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Abstract—This paper deals with the problem of pronunciation
conversion (PC) task, a problem to reduce non-native accents in
speech while preserving the original speaker identity. Although
PC can be regarded as a special class of voice conversion (VC), a
straightforward application of conventional VC methods to a PC
task would not be successful since with VC the original speaker
identity of input speech may also change. This problem is due to
the fact that two functions, namely an accent conversion function
and a speaker similarity conversion function, are entangled
in an acoustic feature mapping function. This paper proposes
dynamic frequency warping (DFW)-based spectral conversion
to solve this problem. The proposed DFW-based PC converts
the pronunciation of input speech by relocating the formants
to the corresponding positions in which native speakers tend
to locate their formants. We expect the speaker identity is
preserved because other factors such as formant powers are
kept unchanged. in a low frequency domain evaluation results
confirmed that DFW-based PC with spectral residual modeling
showed higher speaker similarity to original speaker while
showing a comparable effect of reducing foreign accents to a
conventional GMM-based VC method.

Index Terms—Accent conversion, dynamic frequency warping,
voice conversion

I. INTRODUCTION

This paper deals with the problem of pronunciation con-
version (PC), a problem to reduce accent in speech while
preserving the speaker identity of the original speech. Ac-
cents are differences in pronunciation by a community of
people from a national or regional geographical area, or a
social grouping [1]. It is known that differences by accents
are manifested in the differences such as the formants and
their trajectories [2], [3] or pitch intonation and duration
parameters [4], [1]. Reducing these accents from speech while
preserving the original speaker identity will be beneficial for
applications such as language educational systems for second
language learners [5], [6], [7] and teleconference scenarios
where people with different nationalities participate.

If we consider an accent as one of non/para-linguistic
information, PC can be regarded as a special class of a voice
conversion (VC) problem, a problem to convert non/para-
linguistic information while preserving linguistic information.
For VC, data-driven statistical methods have been successfully
introduced during the last two decades [8], [9], [10]. One
successful VC method is based on Gaussian mixture models
(GMMs) [9], [10]. Most of the conventional VC methods
first train a mapping function between the acoustic features
of source and target speech using parallel data, i.e. a pair of
time-aligned feature sequences of source and target speech. At
test time, a feature sequence of the input speech is converted

using the trained mapping function. A direct application of
these methods to the PC task would not be successful because
the original speaker identity may also change. This problem
is because two functions, the accent conversion function and
the speaker identity conversion function, are entangled in an
acoustic feature mapping function.

This work is based on a belief that a dynamic frequency
warping (DFW)-based spectral conversion approach can be a
reasonable solution to this problem. The DFW-based spectral
conversion approach was originally proposed [11], [12] mainly
for the purpose of improving naturalness of converted speech.
Since one of the dominant differences in accented speech
appears in formant frequency trajectories [2], [3], we expect
that pronunciation can be corrected via frequency warping
if the formants can be relocated to the positions in which
native speakers tend to locate their formants. In this way, we
expect that the original speaker identity will not be affected
since DFW does not convert the other factors such as formant
powers and spectral tilts.

The main purpose of this work is to investigate the effec-
tiveness of DFW-based spectral conversion for the PC task.
Furthermore, there are two points that we want to investigate.
One is the effectiveness of spectral power interpolation. DFW
only allows us to deform source spectra in the frequency
direction and does not have an ability to reduce the gap in
spectral powers. Since the peakiness of each formant is also
expected to be an important factor that characterizes pronun-
ciation quality, we would also want to deform source spectra
in the power direction. However, if we convert source spectra
exactly to target spectra, the speaker identity will no longer be
preserved. Thus, there is a trade-off between the pronunciation
quality and the voice similarity to a source speaker. This trade-
off is investigated by subjective evaluation. The other point is
concerned with the modeling of frequency warping functions.
The idea of the method in [12] is to associate a frequency
warping function with each Gaussian of the GMM that models
a joint distribution of source and target spectra. The frequency
warping function is obtained from a pair of source and target
spectra averaged over all the frames assigned to the same
Gaussian. We found that the averaged spectra tend to be over-
smoothed and so the obtained warping function will also be
over-smoothed. To avoid this, we propose a method that first
extracts frequency warping functions from pairs of source and
target spectra frame-by-frame, treats the obtained frequency
warping functions as features to be predicted, and models the
joint distribution of source spectra and the frequency warping
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Fig. 1. Architecture of the proposed accent conversion method.

