Exact Quantum Algorithms
for the Leader Election Problem

Seiichiro Tani'?, Hirotada Kobayashi?, and Keiji Matsumoto3?

I NTT Communication Science Laboratories, NTT Corporation,
3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
tani@theory.brl.ntt.co.jp
2 Quantum Computation and Information Project, ERATO,
Japan Science and Technology Agency,
5-28-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
hirotada@qci.jst.go.jp
Foundations of Information Research Division, National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
keiji@nii.ac.jp

3

Abstract. It is well-known that no classical algorithm can solve ex-
actly (i.e., in bounded time without error) the leader election problem
in anonymous networks. This paper proposes two quantum algorithms
that, when the parties are connected by quantum communication links,
can exactly solve the problem for any network topology in polynomial
rounds and polynomial communication/time complexity with respect to
the number of parties. Our algorithms work well even in the case where
only the upper bound of the number of parties is given.

1 Introduction

Quantum computation and communication are turning out to be much more
powerful than the classical equivalents in various computational tasks. Perhaps
the most exciting developments in quantum computation would be polynomial-
time quantum algorithms for factoring integers and computing discrete loga-
rithms [14], and the most remarkable ones in quantum communication would
be quantum key distribution protocols [5,4] that have been proved to be un-
conditionally secure [12, 15, 16]. Many other algorithms and protocols have been
proposed to show the strength of quantum computation and communication,
such as cryptographic results (e.g., [9,8,1]) and communication complexity re-
sults (e.g., [13,7,3]). This paper sheds light on another significant superiority
of quantum computing over the classical equivalent in the setting of traditional
distributed computing.

The leader election problem is a core problem in traditional distributed com-
puting in the sense that, once it is solved, it becomes possible to efficiently
solve many substantial problems in distributed computing (see, e.g., [11]). The
goal of the leader election problem is to elect a unique leader from among dis-
tributed parties. Obviously, it is possible to deterministically elect the unique

leader when each party has a unique identifier, and many classical deterministic
algorithms with this assumption have been proposed. As the number of parties
grows, however, it becomes difficult to preserve the uniqueness of the identifiers.
Thus, other studies have examined the cases wherein each party is anonymous,
i.e., each party has the same identifier [2,10,17, 18], as an extreme case. In this
setting, no classical exact algorithm (i.e., an algorithm that runs in bounded
time and solves the problem with zero error) exists for a broad class of network
topologies including regular graphs, even if the network topology (and thus the
number of parties) is known to each party prior to algorithm invocation [17].
Moreover, to the best of our knowledge, no zero-error probabilistic algorithm is
known that works for any topology and runs in time/communication expected
polynomial in the number of parties. Here, and throughout this paper, we de-
note by time complexity the maximum number of steps, including steps for
the local computation, necessary for each party to execute the protocol, where
the maximum is taken over all parties. In synchronous networks, the number
of simultaneous message passing is also an important measure. Each turn of
simultaneous message passing is referred to as a round.

This paper considers the model in which the network is anonymous and
consists of quantum links, and proposes two exact quantum algorithms both
of which elect a unique leader from among n parties in polynomial time for
any topology of synchronous networks. Our first algorithm is simple and runs in
O(n?) time. The total communication complexity of this algorithm is O(n*), but
this includes the quantum communication of O(n*) qubits. To reduce the quan-
tum communication complexity, our second algorithm incurs O(n®(logn)?) time
complexity, but demands the quantum communication of only O(n? logn) qubits
(plus classical communication of O(n°®(logn)?) bits). While our first algorithm
needs ©(n?) rounds of quantum communication, our second algorithm needs
only one round of quantum communication at the beginning of the protocol to
share sufficient amount of entanglement, and after the first round, the protocol
performs only local quantum operations and classical communications (LOCCs)
of O(nlogn) rounds. Both algorithms are easily modified to support their use in
asynchronous networks. Furthermore, both algorithms can be easily modified so
that they work well even when each party initially knows only the upper bound
of the number of parties. This implies that the exact number of parties can be
computed when its upper bound is given. No classical zero-error algorithm exists
in such cases for any topology that has a cycle as its subgraph [10].

