗, 𝛽𝑖∗ (dependent on item 𝑖, W′, and
W∗), and 𝜅𝑠∗, where * denotes an emotional dimension (e.g.,
∗ ∈ {valence,arousal}.

We minimize the total loss function

𝐿total (W, 𝜃, 𝜅) =
∑︁
∗
𝐿 (W′,W∗, 𝜃∗, 𝜅∗), (5)

𝐿 (W′,W∗, 𝜃∗, 𝜅∗)

=

𝑁𝑖∑︁
𝑖=1

𝑁 𝑗∑︁
𝑗=1

𝑆−1∑︁
𝑠=1

[log(𝜎(𝜃 𝑗∗−𝐻 (x𝑖 ,W′,W∗) − 𝜅𝑠∗))𝑦 (𝑘 )𝑖 𝑗∗

+ log(1−𝜎(𝜃 𝑗∗−𝐻 (x𝑖 ,W′,W∗) − 𝜅𝑠∗)) (1− 𝑦 (𝑘 )𝑖 𝑗∗ )],

where 𝑁𝑖 and 𝑁 𝑗 denote the number of items and respondents,
respectively.

IV. EVALUATION EXPERIMENTS

A. Experimental Data

We used the dataset collected in [18] to evaluate our model.
The dataset includes ratings given by various persons to
emotional faces. Although there are many open image datasets
such as CK+ [24], MMI [29], AffectNet [27], and IAPS [21],
there are very limited datasets that are publicly available and
include the ratings of individual respondents, as summarized
in [57].

A total of 50 respondents, who were all Japanese students
in domestic universities, were asked to judge 120 emotional
face images. The rating process followed a blocked design:
one block was used for valence judgment, and the other was
used for arousal. The rating was a forced-choice on a five-point
scale in each block (i.e., 𝑆 = 5): negative (1) versus positive (5)
for valence, or low (1) versus high (5) for arousal. Each face
was presented for 1,000 ms, following a fixation cross to the
center of the screen for a duration of 500 ms. The stimulus
exposure durations were short but sufficient, and they were
used in studies such as [23]. Then, a valence or arousal scale
was displayed until the participant selected one of the answers.
The 120 faces include both single-category expressions out of
eight categories (angry, disgust, fear, neutral, sad, surprised,
and smiles with opened/closed mouth) and mixed expressions
of pairs of the eight categories. All facial images were in the
front view and under the same illumination. For details on the
generation process of the 120 faces, see [18].

There were 150 trials per respondent in each block. In
30 of trials, an image was randomly selected from the 120
faces for the second rating. The pair of ratings were used
only to calculate the test-retest reliability as an indicator of
the upper bound of the prediction performance of the model.
Therefore, we used 12,000 samples (120 items × 50 people ×
2 dimensions) for the main analysis, and the remaining 3,000
samples were used only to calculate the test–retest reliability.
Further, frequencies of the ratings were {1(negative) = 9%,2 =

32%,3 = 35%,4 = 20%,5(negative) = 4%} for valence, and
{1(low) = 9%,2 = 25%,3 = 31%,4 = 28%,5(high) = 7%} for
arousal.

B. Experimental Settings

We used the PyTorch framework to implement the proposed
model. We used the Adam optimizer for training and set the
learning rate = 2e-04, batch size = 10, and #epochs = 150.
As the pre-trained model, we used the VGG-16-based facial
recognition model trained for facial expression classification
on the FER2013 dataset [14]; see [50]. Pre-training a model
with multiple approximate datasets is referred to as the multi-
stage pre-trained strategy, and it can discriminate ambiguous
local features among similar categories. Further, this strategy
mitigates the limited data issue [43]. We unfroze the last two
convolutional layers of the pre-trained model in the fine-tuning
on the main dataset because this yielded the best training loss
when we unfroze the last one to four convolutional layers.

C. Baseline Models

We compared the proposed CORAL-RS-GRM with three
IRT-based baseline models: Action-Unit-based latent regres-
sion 1P-RS-GRM (AU-RS-GRM, hereafter), and the base 1P-
RS-GRM. The first two models are identical in their item-
response layer but different in their latent regression layer,
as summarized in Table I. Unlike CORAL-RS-GRM, AU-RS-
GRM is interpretable in its latent regression layer. Therefore,
this is a doubly interpretable model. The AUs are descriptors
of the basic actions of an individual muscle or a group of
muscles [13]. AUs are psychology-grounded, and thus, highly
interpretable, such as the eyebrow lower (AU4) or lip corner
puller (AU12). We detected AUs using OpenFace [2]. We
detected the intensities of 17 AUs and the binary presence
of 18 AUs. Then, we fed the 35 features into the latent
regression layer of 𝛽, which is the first linear layer of the
AU-RS-GRM. Therefore, the linear layer is essentially the
linear regression. We created the rest of the layers in the
same manner as the proposed model. The AU-based model can
evaluate the performance-interpretability tradeoff compared
with the proposed model.