Fig. 2. Example of DFW spectra (top) and extracted DFW vector (bottom).
The blue and red line shows the result using γ = 0 and γ = 25.0 in eq. (2),
respectively.

functions using a GMM. In this paper, we particularly focus
on the problem of spectral conversion only. However, it can
be used in combination with prosody conversion methods [5],
[13].

II. DYNAMIC FREQUENCY WARPING-BASED ACCENT

CONVERSION

The proposed method consists of training process and
conversion process. We show the overall architecuture of the
proposed method in Fig. 1.

A. Dynamic frequency warping with frequency derivative dis-
tance

The proposed method first finds an optimal warping of
frequency axis with DFW [14], [15]. Let us denote the time
aligned source spectra by X = {xt}

T
t=1 and the target spectra

by Y = {yt}
T
t=1. Here xt = [xf,t]

F
f=1 and yt = [yf,t]

F
f=1

respectively denote the source and target spectrum. t, f denote
the frame and frequency indices, respectively. The warping
function ŵt = [ŵf,t]

F
f=1, which we call the DFW vector, can

be obtained as the path that minimizes the spectral distance

between a frequency warped source spectrum and a target
spectrum;

ŵt = arg min
w1,··· ,wF

F
∑

f=1

D(xwf ,t, yf,t), (1)

where wf takes a frequency index wf ∈ {1, · · · , F} in
an ascending order. By restricting the warping path to be
wf+1 − wf ∈ {0, 1, 2} for each f ∈ {1, · · · , F − 1}, a
smoothed and fixed length DFW vector can be extracted.
Although it is possible to use the l2 norm of a log spectral
difference to define D(x, y), the obtained warped spectra tend
to have plateau because of the power difference of spectral
peaks between source and target speakers. We concern that
the plateau can degrade harmonics and quality of converted
speech, which is the reason we define the distance introducing
the frequency derivative distance term as follows in this work;

D
(

xf , yf
)

=|| log xf − log yf ||2

+ γ||ẋf − ẏf ||2, (2)

ẋf = log xf+1 − log xf , (3)

ẏf = log yf+1 − log yf (4)

where and γ indicates the weight for the frequency derivative
term. This simple spectral distance is expected to have a
similar effect to correlation based DFW [16] or DFW based on
the histogram of spectral peaks [17]. An example of spectral
warping using frequency derivative distance is illustrated in
Fig.2. We can see that the spectral plateau is eliminated by
introducing the frequency derivative distance term.

Since we would want to eliminate the speaker identity
information from the DFW vector as much as possible, we
found it necessary to apply vocal tract length normalization
(VTLN) [18] to the source and target speech spectra before
performing DFW.

B. GMM training and DFW vector estimation

For estimating DFW vectors from the source spectra, we
model the joint distribution of the source spectra and the DFW
vectors using a GMM. In order to avoid overfitting in modeling
high dimensional vectors, we compress the dimension of the

feature vectors and constitute a joint vector zt = [mT
t ,d

T
t ]

T,
where mt is the mel-cepstrum extracted from the source
spectrum xt at frame t. The vector dt is derived as follows;

dt =DCT(wt −wb), (5)

where wb = [1, · · · , F ]T and DCT(·) denotes the discrete
cosine transform. We model the joint feature as follows;

p(z) =
I

∑

i=1

αiN(z;µi,Σi),
I

∑

i=1

αi = 1, αi > 0, (6)

where N(z;µ,Σ) denotes the normal distribution with the
mean vector µ and the covariance matrix Σ. αi denotes a
weight of class i, and I denotes the total number of the
Gaussian mixtures. Given a training set of {mt,dt}

T
t=1 pairs,

we train the GMM parameters using the EM algorithm.
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At test time, DFW vectors are estimated using the trained
GMM and the input spectra. The mapping function [10] is
given by

F (m) = E[d|m]

=

I
∑

i=1

hi(m)[µ
(d)
i +Σ

(dm)
i

(

Σ
(mm)
i

)

−1
(m− µ

(m)
i )]

(7)

hi(m) =
αiN

(

m;µ
(m)
i ,Σ

(mm)
i

)

∑I

j αjN
(

m;µ
(m)
j ,Σ

(mm)
j

)

, (8)

where µ
(m)
i and µ

(d)
i denote the mean vectors of class i for the

mel-cepstra and DCT of DFW vectors. The estimated DFW
vector is derived as follows;

w̃t = iDCT
(

F (mt)
)

+wb, (9)

where iDCT(·) denotes the inverse discrete cosine transform.
Since the estimated w̃t takes a continuous value, they are
floored to be an integer frequency index to convert spectra
as ỹt = [xw̃f,t,t]

F
f=1.

