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Motivation

« Want to test some properties of huge data X,

Or, compute some function f(X).
— e.g. WWW log analysis, Experimental data analysis....
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« Reading all memory cells of X costs too much.

« Can we save the number of accessing X when
computing certain functions f(X) ?



Oracle Computation Model

Can know the value of one cell by making a query to X.

Description of f What is value x; of
(e.g. truth table) the i cell? X
w P > [lolol --T1To[4[1T T - To]
0/1 X; e X Xy
/
/(ﬂ
output
f(X)

* Cost measure:= # of queries to be made.
(All other computation is free.)

* R(f): Query complexity of f

.= # of queries needed to compute f for the worst input X
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Quantum Computation
Qubit: A unit of quantum information.

A quantum state |¢) of one qubit:
a unit vector in 2 - dimensional Hilbert space.
For an orthonormal basis (((1))((1))) = ([O} 1>)
‘¢> = a‘0>+/3‘1> where «, S €C and ‘af +‘[3"2 =1.

A quantum state |@) of n qubits:
a unit vector in 2" - dimensional Hilbert space.

@) = Ezn_l a|i) for orthonormal basis {z>}

=0 I

Quantum operation: only unitary operation H\ ¢> e‘¢'>



Oracle Computation Model (Quantum)

A quantum query is a linear combination of classical queries.
« Can know a linear combination of the value of cells per query.

Description of f X
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@ output (E ' )
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* Q(f): (Bounded-error) Quantum query complexity of f

.= # of quantum queries needed to compute f with error probability < 1/3
for the worst input X



Fundamental Problems

 What is the quantum/classical query complexity
of function f ?

« For what function f, is quantum computation
faster than classical one?

In particular, Boolean functions are major targets.

This talk focuses on
Boolean functions in bounded-error setting
(constant error probability is allowed).



Previous Works

* (Almost) No quantum speed up against classical.
— PARITY, MAJORITY [BBCMdWO01].

Q(N) quantum queries are needed.

« Polynomial quantum speed up against classical

— OR [Gro96], AND-OR trees [HMWO03,ACRSZ07]
« Quantum O(VN) v.s. Classical Q (N).
— k-threshold functions for k<< N/2 [BBCMdWO01]
« Quantum ©(V(kN)) v.s. Classical  (N).
— Testing graph properties (N=n(n-1)/2 variables)
 Triangle: Quantum O(n'-3) [MSS05]
« Star: Quantum O(n"-°) [BCdWZ99] } Classical 2(n?)
« Connectivity: Quantum ©(n'-°) [DHHMO06]

But much less is known except for the above typical cases.
—\We investigate the query complexity of the families defined a natural
parameter.




On-set of Boolean Functions

We consider the size of the on-set of a Boolean
function as a parameter.

On-set S; of a Boolean function f:
The set of input X&{0,1}N for which f(X)=1

Ex.)
On-set S; of f=(X;AX, )V X;
(X4,X9,X3)=(1,1,0), (1,1,1), (0,0,1), (0,1,1), (1,0,1).

The size of S; is 5.



Our Results (1/2)

Fy - family of N-variable Boolean functions f whose on-set is of size M.

e : : :
Query complexity ofd the functions in F), ,
(poly(N)<M <2V with0<d <1)

~

[Quantum Q(f) ) [Classical R(f) |
\
(1) Hardest case : © \/N Loei] J
log N
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(3) Average Case : O(logM +JN ),
Q( logM \/N) —

log N
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Our results (2/2)

Our hardest-case complexity gives the tight
complexity of some graph property testing.

a
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Is there edge (i,j) ? é (1)
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@ b (1) 1 _ b \ .
Does G have I o O
property P? N))\( L Yes/No eli 1110 ¢ d
- — Adjacency Unknown G
T

matrix of G

n(n-1)/2 variables

/~ (Planarity testing) Is G planar? : Q(f)=0(n'5). R(f=Q(n?) N\

(For a given adjacency list, O(n) time complexity [Hopcroft-Tarjan74])

*(Graph Isomorphism testing) Is G isomorphic to a fixed graph G’ ? :

\_ QH=6(n"%).  (R(f)=(n?) [DHHMOE]) -

By setting M = # of graphs with property P.




OUTLINES OF PROOFS
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Hardest-case Bound

Theorem : For any function f €F) ,,,

log M
log N

Q(f)=@(\/N

if poly(N)<M <2V for some constant d(0 < d <1).

Proof.

Lower Bound:

By showing a function for every M which has (;( \/ N

log
log N

log M
log N

) complexity.

(The function is similar to ¢ - threshold function for ¢ =

)
Upper bound:

Use the algorithm [AIKMRYO07] for Oracle ldentification Problem.



Oracle ldentification Problem (OIP)

* Given a set of M candidates, identify the N-bit string in

the oracle.

