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Leader Election Problem
n parties are connected by communication 
channels. !
The goal of all parties is to elect a unique 
leader.
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Just to find the maximum ID, !
if every party has a unique ID.



Leader Election Problem 
on an anonymous network

n parties are connected by communication 
channels, and no party has a unique 
identifier.!
The goal of all parties is to elect a unique 
leader. leader 1 0

00

Yes, it is easy to solve the problem 
with some probability < 1



Leader Election Problem 
on an anonymous network

n parties are connected by communication 
channels, and no party has a unique 
identifier.!
The goal of all parties is to exactly elect a 
unique leader.

leader 1 0
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[Fact (A80,YM88)] For some large family of 
network topologies, no classical algorithm can 
exactly solve the problem even if n is known.



Computing on Anonymous Networks

LE is the hardest in the sense that, once it is 
solved, the leader can gather all distributed 
inputs and locally solve any distributed 
problem.!
But, LE can exactly be solved only for limited 
families of network topologies.!
Easier problem: Edge election problem can 
exactly be solved for wider families.!
Much easier problem: Symmetric functions 
can exactly be computed for all networks.



Computing on Anonymous Quantum 
Networks

MODEL: n parties are connected by quantum 
communication channels, and every party can 
perform quantum computation.

[Fact (TKM05)] LE can exactly be solved on 
an anonymous quantum network of any 
unknown topology, if n is known.

Replacing classical network with quantum network 
makes LE easy  !

from the viewpoint of computability.

How easy is LE made?



Our Result (Informal)

LE is quantumly reducible to computing 
symmetric Boolean functions.!

LE can be solved by calling constant-times 
distributed algorithms for computing 
symmetric functions.!

As a corollary, we give a more efficient 
quantum LE algorithm than existing ones.



Our Results (formal)
Hk:{0,1}n →{true, false} s.t. Hk(x)=true iff Ham(x)=k!

Qrnd(Hk) and Qbit(Hk) are the round and bit 
complexities for exactly and reversibly computing 
Hk for a superposed input.

[Th.1] If the number n of parties is given, LE 
can exactly be solved in O(Qrnd(H1)+Qrnd(H0)) 
rounds with bit complexity O(Qbit(H1)+Qbit(H0)).

[Th.2] If n is given, H1 can be computed 
exactly and reversibly in O(Qrnd(H0)) rounds 
with bit complexity O(n⋅Qbit(H0)).



Our Results (formal)

NOTE1: Computing H0 can be interpreted as 
just checking if all parties have the same 
value.!
NOTE2: This does not have a classical 
counterpart: LE cannot exactly be solved for 
all networks while H0 can be.

[Corollary]  LE can exactly be solved in 
O(Qrnd(H0)) rounds with bit complexity 
O(n⋅Qbit(H0)). 



Applications!
[Corollary] If the number n of parties is given, LE 
can exactly solved in O(n) rounds with bit 
complexity O(n2|E|).!

There is an  H0-algorithm with Qrnd(H0)=O(n) and 
Qbit(H0)=O(n2⋅|E|), where |E| is the # of edges.!

Ours! Alg.I 
[TKM05]!

Alg.II!
[TKM05]!

Round! O(n)! O(n2)! O(n log n)!

Bit! O(n2|E|)! O(n2|E|)! O(n4|E| log n)!



Applications
Once a unique leader is elected,!

 it is possible to compute any Boolean function  
that is computable on a non-anonymous 
network,!
it is possible to share symmetric quantum 
state (e.g., n-partite W-state and GHZ state),!
in O(n) rounds with bit complexity O(n2⋅|E|).!

NOTE: The bit complexity is smaller than those of 
existing classical algorithms while keeping 
classically optimal O(n) rounds.



Proof of Th.1



Exact Quantum Amplitude 
Amplification [CK98,BHMT02]

Let unitary operator A be any quantum algorithm without 
intermediate measurement and suppose that!

|Ψ> = A|0>
⊗n = ∑zαz|z>.!

Let χ(z): {0,1}
⊗n={true,false}.!