C. Spectral residual modeling

Note that DFW only has an ability to deform source spectra
in the frequency direction and does not have an ability to fill
the gap in spectral powers. Since the power of each formant
is also expected to be an important factor that characterizes
pronunciation quality, we would also want to deform source
spectra in the power direction. However, if we convert source
spectra exactly to target spectra, the speaker identity will no
longer be preserved. Thus, there is a trade-off between the
pronunciation quality and the voice similarity to a source
speaker. Here, we also consider predicting the power differ-
ences between the warped spectra and the target spectra so that
we can add the predicted differences to the warped spectra at
test time.

The residual spectra rt = [rf,t]
F
f=1 is defined as the

difference between the target spectra and the warped source
spectra as follows;

rf,t =
yf,t

xŵf,t,t

(10)

This residual spectra is extracted for each frame and construct
a joint vector st = [mT

t , q
T
t ]

T, where qt denotes the DCT
of log rt. This joint vector is modeled by another GMM and
used to estimate residual spectra r̃ in the same manner for
estimating the residual vector. The output converted spectra

ỹ
(r)
t = [ỹ

(r)
f,t ]

F
f=1 is derived as follows;

ỹ
(r)
f,t = ỹf,t · r̃

λ
f,t (11)

where λ denotes the weight for spectral residual modeling.

III. EXPERIMENTAL EVALUATION

A. Experimental conditions

We evaluated pronunciation similarity and speaker identity
of the converted speech to compare the performance of the

Fig. 3. Example of DFW vectors reconstructed from µ
(d)
i

. Six out of 16
Gaussian components are shown for simplicity.

Fig. 4. Subjective evaluation results.

conventional VC and proposed methods. We used an Indian
male speaker as the source (hereafter, the SRC) and an
American male speaker as the target (the TGT). The dataset
consisted of 65 pair utterances (5.2 minutes). We used 20
utterances for evaluation and the others for training. Table. I
shows the statistical information of the corpus. The data
were sampled at 16kHz, then 25 mel-cepstral coefficients,
fundamental frequency (F0), and aperiodicities were extracted
every 5ms by using the STRAIGHT analysis system [19].
To obtain parallel utterances, we used dynamic time warping
(DTW) to align mel-cepstral sequences of the source and target
speakers [20]. We evaluated and compared the following 6
spectral conversion methods.

• GMM-MCEP: The conventional GMM-based VC method
using mel-cepstral feature s [10].

• DFW-CENTROID: DFW-based spectral conversion
method. DFW functions were derived from centroid
spectra pair of each Gaussian.

• PROP-0: The proposed method without spectral residual
modeling (λ = 0.00).

• PROP-1: The proposed method with spectral residual
modeling (λ = 0.33).

• PROP-2: The proposed method with spectral residual
modeling (λ = 0.67).
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(a) SRC (b) PROP-1 (c) GMM-MCEP (d) TGT
Fig. 5. Example of spectrogram of SRC, PROP-1, GMM-MCEP and TGT for a utterance “Going forward.”. We show frequency region of 0 - 5 kHz to
clarify the formant transition.

TABLE I
STATISTICAL INFORMATION OF THE SPEECH CORPUS

Speakers 2 males
Total speech length 5.2 minutes

Number of utterances 65 sentences
Average number of words per sentence 5.8 words

• PROP-3: The proposed method with spectral residual
modeling (λ = 1.00).

Although DFW-CENTROID was implemented emulating the
conventional DFW-based VC method [12], details such as
vocoder for synthesizing speech was not the same. This is in
order to reduce the factors considered in the experiments. We
evaluated 4 proposed methods with different spectral residual
weight in order to evaluate the trade-off of the pronunciation
quality improvement and speaker identity degradation.