2 Preliminaries

A distributed system (or network) is composed of multiple parties and bidirec-
tional classical communication links connecting parties. In a quantum distributed
system, every party can perform quantum computation and communication and
each adjacent pair of parties has a bidirectional quantum communication link
between them. When the parties and links are viewed as nodes and edges, respec-
tively, the topology of the distributed system is expressed by an undirected con-

nected graph, say, G = (V, E). In what follows, we may identify each party/link
with its corresponding node/edge in the underlying graph for the system, if it
is not confusing. Every party has ports corresponding one-to-one to communi-
cation links incident to the party. Every port of party [has a unique label i,
(1 < i < d;), where d; is the number of parties adjacent to I. More formally, G
has a port numbering, which is a set o of functions {o[v] | v € V'} such that, for
each node v of degree d,,, o[v] is a bijection from the set of edges incident to v to
{1,2,...,d,}. It is stressed that each function o[v] may be defined independently
of the others. Just for ease of explanation, we assume that port i corresponds
to the link connected to the ith adjacent party of [. In our model, each party
knows the number of its ports and the party can appropriately choose one of its
ports whenever it transmits or receives a message.

Initially, every party has local information, such as its internal state, and
global information, such as the number of nodes in the system (or its upper
bound). Every party runs the same algorithm, which has local and global infor-
mation as its arguments. If all parties have the same local and global information
except for the number of ports the parties have, the system is said to be anony-
mous. This is essentially equivalent to the situation in which every party has the
same identifier since we can regard the local/global information of the party as
his identifier. If message passing is performed synchronously, such a distributed
system is called synchronous. The unit interval of synchronization is called a
round (see [11] for more detailed descriptions).

Next we define the leader election (LE) problem. Suppose that there is a
distributed system and each party in the system has a variable initialized to O.
The task is to set the variable of exactly one of the parties to 1 and the variables
of all the other parties to 0. In the case of anonymous networks, Yamashita
and Kameda [17] proved that, if the “symmetricity” (defined in [17]) of the
network topology is more than one, LE cannot be solved exactly (more rigorously
speaking, there are some port numberings for which LE cannot be solved exactly)
by any classical algorithm even if all parties know the topology of the network
(and thus the number of nodes). In fact, for a broad class of graphs such as
regular graphs, the “symmetricity” is more than one. When the parties initially
know only the upper bound of the number of the parties, the result by Itai and
Rodeh [10] implies that LE cannot be solved with zero error by any classical
algorithm (including the one that may not always halt).

3 Quantum Leader Election Algorithm I

For simplicity, we assume that the network is synchronous and each party knows
the number n of parties prior to the algorithm. It is easy to generalize our
algorithm to the asynchronous case and to the case where only the upper bound
N of the number of parties is given, as will be discussed at the end of this section.
Initially all parties are eligible to become the unique leader. The key to solving
the leader election problem in an anonymous network is to break symmetry, i.e.,
to have just a single party possess a certain state coressponding to the leader.

First we introduce the concept of consistent and inconsistent strings. Sup-
pose that each party ! has a c-bit string x;. That is, the n parties share cn-
bit string x = x1x5--- x,. For convenience, we may consider that each z; ex-
presses an integer, and identify string x; with the integer it expresses. Given a
set £ C{l,...,n}, string « is said to be consistent over E if z; has the same
value for all [in F. Otherwise x is said to be inconsistent over E. We also say
that a cn-qubit pure state 1)) = > «ag|z) shared by the n parties is consistent
(inconsistent) over E if a, # 0 only for x that is consistent (inconsistent) over
E. Further, for a positive integer m, we denote the state that is of the form of
(J0™) + [1™))/+/2, by the m-cat state.

3.1 The Algorithm

The algorithm repeats one procedure exactly (n — 1) times, each of which is
called a phase. In each phase, the number of eligible parties either decreases or
remains the same, but never increases or becomes zero. After (n — 1) phases the
number of eligible parties becomes one with certainty.