The base IR model (1P-RS-GRM) has no latent-regression
layer, which means that 1P-RS-GRM cannot handle unknown
items and is therefore not applicable to the test sets. We
consider the estimated parameters of 1P-RS-GRM to be the
most accurate because this model is the least restricted among
the three models in Table I. We implemented the models in the



TABLE I
DIFFERENCES BETWEEN THE PROPOSED AND IRT-BASED BASELINE

MODELS

Model IR layer Latent-regression layer

1P-RS-GRM Interpretable -
(Base IRM, least restricted)
CORAL-RS-GRM Interpretable High performance,
(Proposed) Difficult to interpret
AU-RS-GRM Interpretable Interpretable,
(Doubly interpretable) Low performance

Stan probabilistic programming language. We used the No-U-
Turn Sampler (NUTS) to obtain accurate estimations of the
IR model parameters. NUTS incurs a considerable computa-
tional cost; however, it seeks the global optimal compared to
approximation-based methods such as gradient-based methods
(e.g., Adam) or variational inference.

Being the least and strongest constrained structures among
the three IR-based models listed in Table I, we expected that
the base IR model and AU-RS-GRM would be the best and
worst, respectively, in terms of training performance.

Further, we used RankSVM in pyplt [12] that takes AUs as
input to predict ratings as a more general preference learning
algorithm to better illustrate the performance of the proposed
model. RankSVM was trained on each respondent and emotion
dimension independently.

D. Evaluation Methods

We employed a leave-10%item-out cross-validation to eval-
uate the predictive performance and interpretability of the
proposed model. We randomly split the dataset into ten equal
parts item-wise, i.e., 90% of the 120 images (108 images)
were used as the training set and the remaining 10% (12
images) were used as the test set. We used a set of several
metrics in combination to capture multiple aspects of the
results following [16].

We report the accuracy, mean absolute error (MAE),
Somers’ D, and normalized discounted cumulative gain
(nDCG) to measure the training and test performance on the
ordinal, i.e. discrete labels. Accuracy is commonly used in
classification tasks. MAE is an error metric that has been
widely used for interval/ratio scales. Somers’ D is more
suitable for label ranking tasks, and it ranges between -1 and
1. Somers’ D compares the global ranks of all items, wherein
-1 indicates that it is entirely inconsistent with the order of
the label; 1 indicates that it is completely consistent. nDCG
measures the gain score of an item based on its position in
the result list, and the score ranges between 0 (worst) and
1 (best). We calculated the mean results of the four types of
metrics on ten training and test sets. Further, we calculated the
test–retest reliability in the same manner by approximating the
upper bound of the prediction performance.

We calculated the Pearson’s correlation coefficients (PCC)
and MAE of the estimated IR parameters of the base (1P-
RS-GRM) and proposed models to measure the extent of
consistency and absolute errors, respectively for evaluating

TABLE II
TRAINING PERFORMANCE ON RATING ESTIMATION

(a) For training data
Model Acc MAE S’D nDCG

1P-RS-GRM V 0.650 0.383 0.637 1.000
(Base IRM, least restricted) A 0.542 0.508 0.507 0.995

CORAL-RS-GRM V 0.575 0.468 0.641 0.943
(Proposed) A 0.424 0.651 0.519 0.953

AU-RS-GRM V 0.473 0.592 0.575 0.938
(Doubly interpretable) A 0.375 0.741 0.433 0.939

RankSVM V 0.644 1.777 -0.102 0.832
A 0.680 1.972 -0.09 0.843

(b) For test data (i.e., unknown images)
Note: 1P-RS-GRM cannot be applied to test data because of the lack of

latent regression layers.

Acc MAE S’D nDCG

CORAL-RS-GRM V 0.531 0.562 0.568 0.930
(Proposed) A 0.402 0.736 0.418 0.920

AU-RS-GRM V 0.441 0.590 0.526 0.927
(Doubly interpretable) A 0.380 0.743 0.408 0.909

RankSVM V 0.218 1.776 -0.092 0.820
A 0.246 1.971 -0.057 0.829

Test–Retest reliability V 0.607 0.466 0.585 0.993
A 0.495 0.635 0.495 0.990

Acc: accuracy, S’D: Somers’D, V: valence, A: arousal.

the similarity. Two metrics aim to validate the interpretability
of the estimated IR parameters of the proposed model. The
item parameters 𝛽 were partially collected from each test set,
and we obtained all estimations when the cross-validation was
completed. However, because all respondent parameters 𝜃 and
all rating scale parameters 𝜅 were obtained from each test set,
we report their average values at the end.

