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Leader Election Problem

@ n parties are connected by communication
channels.

@ The goal of all parties is to elect a unique
leader.
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Just to find the maximum ID,
if every party has a unique ID.



Leader Election Problem
on an anonymous network

@ n parties are connected by communication
channels, and no party has a unique
identifier.

@ The goal of all parties is to elect a unique

leader. /\. leader /\m
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Yes, it Is easy to solve the problem
with some probability < 1
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Leader Election Problem
on an anonymous network

@ n parties are connected by communication
channels, and no party has a unique
identifier.

@ The goal of all parties is to exactly elect a

unique leader.
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[ [Fact (A80,YM88)] For some large family of
Inetwork topologies, no classical algorithm can ;‘
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Computing on Anonymous Networks

@ LE is the hardest in the sense that, once it is
solved, the leader can gather all distributed
inputs and locally solve any distributed
problem.

@ But, LE can exactly be solved only for limited
families of network tfopologies.

@ Easier problem: Edge election problem can
exactly be solved for wider families.

@ Much easier problem: Symmetric functions
can exactly be computed for all networks.



Computing on Anonymous Quantum
Networks

MODEL: n parties are connected by quantum
communication channels, and every party can
perform quantum computation.

| [Fact (TKMOS)] LE can exactly be solved on |
| an anonymous quantum network of any |
| unknewnFlopoivgmman > NITHISISEN: |

Replacing classical network with quantum network
makes LE easy
from the viewpoint of computability.

How easy is LE made?



Our Result (Informal)

@ LE is quantumly reducible to computing
symmetric Boolean functions.

@ LE can be solved by calling constant-times
distributed algorithms for computing
symmeftric functions.

@ As a corollary, we give a more efficient
quantum LE algorithm than existing ones.



Our Results (formal)

@ H:{0,1}" —{true, false} s.t. Hi(x)=true iff Ham(x)=k

o QM(H) and QP"(H) are the round and bit
complexities for exactly and reversibly computing
H¢ for a superposed input.

| can exactly be solved in O(Q™(H)+Q™(Ho)) |
rounds with bit complexn’ry O(Qb'*(H1)+Q'°'*(I-Io))

2] If nis glven 1 can be COmPUl’red
| exactly and reversibly in O(Q™(Ho)) rounds |
| With bit compia i |



Our Results (formal)

| 0(Q™M(Ho)) rounds with bit complexity

@ NOTEL: Computing Ho can be interpreted as
Just checking if all parties have the same
value.

@ NOTEZ2: This does not have a classical
counterpart: LE cannot exactly be solved for
all networks while Ho can be.



Appllcahons

Corollary] IF the number n of par‘rles IS given, LE

can exactly solved in O(n) rounds with bit
omplexity O(n?[El).

There is an Ho-algorithm with Q™(Ho)=0(n) and
QP (Ho)=0(n?-[El), where [E| is the # of edges.

Alg.I Alg.II
Ay [TKMOS] | [TKMOS5]
Round O(n) O(n?) O(n log n)

Bit O(n3|E|) O(n?lEl) |O(n“lE] log n)




Applications

Once a unique leader is elected,

@ it is possible to compute any Boolean function
that is computable on a non-anonymous
network,

@ It is possible to share symmeftric quantum
state (e.g., n-partite W-state and GHZ state),

@ in O(n) rounds with bit complexity O(n® [E|).

NOTE: The bit complexity is smaller than those of
existing classical algorithms while keeping
classically optimal O(n) rounds.






Exact Quantum Amplitude
Amplification [CK98,BHMTO2]

@ Le’r unl’rary opera’ror A be any quan’rum algorl’rhm erhou’r
infermediate measurement and suppose that

®n
IWs = AlO> =3, a,lz>.

@ Let x(2): {O,l}®n={’rrue,False}.

2

o If the initial success probability of A, a=3,. , getree | @,1°, is known |

and it is 21/4, then
T
('AFO( ¢ a) AF X( 0 a)) |qj>=22: x (z)=true 2 zIz>

where F_(0,): |z> — exp(if,) |z> if x(z)=true

Fo(cb ) Iz> e exp(l ) Iz> if zis O ?f;



Probabilistic Algorithm for LE

@ Consider the following probabilistic
algorithm.

1.Every party flips a coin that gives the
head w.p. 1/n and the tail w.p. 1-1/n.

2.1f exactly one party sees the head, the
party becomes a unique leader.

The probability of this successful case is
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Quantization

l.every party creates (1-1/n)210) + (1/n)?|
13- .

Z.Every party measures the state.

3.1If exactly one party measures [1) , the

party becomes a unique leader.

The probability of this successful case is
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Quantization

" 1.Every party creates (1-1/n)2|0) + (1/n)"?|

\/1>.

A0y =L (Y77 L) jo)
et A=A

The probability of this successful case is

() 4 () - (-2) e




Applying EQAA

o |Ws= AIO>®”={ (1-1/n)"2 [0>+ (1/n)" 2Il>}>®n =3, 0,|z>
@ X (z2)=true iff Ham(z)=1.
o (-AFo( O sn) ATFX( 0 ) W>=3,. , 2)=true A 2>

@ F (0 4n): every party multiplies the amplitudes of
state |z> with X (z)=true, using H;-algorithm, by a

factor of exp(i ¢ */n), which is exp(i®*"™) as a whole.

@ Fo( & ¢(n)): implemented in a similar way using Ho-

algorithm.



Apply EQAA

@ All communications are performed for
computing Ho and H.