Each phase has a parameter denoted by k, whose value is (n — ¢ + 1) in the
ith phase. In each phase i, let E; C {1,...,n} be the set of all Is such that party
1 is still eligible. First, each eligible party prepares the state (|0) + |1))/+/2, while
each ineligible party prepares the state |0). Next every party calls Subroutine A,
followed by partial measurement. This transforms the system state into either
the cat state (J01Z:1) + [1/Fil)) /3/2 shared only by eligible parties, or a state that
is inconsistent over F;. In the former case, each eligible party calls Subroutine B.
If k equals |E;|, Subroutine B always succeeds in transforming the | F;|-cat state
into a state that is inconsistent over F;. Now, each eligible party | measures his
qubits in the computational basis to obtain (a binary expression of) some integer
z;. Parties then compute the maximum value of z; over all eligible parties [, by
calling Subroutine C. Finally, parties with the maximum value remain eligible,
while the other parties become ineligible. More precisely, each party [performs
Algorithm I described below with parameters “eligible,” n, and d;. The party
who obtains the output “eligible” is the unique leader.

Subroutine A: Subroutine A is essentially for the purpose of checking the con-
sistency of each string that is superposed to a quantum state shared by parties.
We use a commute operator “o” over a set S = {0, 1, *, x } whose operations are
summarized in Table 1. Intuitively, “0” and “1” represent the possible values
all eligible parties will have when the string finally turns out to be consistent;
“x” represents “don’t care,” which means that the corresponding party has no
information about the values any of eligible parties have; and “X” represents
“inconsistent,” which means that the corresponding party already knows that
the string is inconsistent. Subroutine A is precisely described below.

As one can see from the description of Algorithm I, the content of S is ini-
tially “consistent” whenever Subroutine A is called. Therefore, after every party
finishes Subroutine A, the state shared by parties in their Rgs is decomposed

into a consistent state for which each party has the content “consistent” in his

Algorithm I

Input: a classical variable status, integers n,d
Output: a classical variable status
1. Prepare one-qubit quantum registers Ro, Ri, and S.
2. For k :=n down to 2, do the following:

2.1 If status = “eligible,” prepare the states (|0) + [1))/v/2 and |“consistent”) in
Ro and S, otherwise prepare the states |0) and |“consistent”) in Ry and S.

2.2 Perform Subroutine A with Ry, S, status, n, and d.

2.3 Measure the qubit in S in the {|“consistent”), | “inconsistent”)} basis.

If it results in |“consistent”) and status = “eligible,” prepare the state |0) in
R and perform Subroutine B with Ro, R, and k.

2.4 If status = “eligible,” measure the qubits in Ry and R in the {|0),|1)} basis
to obtain a nonnegative integer z expressed by the two bits; otherwise let
z:=—1.

2.5 Perform Subroutine C with z, n, and d to know the maximum value zmax of z
over all parties.

If 2 # Zmax, let status := “ineligible.”
3. Output status.

Table 1. The definitions of commute operator “o”

r Yy | xoy xr Yy | xoy T Yy | zoy r Yy | xoy
0 0 0 1 0 X * 0 0 x 0 X
0 1 X 1 1 1 * 1 1 X 1 X
0 * 0 1 * 1 * * * X * X
0 X X 1 X X * X X X X X

S, and an inconsistent state for which each party has the content “inconsistent”

in his S. Steps 4 and 5 are performed so that the output quantum registers Ry
(t)

and S are disentangled from work quantum registers X;"s.

Subroutine B: Suppose k parties are still eligible and share the k-cat state
(|0%) 4 |1%))/v/2. Subroutine B has purpose of changing the k-cat state to a
superposition of inconsistent strings, if k£ is given. Subroutine B is precisely
described as follows, where {Uy} and {V},} are two families of unitary operators,

1/v2 0 VR, €% /2
1 < 1 e”ﬁ) v L 1/vV2 0 —Rpe 'F e7'% /2
NG y Vk = e_il)
V2 VRS VR, 0 e —VRy
0 VvERg+1 0 0

where Rj, and I;, are the real and imaginary parts of e*%, respectively.

The point is that the amplitudes of the states [00)®%, [01)®* [10)®F and
|11)®* shared by k eligible parties in their registers Ry and R; are simultaneously
zero after each eligible party applies Subroutine B with parameter k, if the
particles in Rgs of all eligible parties form the k-cat state.

Subroutine A
Input: one-qubit quantum registers Ry, S, a classical variable status, integers n, d
Output: one-qubit quantum registers Ro, S
1. Prepare two-qubit quantum registers X", ..., Xfil), XY X;n_1)7 X,
If status = “eligible,” copy the content of Ro to X(()l), otherwise set the content of
Xél) to “x.”
2. For t:=1 to n — 1, do the following:

2.1 Copy the content of Xét) to each of X§t>, e ,Xl(f).

2.2 Exchange the qubit in th) with the party connected via port ¢ for 1 <i <d
(i-e., the original qubit in th) is sent via port i, and the qubit received via
that port is newly set in th)).