V. RESULTS

A. Performance

First, we compared the training performance of the four
models to determine the basic characteristics; the comparison
results are presented in Table II (a). The results are mostly
consistent with our expectations. The base IR model (1P-RS-
GRM) achieved the best accuracy of 0.650 for valence, MAE
(0.383 for valence and 0.508 for arousal), and nDCG (1.000
and 0.995, respectively) among the three IR-based models.
Our model (CORAL-RS-GRM) ranked second (accuracy =
0.575 and 0.424; MAE = 0.468 and 0.651; nDCG = 0.943 and
0.953), although it reached slightly higher Somers’D (0.641 for
valence and 0.519 for arousal) than 1P-RS-GRM (0.637 and
0.507, respectively). Among the three IR-based models, the
most explanatory model (AU-RS-GRM) was the worst, with
the lowest accuracy (0.473 and 0.375) and the highest MAE
(0.592 and 0.741). RankSVM achieved the highest accuracy
of 0.680 for arousal and the second highest accuracy of 0.644
for valence. However, the other three metrics were found to
be the worst among the four models.



Second, Table II (b) shows the test results of CORAL-RS-
GRM, AU-RS-GRM, and RankSVM in the cross-validation.
1P-RS-GRM cannot be applied in the test sets because it does
not have an explanatory layer. Our proposed model, CORAL-
RS-GRM, outperformed AU-RS-GRM for two emotional di-
mensions of valence and arousal in all four metrics. The results
validated our assumption that employing a CNN as an item
latent regressor can help achieve higher generalizability. The
accuracies of CORAL-RS-GRM were larger than those of AU-
RS-GRM (20% for valence and 6% for arousal); however,
the differences were smaller for MAE, Somers’D, and nDCG.
Compared with the test–retest reliabilities as an approximated
upper-bound performance, the proposed model showed good
performance in terms of the four metrics.

On the test set, our model achieved the nDCG of
0.930 and 0.920 for the valence and arousal, respectively,
whereas RankSVM yielded 0.820 and 0.829, and AU-RS-
GRM achieved 0.927 and 0.909. In the training set, the
results were slightly higher; however, the trend was the
same. These results suggest the advantage of our model over
RankSVM.However, we acknowledge that there is still room
for improvement in RankSVM in terms of sharing item pa-
rameters across respondents and dimensions, as in our model.

Considering the imbalanced dataset, the acceptable baseline
model that at least always returns the most frequent class
achieves accuracies of 0.35 for valence and 0.31 for arousal.
Moreover, providing the maximum frequencies and test–retest
reliabilities (0.607 and 0.495, respectively) as rough lower
and upper bounds, the accuracies of our model (0.531 and
0.402) were corrected to 70% = (0.531−0.35)/(0.607−0.35)
and 50% = (0.402−0.31)/(0.495−0.31). These are promising
results for such a challenging task.

Further, we confirmed that CORAL-RS-GRM satisfied
the rank consistency for both two emotional dimensions.
The estimated rating scale parameters increased monoton-
ically: 𝜅 = (−4.01,−0.86,1.54,4.22) for valence and 𝜅 =

(−2.93,−0.95,0.84,3.64) for arousal. The inconstant intervals
for valence validate the need for the ordinal model, which is
in line with the literature [51].

B. Interpretability

We examined the similarity of the estimated IR parameters
between the proposed model and 1P-RS-GRM to evaluate
whether the item-response parameters of our model can be
interpreted in a similar way as those of the base IR model. The
IR parameters of our model were obtained from the test results
of the cross-validation for the proposed model (see IV-D),
whereas those of 1P-RS-GRM were obtained from the training
results (they were thus presumably closer to the ground truth),
as explained in IV-C.

They were strongly correlated (𝑟 > 0.92), as summarized in
Table III and shown in Fig. 2. The high similarities indicate
that we can interpret the estimated parameters as in the base
IR model. Moreover, although less insightful, Table III also
includes MAE, which is an absolute error-based metric.