For DFW-CENTROID, we first train a GMM that models
joint distribution of source and target spectra using line spec-
tral pairs (LSP) features. Then, a pair of source and target
centroid spectra was reconstructed from the mean vector of
each Gaussian. The frequency warping function was obtained
from the pair of source and target centroid spectra using
the DFW method in sec. II-A. The conversion procedure
was similar to the proposed method except for using LSPs
instead of mel-cepstra as input spectral features. We used 25
dimensional LSP for this method.

For the proposed methods, we used 25 dimensional mel-
cepstra and 25 dimensional DCT of DFW vectors. We used
mel-spectra for DFW vector extraction so that the warping
function gets higher frequency resolution in a low frequency
domain. We set γ = 25.0 in eq. (2), which was determined
experimentally. We show the results without conducting VTLN
before DFW vector extraction, because the results were not
improved. We consider this is because the vocal tract length
of SRC and TGT was almost same.

For all of the methods, the number of mixture components
for GMMs was 16. All of the speech samples were synthesized
by STRAIGHT vocoder [19], using converted spectra by each
method, F0 and aperiodicity of the SRC speaker.

Fig. 3 shows the example of warping functions recon-

structed from µ
(d)
i of the trained GMM of PROP-0. We can see

that these functions can warp frequency by 200 Hz around 1−3
kHz frequency region, which we expect is enough warping
width to relocate formants to reduce accents.

B. Subjective evaluation

Two subjective evaluations were conducted. We evaluated
the pronunciation similarity to the TGT and speaker simi-
larity to the SRC by DMOS tests. The subjects rated the
pronunciation and the speaker similarity using a 5–point scale:
“5” for absolutely similar, “4” for similar, “3” for fair, “2”
for dissimilar “1” for absolutely dissimilar . There were ten
participants who were well-educated English speakers.

Fig. 4 shows the pronunciation and speaker similarity scores
obtained in the subjective evaluations with confidence inter-
vals of 5%. First we compare the results of GMM-MCEP
and PROP-0. We can see that GMM-MCEP shows higher
pronunciation similarity score. This result shows that DFW-
based spectral warping without spectral residual modeling
cannot reduce the foreign accents as much as conventional
VC methods. However, if we compare GMM-MCEP and
PROP-1, we can see that pronunciation similarity scores were
comparable while the speaker similarity score was higher in
PROP-1. These results confirmed that DFW-based PC with
spectral residual modeling showed higher speaker similarity
to original speaker while showing a comparable effect of
reducing foreign accents to a conventional GMM-based VC
method. We then compare DFW-CENTROID and PROP-0.
We can see both the score is improved by PROP-0. These
results confirm that the DFW modeling by the proposed
method was effective. We then compare the results between
the proposed methods. Although the pronunciation similarity
score by PROP-1 was higher than PROP-0, those by PROP-2
and PROP-3 were comparable with PROP-1 while the speaker
similarity score degrades. These results show that the weight
higher than 0.67 was not effective for PC in our experimental
conditions.

Fig. 5 shows examples of spectrogram of SRC, PROP-
1, GMM-MCEP and TGT for a utterance “Going forward.”
included in the test set. From these examples, we can see that
the formant frequency trajectory around 1 kHz by TGT is
located in higher frequency region than SRC. We can also see
that this formant frequency trajectory is converted to higher
frequency by PROP-1. It is also confirmed that the spectra
by PROP-1 is more similar to SRC than GMM-MCEP, which
resulted in higher speaker similarity to SRC in our subjective
evaluations.

IV. CONCLUSION

This paper investigated the effectiveness of DFW-based
spectral conversion for pronunciation conversion task, a prob-
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lem to reduce accent in speech while preserving the speaker
identity of the original speech. The proposed method converts
the pronunciation of input speech by relocating the formants
to the corresponding positions in which native speakers tend
to locate their formants. We expect the speaker identity is
preserved because other factors such as formant powers are
kept unchanged. Subjective evaluation results confirmed that
DFW-based pronunciation conversion with spectral residual
modeling showed higher speaker similarity to original speaker
while showing a comparable effect of reducing foreign accents
to a conventional GMM-based VC method. It is worth inves-
tigating whether utilizing neural network-based methods [21],
[22], [23] for DFW vector estimation is effective with larger
size of speech corpus. Future works include extending the
experiments to other speaker, accent and language pairs.
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