2.3 Set the content of X((fﬂ) to :Jc(()t> o xgﬂ o---0 mfﬁ, where :nl(.t) denotes the con-
tent of th) for 0 <i<d.

3. If the content of X(()") is “x,” turn the content of S over (i.e., if initially the content
of S is “consistent,” it is flipped to “inconsistent,” and vice versa).
4. Invert every computation and communication in Step 2.
Invert every computation in Step 1.
6. Output quantum registers Ro and S.

o

Subroutine B
Input: one-qubit quantum registers Ro, R1, an integer k
Output: one-qubit quantum registers Ro, R1
1. If k is even, apply Ui to the qubit in Ro; otherwise perform CNOT controlled by
the qubit in Ro to that in R, and then apply Vi to the qubits in Rg and R;.
2. Output quantum registers Rg and R;.

Subroutine C: Subroutine C is a classical algorithm that computes the maxi-
mum value over parties. The procedure is very similar to Subroutine A. In fact,
Subroutines A and C can be merged into one subroutine, although they are sep-
arately explained for simplicity. Subroutine C is precisely described as follows.

3.2 Complexity Analysis
First we state the complexity of Algorithm I without proof.

Theorem 1. Let |E| and D be the number of edges and the mazimum degree
of the underlying graph, respectively. Given the number n of parties, Algorithm
I ezactly elects a unique leader in ©(n?) rounds and O(Dn?) time. The total
communication complezity over all parties is O(|E|n?).

If each party initially knows only the upper bound N of the number of parties,
each party has only to perform Algorithm I with IV instead of n. The complexity
in this case is described simply by replacing every n by N in Theorem 1.

Furthermore, Algorithm I is easily modified so that it works well even in the
asynchronous settings. Note that all parties receive messages via each port at

Subroutine C
Input: integers z, n, d
Output: an integer zZmax
1. Let zmax := 2.
2. For t:=1 ton — 1, do the following:
2.1 Let Yo := Zmax-
2.2 Send yo via port i for 1 <7 < d.
Set y; to the value received via port i for 1 <1 < d.
2.3 Let zmax 1= maxo<i<d ¥i-
3. Output Zmax-

each round. Now, let each party wait to perform the operations of the (i + 1)st
round until he finishes receiving all messages that are supposed to be received
at the ith round. This modification enables us to simulate synchronous behavior
in asynchronous networks. In order to know at which round the received mes-
sage was originally sent, we tag every message. This modification increases the
communication and time complexity by the multiplicative factor logn.

4 Quantum Leader Election Algorithm II

To reduce the amount of quantum communication, our second algorithm make
use of a classical technique, called view, which was introduced by Yamashita and
Kameda [17]. However, a naive application of view exponentially increases the
classical time/communication complexity. To reduce this complexity, this paper
introduces the new technique of folded view, with which the algorithm still runs
in time/communication polynomial with respect to the number of parties.

4.1 View and Folded View

First, we briefly review the classical technique, view. Let G = (V| E) be the un-
derlying network topology and let n = |V|. Suppose each party corresponding to
node v € V has a value z, € S for some set S, and consider a mapping X: V — §
defined by X(v) = z,. For each v and port numbering o, the view Tg » x (v)
is a labeled, rooted tree with infinite depth defined recursively as follows: (1)
T¢.0,x (v) has the root w with label X (v), corresponding to v, (2) for each ver-
tex v; adjacent to v in G, T » x (v) has vertex w; labeled with X (v;), and an edge
from root w to w; with label (v, v;) given by I(v,v;) = (a[v](v,v;), o[v:](v,v;)),
and (3) w; is the root of T¢ x (v;). It should be stressed that v, v;, w, and w;
are not identifiers of parties and are introduced just for definition. For simplic-
ity, we often use T'x(v) instead of Tg » x(v), because we usually discuss views
of some fixed network with some fixed port numbering. The view of depth h is
the subtree of T'x (v) of depth h with the same root as is that of T'x (v), which is
denoted by T%(v). For any value = € S, the number of parties having = can be

computed from T)Q((nfl) (v) [17]. Each party v can construct T%(v) as follows. In

the first round, each party v constructs T%(v), i.e., the root of Tx (v). For each
party v, if v has T% *(v) in the ith round, v can construct T% (v) in the (i + 1)st
round by exchanging T)i(_l(v) with his neighbors. By induction, in the (h + 1)st
round, each party v can construct T% (v).