If the initial success probability of A, a=∑z:χ(z)=true |αz|
2, is known 

and it is ≥1/4, then !
(-AF0(φa)A

✝
Fχ(θa)) |Ψ>=∑z:χ(z)=trueαz|z>"

where  Fχ(θa): |z> → exp(iθa) |z>      if χ(z)=true "

      F0(φa): |z> → exp(iφa) |z>     if z is 0
n



Probabilistic Algorithm for LE

Consider the following probabilistic 
algorithm."
1.Every party flips a coin that gives the 

head w.p. 1/n and the tail w.p. 1-1/n. "
2.If exactly one party sees the head, the 

party becomes a unique leader."
The probability of this successful case is

3 Quantum Reduction of Leader Election

3.1 Proof of Theorem 1

Basic Idea: Initially, every party is eligible to be the leader and is given the number n of parties as input.
Every party flips a coin that gives the head with probability 1/n and the tail with 1 � 1/n. If exactly one
party sees the head, the party will be a unique leader. The probability s(n) of this successful case is given
by

s(n) =
⇤
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We shall amplify the probability of this case to one by applying the exact quantum amplitude amplification
with m = 1 in Theorem 7. To do this, we use an H1-algorithm to check (in F⇤(⇥s(n))) whether or not a
run of the above randomized algorithm results in the successful case, and use an H0-algorithm to realize the
diffusion operator (more strictly, F0(⇤s(n))). All communication is performed for computing H0, H1 and
their inversions. The non-trivial part is how to implement F⇤(⇥s(n)) and F0(⇤s(n)) in a distributed way on
an anonymous network, where s(n) = (1 � 1/n)n�1, since every party must run the same algorithm.

The Algorithm Before describing the algorithm, we introduce the concept of solving and unsolving
strings. Suppose that each party i has a bit xi, i.e., the n parties share n-bit string ◆x = (x1, x2, · · · , xn). A
string ◆x is said to be solving if ◆x has Hamming weight one. Otherwise ◆x is said to be unsolving. We also say
that an n-qubit pure state |⇧ =

⇧
↵x⌅{0,1}n �↵x|◆x shared by the n parties is solving (unsolving) if �↵x ⇧= 0

only for ◆x that is solving (unsolving).
Let A be the two-by-two unitary matrix defined by A|0 = 1⌥

n
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⌥
n�1

⇥
|0 delimit A = A⇥n At

the beginning of the algorithm, each party prepares two single-qubit quantum registers R, S, and S⇤, where
the qubits in R are initialized to |0 , the qubits in S and S⇤ are initialized to |“true” . First, each party applies

A to the qubit in R to generate the quantum state |⇧ =
 

n�1
n |0 +

 
1
n |1 in R. This is equivalent to that

the whole n parties share the n-qubit quantum state |� = |⇧ ⇥n =
⌃ 

n�1
n |0 +

 
1
n |1 
⌥⇥n

in R’s.
Let Sn = {◆x ⌅ {0, 1}n : ◆x is solving} be the set of solving strings of length n, and let

|�solving = 1⌥
n

⇧
↵x⌅Sn

|◆x be the quantum state which is the uniform superposition of solving strings
of length n. Notice that |� is a superposition of the solving state |�solving and some unsolving state
|�unsolving , and the amplitude �solving of |�solving is given by �solving =

�
s(n) ⇤ 1/2.

Now the task for the n parties is to amplify the amplitude of |�solving to one via exact amplitude amplifi-
cation which involves one run of �AF0(⇤a)A�1F⇤(⇥a) since the initial success probability is �2

solving ⇤ 1
4 .

To realize F⇤(⇥s(n)) in a distributed manner, where ⌅(◆x) = 1 if ◆x is solving and ⌅(◆x) = 0 otherwise,
each party multiplies the amplitude of any basis state |◆x for ⌅(◆x) = 1 by a factor of ei 1

n �s(n) , where
s(n) = (1 � 1/n)n�1. This multiplies the amplitude of the basis state by a factor of ei�s(n) as a whole. At
this point, however, no party can check if ⌅(◆x) = 1 for each basis state |◆x , since he/she knows only the
content of his/her own R. Thus, every party calls an algorithm for computing H1, an H1-algorithm, with
R and S. which sets the content of S to “true” if the number of 1 in all parties’ Rs is exactly 1 and sets it
to “false” otherwise. Every party then multiplies the amplitude of any basis state by a factor of ei 1

n �s(n) , if
the content of S is “true” (note that the computation of the H1-algorithm for each basis state is performed
in a superposition). Finally, every party inverts every computation and communication of the H1-algorithm
to disentangle S and erases the garbage.

The implementation of F0(⇤s(n)) is similar to that of F⇤(⇥s(n)), except that F0(⇤s(n)) multiplies ei⇥s(n)

to the all-zero basis state |0 · · · 0 . First, every party calls an algorithm for computing H0, an H0-algorithm,
with R0 and S⇤, which sets the content of S⇤ to “true” in the case of the all-zero state, and sets it to “false”

6



Quantization

1.Every party creates (1-1/n)1/2 |0〉+ (1/n)1/2|
1〉."