TABLE III
SIMILARITY OF ESTIMATED IR PARAMETERS BETWEEN PROPOSED MODEL

AND BASE IR MODEL

PCC (𝑟 ) MAE

Item parameter 𝛽
V 0.928 0.616
A 0.935 0.429

Respondent parameter 𝜃
V 0.967 0.819
A 0.972 0.705

Rating scale parameter 𝜅
V 1.000 0.245
A 1.000 0.149

Item Parameter β

Valence Arousal Valence Arousal

Respondent parameter θ

r = 0.928 r = 0.972r = 0.967r = 0.935r = 0.935r = 0.928 r = 0.967 r = 0.972

Fig. 2. Estimated parameters: Proposed method (horizontal) vs. Base IR
model (vertical).

Fig. 3 shows a scatter plot of the estimated item parameters
𝛽 in valence-arousal dimensions for qualitative evaluation. In
Fig. 3, the expression categories used when generating faces
on the modeler reasonably yielded category-specific clusters.
For example, in terms of valence, angry faces had positive
𝛽 values, which means that angry faces are likely to receive
relatively inferior valence ratings (i.e., closer to rate 1 in our
experiment’s case). Smiling faces received negative values
(i.e., likely to obtain relatively greater valence ratings, i.e.,
closer to rate 5 in our case). For arousal, angry faces received
negative values (i.e., likely to receive relatively greater arousal
ratings); sad and neutral faces received positive values (i.e.,
likely to receive relatively lower arousal scores). These results
are in line with those in the psychological literature [25], [34].

Fig. 3 shows an asymmetric 𝑉-shaped relationship of 𝛽 that
has been reported in several emotion studies [20] (the slope
of the regression line on the negative side is steeper than that
on the positive side). The base IR model yielded a similar
asymmetric 𝑉-shaped relationship. Both further validate the
interpretability of the IR parameters in our model.

We also evaluated how the item parameters were regressed
from AUs in the most interpretable model (AU-RS-GRM).
We found large regression coefficients of AU intensity for
valence: a positive coefficient (= 2.80) for AU12 and a
negative coefficient (= -2.58) for AU4. These results are in line
with those reported in the literature, such as [25]. However,
we did not find such a strong association between arousal
(or AU presence). This can be attributed to the MAE not
being sufficiently small for arousal compared that for valence
and this study using only limited types of faces. However,
investigating the relationship between AUs and the valence-
arousal dimension is beyond the scope of this research.

VI. DISCUSSION

We discuss several remaining issues as below:



Smile
(Mouth closed)

Neutral

Sad

Angry

Smile
(Mouth opened)

Fig. 3. Item parameter 𝛽 estimated by the proposed model. A positive value
means that it is difficult for the emotion image to obtain greater ratings; the
directions of both axes are reversed for readability.

We used computer-generated faces as items. However, the
proposed framework can be mathematically applied to other
types of still images. For example, we used the VGG pre-
trained on the in-the-wild facial expression dataset FER2013
[14], and therefore, our model arguably has the potential to
handle in-the-wild facial expressions when sufficient data are
available on the main task for fine-tuning. We believe that the
number of items (i.e., 120 images) was sufficient as the sample
space because a good test performance was obtained. The
number of respondents meets the suggestion in [17], which
concluded that 50 to 100 respondents would suffice for the
same idiosyncratic perception prediction task.

Another issue is solving the technical limitations of the
CORAL framework to integrate with less restricted IR models.
There are several reasons for choosing the 1P-RS-GRM as
the base IR model. 1P-RS-GRM is a cumulative logit IR
model, which is inherently ordinal and thus more psycholog-
ically interpretable than the adjacent-category (or local logit)
ones; cumulative logit imposes an inequality constraint on
parameters where cut-off values for determining the rank on
perceptual representation are monotonically increasing and
thus reasonably interpretable [46]. However, 1P-RS-GRM is
the most constrained cumulative logit model, and there exist
less constrained models such as GRM. The linear component
of the sigmoid function is expressed as 𝛼𝑖 (𝜃 𝑗 − 𝛽𝑖𝑠) in the
psychological literature [45]. Unfortunately, ensuring that the
item-by-score parameter 𝛽𝑖𝑠 = 𝑓 (x𝑖) is rank consistent for
all items in the CORAL framework complicates parameter
optimization. Another candidate, RS-GRM, lies between the
GRM and the 1P-RS-GRM. The linear component of RS-GRM
is represented as 𝛼𝑖 (𝜃 𝑗 − 𝛽𝑖 − 𝜅𝑠), where the slope parameter
𝛼𝑖 (positive value) indicates how well the item discriminates
the abilities and sensitivities of the respondents. Extending our
model to these IR models is an interesting direction for this
study.