Oracle (N=8)
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Candidate Set (N=8, M=4)

Can see the contents w/o making queries.

i |0 2 1 3|4 | 5|6 |7
Candidate 1 | O 1 11700 0]O0
Candidate 2 | 1 0Ol 1101 1 110
Candidate 3 | 1 0O | 1 0 | 1 O] 0] O
Candidate4 | O | O | O | 1 1 101010

15



Hardest-case Bound

Proof (Continued)

Theorem[AIKMRYO07]:

OIP can be solved with bounded - error by making O| | N llog]\]\lf ) quantum queries,
0g

if poly(N)<M <2V for some constant d(0 < d <1).

|dea:
*Set the onset S; to the candidate set of OIP
and run the algorithm for OIP to get an estimate Y& S; of X.

By definition, Y=X (with high probability) iff f(X)=1.

L

Test if X=Y,
which can be done with quantum query complexity O(VN). B
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Easiest-case Bound

N
Theorem :If M < 22+¢ for any positive constant &,

O(f)=©(N) for any fEF,,,.

Proof. Use sensitivity argument.
Th.[Beals et al. 2001] O(f) = Q(/s(/))

Assuming s(f)=o(N), we can conclude

a contradiction by simply counting,
N

)22 = M

We can construct a function with such quantum query complexity. W



Our Results (1/2)
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Average-case Bound

Theorem : Averageof QO(f) overall f €F, ,, 1sO(log M + JN ).

Proof.

Claim: For almost all functions fin
Fn i, €very element in the on-set S;
differs from any other in the first
O(log M) bits.

O(log M) bits.
1011, 01
1101, 11
0001.....f e, 00

1. Make queries to the first O(log M) bits to identify a

unique string Y in S;

(If there is no such Y, we are done: f(X)=0.)

2. Test if Y=X with O(VN) quantum queries.

Y=Xif and only if f(X)=1.




Average-case Bound

c+log N —loglog M

1 N
=T 2

Theorem: Average of O(f) overall fE€F, , is O( log M +/N )

Proof
With one quantum query,

Claim: For almost all functions inF, ,,, every X, Y inthe onset § satisfy
log M
s

‘¢x‘¢v ‘—

N 2Ham(X, Y)# > 2

(Proof is by bounding Hamming distance with coding-theory argument and Chernoff-like bound.)

<¢X \%> islarge enough toidentify X' in S, with

O( log M

copies of
c+logN—log10gM) P ‘¢X>

according to quantum state discrimination theorem [HWO0G]. u



Average-case Bound

Theorem : Averageof Q(f) overall f €F) ,, 1s
Q(log M /log N + \/N).

Actually, we prove stronger statement.




Average-case Bound

Theorem : Average of unbounded - error query complexity
overall f €F, , 1s Q(logM /log N + \/ﬁ).

Unbounded-error: error probability is 1/2-¢ for arbitrary small ¢

Proof: Use the next theorem.

Theorem[Anthony1995 + Next Talk] The number of Boolean functions f
whose unbounded query complexity is d/2 is

T(N.,d) < 22(2N‘1) for D = 2( )

Ford = log M , W€ can prove
2log N
N
T|N, log M 1s much smaller than 2 ,1.e., the sizeof F), ,,.
2log N M ’




Our Quantum Complexity

Fy - family of N-variable Boolean functions f whose on-set is of size M.
a Quantum query complexity of the functions in FN’M\

Forpoly(N)sMs2Nd withO<d <1,
log M

(1) Hardest case : ©

N

log N
(2) Easiest case : @(\/ﬁ )
(3) Average Case : O logM + \/7)7

| = of»

log M

c+log N —loglog M

(1M S2N/(logN)2+€

of logM | ,1: ©) log M +/N
ogN c+log N —loglog M
(1=M <2"/2)
o B (3) (1) hard”
\ complexity




Application: Planarity Testing

Theorem:
R(fplanarity): ®(n1'5)5 while R%lanarity):®(n2)'

Proof.
Since the planar graph has at most 3n-6 edges.

_ #of possible edges\ (n(n-1)/2 6nlogn
M—(#ofplanargraphs)s( 16 )—( 16 )52

log M

, we can obtain the upper bound.
log N

By the hardest - case complexity, \/ N

For the lower bound,

we carefully prepare a set of planar graphs and a set of non-planar
graphs ,

and then apply the quantum/classical adversary method [AmbO01,Aar04].




Summary

Proved the tight quantum query complexity of the family
of Boolean functions with fixed on-set size M.

Functions with on-set size M have various quantum
query complexity, while their randomized query
complexity is Q(N) for poh(N) < M <2V

(For large M, the functions may have small randomized query complexity.)

On-set size is a very simple and natural parameter,
which enables us to easily analyze the query complexity
of some Boolean functions with our bounds.

In particular, we proved the tight quantum query
complexity of some graph property testing problems.



Thank you!