Note that the size of T%(v) is exponential in h, which results in expo-
nential time/communication complexity when we construct it. To reduce the
time/communication complexity to something bounded by a polynomial, we
introduce the new technique called folded view by generalizing the OBDD-
reduction algorithm [6]. A folded view (f-view) of depth h, denoted by T%(v),
is a vertex- and edge-labeled directed acyclic multigraph obtained by merging
nodes at the same level in 7% (v) into one node if the subtrees rooted at them are
isomorphic. The number of nodes in each level of an f-view is obviously bounded
by n, and thus the total number of nodes in an f-view of depth h is at most
hn. Actually, an f-view of depth (h + 1) can be efficiently constructed from a
given f-view of depth h without unfolding it. Here we state without proof that
every f-view of depth h is constructed in O(h?n3(logn)?) time for each party
and with O(|E|h?n?logn) bits of classical communication. Once T)z(("_l)(v) is
constructed, each party can count without communication the number of parties
having a value x in O(n®logn) time.

4.2 The Algorithm

As in the previous section, we assume that the network is synchronous and
each party knows the number n of parties prior to the algorithm. Again our
algorithm is easily generalized to the asynchronous case. Although it needs a
bit more elaboration, which is not mentioned in this version, it is also possible
to modify our algorithm to work well even if only the upper bound N of the
number of parties is given.

The algorithm consists of two stages, which we call Stages 1 and 2 hereafter.
Stage 1 aims to have the n parties share a certain type of entanglement, and
thus, this stage requires the parties to exchange quantum messages. In Stage
1, each party performs Subroutine Q s = [logn| times in parallel to share s
pure quantum states [¢(1), ..., [¢(*)) of n qubits. Here, each |¢()) is of the form
(|2®) 4 [2(D))//2 for an n-bit string () and its bitwise negation 2(?), and the
Ith qubit of each |¢(V) is possessed by the Ith party. It is stressed that only one
round of quantum communication is necessary in Stage 1.

In Stage 2, the algorithm decides a unique leader among the n parties only
by local quantum operations and classical communications with the help of the
shared entanglement prepared in Stage 1. This stage consists of at most s phases,
each of which reduces the number of eligible parties by at least half. In each phase
i, let E; C{1,...,n} be the set of all [s such that party [is still eligible. First
every party runs Subroutine A to decide if state |¢(i)) is consistent or inconsistent
over F;. If state |¢(V) is consistent, every party performs Subroutine B, which
first transforms |¢(*)) into the | E;|-cat state (0!} 4- [11F:l)) /4/2 shared only by
eligible parties and then calls Subroutine B described in the previous section to

obtain an inconsistent state. Now each party [measures his qubits to obtain a
label z; and performs Subroutine C that reduces the number of eligible parties
by at least half via minority voting.

More precisely, each party [performs Algorithm II described below with
parameters “eligible,” n, and d;. The party who obtains output “eligible” is the
unique leader.

Algorithm II

Input: a classical variable status, integers n,d
Output: a classical variable status

Stage 1:
Let s:= [logn] and prepare one-qubit quantum registers Rél), e, R(()S) and
R<11), e ,Rgs), each of which is initialized to the |0) state.

Perform s attempts of Subroutine Q in parallel, each with Rf)i) and dfor 1 <i<s,

to obtain each y* and to share each |¢) = (|?) + |2(D))/v/2 of n qubits.
Stage 2:

Let k :=n.

For i :=1 to s, repeat the following:

1. Perform Subroutine A with status, n, d, and y to obtain its output

consistency.

2. If consistency = “consistent,” perform Subroutine B with Réi), Rgi), status,
k, n, and d.

3. If status = “eligible,” measure the qubits in R{" and R{” in the {|0),|1)}
basis to obtain a nonnegative integer z; otherwise set z := —1.