The IR theory is not the only choice to provide explanations
of the model. For instance, in crowd aggregation or truth
inference, wherein the goal is to obtain the ground truth

from labels given by a crowd of people more accurately than
simple averaging or majority voting, it is common practice
to employ both person (e.g., skill/expertise, bias) and item
parameters (e.g., difficulty) [55]. Some crowd aggregation
models are based on psychological theories such as the signal
detection theory [48]. However, crowd aggregation techniques
are used primarily as a preprocessing step before building
a main (deep) prediction model to obtain cleaner and more
accurate ground truth labels without the use of any auxiliary
information [44]. Therefore, they are closely related to the
descriptive (nonexplanatory) IR theory.

Although we used the VGG as a latent regressor, various
other FER models can be used as a replacement. The CNN
was sufficient for the preliminary evaluation of the proposed
framework using discrete ratings for both time and emotional
dimensions. However, further evaluation and model extensions
are required to investigate whether our framework can be
applied to continuous annotations, as is the recent trend in the
AC community, for example, [10], [52]. For the time domain,
the CNN can be replaced by various video-based models using
recurrent neural networks such as the long short-term memory
and gated recurrent unit. As for space-continuous ratings, other
types of IR models such as the continuous response model [36]
would be applicable.

Though the performance of the most interpretable model
(AU-RS-GRM) was reasonably lower than that of the proposed
model, it is still an option for researchers who seek an
easy-to-use, highly interpretable model that does not require
time-consuming fine-tuning. However, the advantages of our
approach can be further enhanced when it is integrated with
post-hoc approaches such as GradCAM [41] to provide some
explanations about the latent regression layer, i.e., CNN, while
retaining the overall prediction performance.

Finally, we regressed only the item parameter from the
images. In explanatory IR theory, it is also possible to latent-
regress the person parameter from the demographic of the
respondent (e.g., gender and ethnicity) and their personality
traits [49]. Several limited efforts have been made to in-
corporate such personal information into the prediction of
the emotional perception of an individual. For example, in
[17], [19], the rating tendencies of the respondents, which
can be considered a respondent parameter, were linked with
their gender and personality trait scores using a probabilistic
topic model. However, building deep neural networks for this
purpose is not easy because of the lack of publicly available
pre-trained models.

VII. CONCLUSION

We proposed CORAL-RS-GRM, which achieved high pre-
diction performance and psychological interpretability in the
problem of idiosyncratic perceived emotion recognition. The
proposed model parameters in the IR layer were as inter-
pretable as those of the corresponding base IR model, and the
CNN realized reliable automatic feature extraction in the latent
regression layer. The intrinsic approach can be employed be



a complementary framework for existing post-hoc approaches
toward XAC to coach/support human social interactions.

REFERENCES

[1] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey
on explainable artificial intelligence (XAI),” IEEE Access, vol. 6, pp.
52 138–52 160, 2018.

[2] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency, “Openface 2.0:
facial behavior analysis toolkit,” in FG. IEEE, 2018, pp. 59–66.

[3] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, and
T. et al., “Explainable artificial intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible ai,” arXiv, pp.
arXiv–1910, 2019.

[4] F. Bartolucci, S. Bacci, and M. Gnaldi, Statistical analysis of question-
naires: A unified approach based on R and Stata. CRC Press, 2015,
vol. 34.

[5] R. A. Calvo and D. Peters, Positive computing: technology for wellbeing
and human potential. MIT Press, 2014.

[6] W. Cao, V. Mirjalili, and S. Raschka, “Rank consistent ordinal regres-
sion for neural networks with application to age estimation,” Pattern
Recognit. Lett., vol. 140, pp. 325–331, 2020.

[7] S. Cheng, Q. Liu, E. Chen, Z. Huang, Z. Huang, Y. Chen, H. Ma,
and G. Hu, “DIRT: Deep learning enhanced item response theory for
cognitive diagnosis,” in Proc. ACM CIKM, 2019, pp. 2397–2400.

[8] W.-S. Chu, F. De la Torre, and J. F. Cohn, “Selective transfer machine
for personalized facial action unit detection,” in Proc. CVPR. IEEE,
2013, pp. 3515–3522.

[9] R. Cowie and R. R. Cornelius, “Describing the emotional states that
are expressed in speech,” Speech Commun., vol. 40, no. 1-2, pp. 5–32,
2003.

[10] R. Cowie, E. Douglas-Cowie, S. Savvidou*, E. McMahon, M. Sawey,
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