2.Every party measures the state."
3.If exactly one party measures |1〉, the 

party becomes a unique leader."
The probability of this successful case is
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the content of S is “true” (note that the computation of the H1-algorithm for each basis state is performed
in a superposition). Finally, every party inverts every computation and communication of the H1-algorithm
to disentangle S and erases the garbage.

The implementation of F0(⇤s(n)) is similar to that of F⇤(⇥s(n)), except that F0(⇤s(n)) multiplies ei⇥s(n)

to the all-zero basis state |0 · · · 0 . First, every party calls an algorithm for computing H0, an H0-algorithm,
with R0 and S⇤, which sets the content of S⇤ to “true” in the case of the all-zero state, and sets it to “false”

6



Quantization

1.Every party creates (1-1/n)1/2 |0〉+ (1/n)1/2|
1〉."

2.Every party measures the state."
3.If exactly one party measures |1〉, the 

party becomes a unique leader."
The probability of this successful case is

Let

3 Quantum Reduction of Leader Election

3.1 Proof of Theorem 1

Basic Idea: Initially, every party is eligible to be the leader and is given the number n of parties as input.
Every party flips a coin that gives the head with probability 1/n and the tail with 1 � 1/n. If exactly one
party sees the head, the party will be a unique leader. The probability s(n) of this successful case is given
by

s(n) =
⇤

n

1

⌅
· 1
n
·
⇤

n � 1
n

⌅n�1

=
⇤

1 � 1
n

⌅n�1

⇤ 1
e

⇤ 1
4
.

We shall amplify the probability of this case to one by applying the exact quantum amplitude amplification
with m = 1 in Theorem 7. To do this, we use an H1-algorithm to check (in F⇤(⇥s(n))) whether or not a
run of the above randomized algorithm results in the successful case, and use an H0-algorithm to realize the
diffusion operator (more strictly, F0(⇤s(n))). All communication is performed for computing H0, H1 and
their inversions. The non-trivial part is how to implement F⇤(⇥s(n)) and F0(⇤s(n)) in a distributed way on
an anonymous network, where s(n) = (1 � 1/n)n�1, since every party must run the same algorithm.

The Algorithm Before describing the algorithm, we introduce the concept of solving and unsolving
strings. Suppose that each party i has a bit xi, i.e., the n parties share n-bit string ◆x = (x1, x2, · · · , xn). A
string ◆x is said to be solving if ◆x has Hamming weight one. Otherwise ◆x is said to be unsolving. We also say
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To realize F⇤(⇥s(n)) in a distributed manner, where ⌅(◆x) = 1 if ◆x is solving and ⌅(◆x) = 0 otherwise,
each party multiplies the amplitude of any basis state |◆x for ⌅(◆x) = 1 by a factor of ei 1

n �s(n) , where
s(n) = (1 � 1/n)n�1. This multiplies the amplitude of the basis state by a factor of ei�s(n) as a whole. At
this point, however, no party can check if ⌅(◆x) = 1 for each basis state |◆x , since he/she knows only the
content of his/her own R. Thus, every party calls an algorithm for computing H1, an H1-algorithm, with
R and S. which sets the content of S to “true” if the number of 1 in all parties’ Rs is exactly 1 and sets it
to “false” otherwise. Every party then multiplies the amplitude of any basis state by a factor of ei 1

n �s(n) , if
the content of S is “true” (note that the computation of the H1-algorithm for each basis state is performed
in a superposition). Finally, every party inverts every computation and communication of the H1-algorithm
to disentangle S and erases the garbage.

The implementation of F0(⇤s(n)) is similar to that of F⇤(⇥s(n)), except that F0(⇤s(n)) multiplies ei⇥s(n)

to the all-zero basis state |0 · · · 0 . First, every party calls an algorithm for computing H0, an H0-algorithm,
with R0 and S⇤, which sets the content of S⇤ to “true” in the case of the all-zero state, and sets it to “false”
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Let A be the two-by-two unitary matrix defined by A|0 = 1⌥

n

�⌥
n�1 1
1 �

⌥
n�1

⇥
|0 delimit A = A⇥n At

the beginning of the algorithm, each party prepares two single-qubit quantum registers R, S, and S⇤, where
the qubits in R are initialized to |0 , the qubits in S and S⇤ are initialized to |“true” . First, each party applies

A to the qubit in R to generate the quantum state |⇧ =
 

n�1
n |0 +

 
1
n |1 in R. This is equivalent to that

the whole n parties share the n-qubit quantum state |� = |⇧ ⇥n =
⌃ 

n�1
n |0 +

 
1
n |1 
⌥⇥n

in R’s.
Let Sn = {◆x ⌅ {0, 1}n : ◆x is solving} be the set of solving strings of length n, and let

|�solving = 1⌥
n

⇧
↵x⌅Sn

|◆x be the quantum state which is the uniform superposition of solving strings
of length n. Notice that |� is a superposition of the solving state |�solving and some unsolving state
|�unsolving , and the amplitude �solving of |�solving is given by �solving =

�
s(n) ⇤ 1/2.