Perform Subroutine C with status, z, n, and d to compute nonnegative inte-
8ers Zminor and €z, .. -

4. If z # Zminor, let status := “ineligible.”
Let k:=c.ip,-

5. If £ = 1, terminate and output status.

Subroutine Q: Subroutine Q is mainly for the purpose of sharing a cat-like
quantum state |¢) = (|z) + |Z))/v/2. It also outputs a classical string, which
is used in Stage 2 for each party to obtain the information on |¢) via just
classical communication. This subroutine can be performed in parallel by tagging
messages, and thus Stage 1 involves only one round of quantum communication.
The precise description of Subroutine Q is found below. Step 6 is necessary to
disentangle the qubit in output register Ry from that in every R.

Subroutine A: Suppose |¢) = (&) + |Z))/v/2 is shared by the n parties. Let
x; be the Ith bit of # and let X and X be mappings defined by X (v;) = z; and
X(v;) = 77 for each I, respectively, where v; is the node corresponding to the
Ith party. Similar to Subroutine A in the previous section, Subroutine A checks
the consistency of |¢). Hereafter v denotes the node corresponding to the party

invoking the subroutine. The output y of Subroutine Q is useful to construct

Subroutine Q

Input: a one-qubit quantum register Ro, an integer d
Output: a one-qubit quantum register Ry, a string y of length d

1.

Prepare d one-qubit quantum registers Rj,..., R} and Si,...,Sq, each of which
is initialized to the |0) state.

Create the (d + 1)-cat state (J0“™) + [1971))/+/2 in registers Ro, R, ..., R}.
Exchange the qubit in R} with the party connected via port i for 1 <i < d (i.e.,
the original qubit in R/ is sent via port i, and the qubit received via that port is
newly set in R;).

Set the content of S; to xo @ x;, for 1 < i < d, where xg and x; denote the contents
of Ry and R}, respectively.

Measure the qubit in S; in the {|0), |1)} basis to obtain a bit y;, for 1 <7 < d.
Set y:=y1 - ya-

Clear the content of R by using y;, for 1 <i <d.

Output Ry and y.

f-view f}}_l(v) or Tv%_l(v), which can replace quantum communications in the

consistency check. The precise description of Subroutine A is found below.

Subroutine A

Input: a classical variable status, integers n, d, a string y of length d
Output: a classical variable consistency

1.
2.

3.

4.

Set T (v) to the node labeled with (0, status), where Y is either X or X.

For i := 1 to (n — 1), do the following:

2.1 Send TS '(v) and receive TE Y (v;) via port j, for 1 < j < d, where v; is the
node corresponding to the party connected via port j.

2.2 1If the jth bit y; of y is 1, negate the first element of every node label in
T{fl(vj), for 1 <j<d.

2.3 Set the root of T3 (v) to the node labeled with (0, status).
Set the jth child of the root of T4 (v) to i’}’l(vj), for 1 <j<d.
For every level of Tf/ (v), merge nodes at that level into one node if the f-views
rooted at them are isomorphic.

If both label (0, “eligible”) and label (1, “eligible”) are found among the

node labels in f{}_l(v)7 let consistency := “inconsistent”; otherwise let

consistency := “consistent.”

Output consistency.

Subroutine B: Suppose |¢) = (|z) + |Z))/v/2 shared by the n parties is con-
sistent over the set E of eligible parties. After every ineligible party per-
forms Step 2 in Subroutine B, the state shared by the eligible parties is either
£(|011) + [1171) /v/2 or £([0171) — [1171)) /v/2. The state £(|0171) — [1171)) /v2
is shared if and only if the number of ineligible parties that measured |—) in
Step 1 is odd, where |+) = (]0) + [1))/v/2 and |-) = (]0) — |1))/+/2, respectively.

Steps 3 and 4 are for the purpose of having the eligible parties always share
+(|0/ElY + [1!E1)) /4/2. Again let v denote the node corresponding to the party
that invoked the subroutine, and define the family {Wj} of unitary transfor-

mations by Wy = (1 0

0 eif-> . The precise description of Subroutine B is found

below.