I can exactly solved in O(Q™(H)+Q™(Ho))
| _rounds witj DI S e RT SPRRR e 1)) |







Outline of Reduction

1.Reduce computing H; to computing Ho and |
CONSISTENCY (defined later). |

- 2.Reduce computing CONSISTENCY fo
; computing Ho.

@ Since Ho Is easy to compute, it is also easy
to distinguish Ham(x)=0 from Ham(x)>O.

@ To compute Hy, it is sufficient to consider
the case of Ham(x)>0O



Ho IS easy to compute

| neighbors (including himself). :

2 .Every party computes OR of all received bits f
{ and sends the results to all his neighbors "
(including himself).

| 3.Repeat Step 2 (n-2) times.

Round complexity O(n) and bit complexity O(n|E|)



Probabilistic Algorithm for
H,(x) with Ham(x)>0

Lets say: party with input 1 is “marked”; party with
input O is “unmarked”.

1 Algorithm

@ marked party i generates a random bit b;.

@ unmarked party i sets b; fo O.
Observation
@ If Ham(x)=1, b; of the marked party is either O or 1.

o If Ham(x)>1, there exists marked parties i,j s.t. bizb;
with high prob.

(By simply exchanging bis, every party can detect the current
situation among the above two.)



(In)Consistent String/States

@ S: the set of marked par’ries (1S|=Ham(x)).

marked marked
unmarked x unmarked x unmarked A
string 01001 is string 11101 is string 11101 is
Inconsistent over S consistent over S consistent over S

@ In the quantum case, 3, |z) is said

consistent (inconsistent) over S, if o .#0 only for



Quantum version

" Algorithm

@ Every marked party i creates |bi>=(|0>+]1>)

@ Every unmarked party i creates |bi>=[0> |

The enfire state is
((10>+]15) /2172 )®|sl ® |o>®(n-|sl) £ (l/zlsl/z) 5, |z>

® Want to amplify the amplitude of the inconsistent
states |Z> to 1.

Then, we could distinguish Ham(x)<1 from Ham(x)2>2



Applylng EQAA (1)

f 6 |qj>- A|O> i o Marked par’rles perForm H|O>-(|0>+|1>)/21/2
=2, 0 Z|z> @ Unmarked parties perform I|O> = |0>
t o X(2) is true iff z is inconsistent over S

’ The following state would be what we want.

o ('AFO( o a) ATF X( 0 a)) |qj>=zz: y (2)=true X zlz> ;

Suppose we are given:
@algorithm for computing H

@algorithm for computing CONSISTENCY_ (that is frue iff input z
is consistent over S)

In a way similar to Th. 1, we can implement F, ( 0 4),

Fo(® o) if we know a.



Applying EQAA (2)

@ Unfortunately, the initial success probability a is unknown:
a= 1-2/2"% and |S|=Ham(x) is unknown.

o Instead, we pick a guess t of |S|, set a(t)=1-2/2">1/4 (for
t>2), and perform

B(H) "I0">=(-AFo( @ o1) A'F 0 4@) P>

i computing Ho and CONSISTENCY:s.

round complexity: O(Q™(Ho)+QM4(CONSISTENCYs))
~ bit complexity: O(Qﬁbul’r(Ho) +Qb|f(CQNSISTE CYS)) ks |




How to use B(t)

B()°Mom>=(-AFo( ¢ o) A'F, (0 o)) V>

{ Observation

@ If +=IS|>1, B() "0"> is inconsistent due to EQAA theorem.

o If |S|=Ham(x)=1, B(’r)®"|0n> is consistent for any t (Because the 3§
amplitude of any consistent state in |[\W'> =Al0"> is 0.)

We run B(t)°"|0"> for every t=2,...n.

@ If |S|>1, B(t)®"|0"> is inconsistent for some t w.p. 1.
@ If |S|=1, B(H)°"|0"> is consistent for any t.



The Algorithm

T-Run Ho-algorithm and store the result info So
2.Do the following steps for every t=2,..,n in parallel.
(l) Perform B(t) to register R initialized to |0>.
(II) Run CONSISTENCYs-algorithm over R.
ST (Decision step)
(i)IF So is true, output ““false”;
(ll) else if S; is inconsistent for some t, output ““false”;

(|||) else ou’rpu’r ’rrue o

round complexﬂry O(Qr”d(Ho)+Q'””d(CONSISTENCYS))
bit complexity: O( n (Q°"(Ho)+QP"(CONSISTENCYS)))



Complexity of Computing
CONSISTENCY.

@ Can be compu’red with O(1) calls of I-Io-algorl’rhm.
l Unmarked par’rles se’r ’rhelr mpu’r ’ro O
2 .Run Ho-algorithm.

3.Marked parties flip their input, and run Ho-
algorithm.

4. If one of the results is true, output true;

{  otherwise false. :

round complexity: QM4(CONSISTENCYs)=0(Q™(Ho))
bit complexity: QP*(CONSISTENCYs)=0(QP"*(Ho))



Putting Together

| exactly and reversibly |

in O(Q™M4(Ho)) rounds

| with bit complexity O(n-Q®(Ho)). |



Discussions

® Our quantum leader election algorithm assumes undirected
networks, because the Hy-algorithm we used needs
“uncomputing” procedure to erase garbage. Is there a
linear-round quantum leader election algorithm on directed
anonymous networks?

@ All existing quantum leader election algorithms use the
gates depending on the number n of parties. Is there
algorithm that works for every n with constant-sized gate
set?

@ Even if only a constant-sized universal gate set is available,
our algorithm can elect a unique leader with arbitrarily small
error probability without increasing communication cost. In
the classical sefting, communication cost seems fo grow as
error probability is made small (true?).