Now the task for the n parties is to amplify the amplitude of |�solving to one via exact amplitude amplifi-
cation which involves one run of �AF0(⇤a)A�1F⇤(⇥a) since the initial success probability is �2

solving ⇤ 1
4 .

To realize F⇤(⇥s(n)) in a distributed manner, where ⌅(◆x) = 1 if ◆x is solving and ⌅(◆x) = 0 otherwise,
each party multiplies the amplitude of any basis state |◆x for ⌅(◆x) = 1 by a factor of ei 1

n �s(n) , where
s(n) = (1 � 1/n)n�1. This multiplies the amplitude of the basis state by a factor of ei�s(n) as a whole. At
this point, however, no party can check if ⌅(◆x) = 1 for each basis state |◆x , since he/she knows only the
content of his/her own R. Thus, every party calls an algorithm for computing H1, an H1-algorithm, with
R and S. which sets the content of S to “true” if the number of 1 in all parties’ Rs is exactly 1 and sets it
to “false” otherwise. Every party then multiplies the amplitude of any basis state by a factor of ei 1

n �s(n) , if
the content of S is “true” (note that the computation of the H1-algorithm for each basis state is performed
in a superposition). Finally, every party inverts every computation and communication of the H1-algorithm
to disentangle S and erases the garbage.

The implementation of F0(⇤s(n)) is similar to that of F⇤(⇥s(n)), except that F0(⇤s(n)) multiplies ei⇥s(n)

to the all-zero basis state |0 · · · 0 . First, every party calls an algorithm for computing H0, an H0-algorithm,
with R0 and S⇤, which sets the content of S⇤ to “true” in the case of the all-zero state, and sets it to “false”
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Applying EQAA
|Ψ>= A|0>

⊗n={ (1-1/n)1/2 |0>+ (1/n)1/2|1>}
⊗n =∑zαz|z>"

χ(z)=true iff Ham(z)=1."

(-AF0(φs(n))A
✝Fχ(θs(n))) |Ψ>=∑z:χ(z)=trueαz|z>"

Fχ(θs(n)): every party multiplies the amplitudes of 

state |z> with χ(z)=true, using H1-algorithm,  by a 

factor of  exp(iφs(n)/n), which is exp(iφs(n)) as a whole. "

F0(φs(n)): implemented in a similar way using H0-

algorithm.



Apply EQAA

All communications are performed for 
computing H0 and H1.

[Th.1] If the number n of parties is given, LE 
can exactly solved in O(Qrnd(H1)+Qrnd(H0)) 
rounds with bit complexity O(Qbit(H1)+Qbit(H0)).



Proof of Th.2



Outline of Reduction

1.Reduce computing H1 to computing H0 and 
CONSISTENCY (defined later)."

2.Reduce computing CONSISTENCY to 
computing H0.  

 Since H0 is easy to compute, it is also easy 
to distinguish Ham(x)=0 from Ham(x)>0."

 To compute H1, it is sufficient to consider 
the case of Ham(x)>0



H0 is easy to compute
1.Every party sends his input to all his 

neighbors (including himself)."
2.Every party computes OR of all received bits 

and sends the results to all his neighbors 
(including himself)."

3.Repeat Step 2 (n-2) times.

Round complexity O(n) and bit complexity O(n|E|) 



Probabilistic Algorithm for 
H1(x) with Ham(x)>0

Let’s say: party with input 1 is ``marked’’; party with 
input 0 is ``unmarked’’.

(By simply exchanging bi’s, every party can detect the current 
situation among the above two.)

Observation"
If Ham(x)=1, bi of the marked party is either 0 or 1."
If Ham(x)>1, there exists marked parties i,j s.t. bi≠bj with high prob.

Algorithm"
marked party i generates a random bit bi."
unmarked party i sets bi to 0.



(In)Consistent String/States

S: the set of marked parties (|S|=Ham(x)).