Subroutine B

Input: one-qubit quantum registers Ro, R1, a classical variable status, integers k, n, d
Output: one-qubit quantum registers Ro, R1
1. Let w:=0.
2. If status = “ineligible,” measure the qubit in Ro in the {|+),|—)} basis.
If this results in |—), let w := 1.
3. Construct f-view Té&”‘” (v) to count the number p of parties with w = 1, where
W is the underlying mapping naturally induced by the w values of all parties.
4. If p is odd and status = “eligible,” apply Wi to the qubit in Rp.
Perform Subroutine B with Ro, R; and k.
6. Output quantum registers Ry and R;.

o

Subroutine C: Suppose each party ! has value z. Subroutine C is a classi-
cal algorithm that computes value zyinor such that the number of parties with
value Zminor i nonzero and the smallest among all possible z values. The precise
description of Subroutine C is found below.

Subroutine C
Input: integers z, n, d
Output: integers Zminor, Czpip0;
1. Construct f-view Tvéznfl) (v), where Z is the underlying mapping naturally induced
by the z values of all parties.
2. Fori := 0 to 3, count the number ¢; of parties having a value z = ¢ using Tézn*l) (v).
If ¢; =0, let ¢; :=n.
3. Let Zminor € {m ‘ Cm = min0§i§3 Ci}.
4. Output zminor and ¢z, -

4.3 Complexity Analysis
Here we only give the complexity of Algorithm II without proof.

Theorem 2. Let |E| and D be the number of edges and the mazimum degree of
the underlying graph, respectively. Given the number n of parties [the upper bound

N of it], Algorithm II exactly elects a unique leader in O(nlogn) [O(Nlog N)]
rounds and O(n%(logn)?) [O(N7(log N)?)] time of which only the first round
requires quantum communication. The total communication complexity over all
parties is O(|E|n*(logn)?) [O(|E|N®(log N)?)] which includes only O(|E|logn)
JO(|E|Nlog N)] qubits of quantum communication.

References

1.

10.

11.
12.

13.

14.

15.

16.

17.

18.

A. Ambainis, H. M. Buhrman, Y. Dodis, and H. Rohrig. Multiparty quantum
coin flipping. In Proc. of 19th IEEE Conf. on Computational Complexity, pages
250-259, 2004.

D. Angluin. Local and global properties in networks of processors (extended ab-
stract). In Proc. of 20th ACM STOC, pages 82-93, 1980.

Z. Bar-Yossef, T. S. Jayram, and 1. Kerenidis. Exponential separation of quantum
and classical one-way communication complexity. In Proc. of 36th ACM STOC,
pages 128-137, 2004.

C. H. Bennett. Quantum cryptography using any two nonorthogonal states. Phys.
Rev. Lett., 68(21):3121-3124, 1992.

C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution
and coin tossing. In Proc. of IEEE Conf. on Computers, Systems and Signal
Processing, pages 175-179, 1984.

R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEFE
Trans. Comput., 35(8):677-691, 1986.

H. M. Buhrman, R. E. Cleve, J. H. Watrous, and R. de Wolf. Quantum finger-
printing. Phys. Rev. Lett., 87(16):167902, 2001.

C. Crépeau, D. Gottesman, and A. D. Smith. Secure multi-party quantum com-
putation. In Proc. of 84th ACM STOC, pages 643—-652.

P. Dumais, D. Mayers, and L. Salvail. Perfectly concealing quantum bit commit-
ment from any quantum one-way permutation. In Proc. of EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, pages 300-315, 2000.

A. Ttai and M. Rodeh. Symmetry breaking in distributed networks. Inf. Comput.,
88(1):60-87, 1990.

N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, 1996.

D. Mayers. Unconditional security in quantum cryptography. J. ACM, 48(3):351—
406, 2001.

R. Raz. Exponential separation of quantum and classical communication complex-
ity. In Proc. of 31st ACM STOC, pages 358-367, 1999.

P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput., 26(5):1484-1509, 1997.

P. W. Shor and J. Preskill. Simple proof of security of the BB84 quantum key
distribution protocol. Phys. Rev. Lett., 85(2):441-444, 2000.

K. Tamaki, M. Koashi, and N. Imoto. Unconditionally secure key distribution
based on two nonorthogonal states. Phys. Rev. Lett., 90(16):167904, 2003.

M. Yamashita and T. Kameda. Computing on anonymous networks: Part I —
characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst., 7(1):69-89,
1996.

M. Yamashita and T. Kameda. Computing on anonymous networks: Part II —
decision and memobership problems. IEEE Trans. Parallel Distrib. Syst., 7(1):90—
96, 1996.