Networ
k

0

0

1

00

marked

unmarked

Networ
k

0

1

1

11

marked

unmarked

string 01001 is "
inconsistent over S

string 11101 is "
consistent over S

Networ
k

0

1

1

11

unmarked

string 11101 is "
consistent over S

In the quantum case, ∑zαz |z〉is said 
consistent (inconsistent) over S, if αz≠0 only for 



Algorithm"
Every marked party i creates |bi>=(|0>+|1>)"
Every unmarked party i creates |bi>=|0>

Quantum version

The entire state is 

Want to amplify the amplitude of the inconsistent 
states |Z> to 1."
Then, we could distinguish Ham(x)≤1 from Ham(x)≥2

((|0>+|1>)/21/2 )⊗|S| ⊗ |0>⊗(n-|S|) = (1/2|S|/2 ) ∑z |z>



Applying EQAA (1)
Marked parties perform H|0>=(|0>+|1>)/21/2"
Unmarked parties perform I|0> = |0>

χ(z) is true iff z is inconsistent over S

The following state would be what we want."
(-AF0(φa)A

✝Fχ(θa)) |Ψ>=∑z:χ(z)=trueαz|z>

Suppose we are given:"
algorithm for computing H

0
"

algorithm for computing CONSISTENCY
S
 (that is true iff input z 

is consistent over S)
In a way similar to Th. 1, we can implement Fχ(θa), 

F0(φa) if we know a.

|Ψ>= A|0>⊗n 
=∑zαz|z>



Applying EQAA (2) 
Unfortunately, the initial success probability a is unknown:                                              
a= 1-2/2|S| and |S|=Ham(x) is unknown."
Instead, we pick a guess t of |S|, set a(t)=1-2/2t>1/4  (for 
t≥2), and perform "
B(t)⊗n|0n>=(-AF0(φa(t))A✝Fχ(θa(t))) |Ψ>

 Complexity: All communications are performed for 
computing H0 and CONSISTENCYS."
!

round complexity: O(Qrnd(H0)+Qrnd(CONSISTENCYS))"
bit complexity: O(Qbit(H0)+Qbit(CONSISTENCYS))



How to use B(t)

Observation"
 If t=|S|>1, B(t)

⊗n|0n> is inconsistent due to EQAA theorem. "
If |S|=Ham(x)=1, B(t)

⊗n|0n> is consistent for any t (Because the 
amplitude of any consistent state in |Ψ> =A|0n> is 0.)

B(t)⊗n|0n>=(-AF0(φa(t))A✝Fχ(θa(t))) |Ψ>

We run B(t)⊗n|0n> for every t=2,...,n."
 If |S|>1, B(t)⊗n|0n> is inconsistent for some t w.p. 1."
 If |S|=1, B(t)⊗n|0n> is consistent for any t.



The Algorithm
1.Run H0-algorithm and store the result into S0"

2.Do the following steps for every t=2,...,n in parallel."
(i) Perform B(t) to register R initialized to |0>."
(ii) Run CONSISTENCYS-algorithm over R."

3. (Decision step)"
(i)If S0 is true, output ``false’’; "
(ii) else if St is inconsistent for some t, output ``false’’; "
(iii) else output ``true’’.
round complexity: O(Qrnd(H0)+Qrnd(CONSISTENCYS))"
bit complexity: O( n (Qbit(H0)+Qbit(CONSISTENCYS)))



Complexity of Computing 
CONSISTENCYS

1.Unmarked parties set their input to 0."
2.Run H0-algorithm."
3.Marked parties flip their input, and run H0-

algorithm."
4. If one of the results is true, output true; 

otherwise false.

Can be computed with O(1) calls of H0-algorithm."

round complexity: Qrnd(CONSISTENCYS)=O(Qrnd(H0))"
bit complexity: Qbit(CONSISTENCYS)=O(Qbit(H0))



Putting Together
[Th.2] If n is given, H1 can be computed 
exactly and reversibly "

in O(Qrnd(H0)) rounds "
with bit complexity O(n⋅Qbit(H0)).



Discussions
Our quantum leader election algorithm assumes undirected 
networks, because the H0-algorithm we used needs 
``uncomputing’’ procedure to erase garbage. Is there a 
linear-round quantum leader election algorithm on directed 
anonymous networks?"
All existing quantum leader election algorithms use the 
gates depending on the number n of parties. Is there 
algorithm that works for every n with constant-sized gate 
set?"
Even if only a constant-sized universal gate set is available, 
our algorithm can elect a unique leader with arbitrarily small 
error probability without increasing communication cost.  In 
the classical setting, communication cost seems to grow as 
error probability is made small (true?).


