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Anonymous Leader Election Problem (LE) 

Given n parties connected by  communication links,　elect a 
unique leader from among n parties. 

 

Under the anonymity Condition: 
p  Initially, all parties are in the same state. 
    ⇒Every party  needs to perform the same algorithm. 

0 0 

0 0 

leader 1 0 

0 0 



Negative Results in Classical Cases 

n  Case 1: # of parties is given, 
  No classical algorithm can solve LE exactly 
  for many network topologies. 

 

n  Case 2: Only the upper bound of # of parties is given, 
  No classical algorithm can solve LE even with 

 zero-error for any network topology having 
 cycles. 

 

(“exact” = “zero-error” and “bounded time”) 



Previous Quantum Results [TKM05] 

For  parties connected by quantum communication links: 
   

n  Case 1: n (# of parties ) is given, 
 

 LE can be solved exactly 
  in poly (in n ) time/communication complexity 
 for any network topology. 

 
n  Case 2: Only N (the upper bound of # of parties) is given, 
 

 LE can be solved exactly 
 in poly (in N) time/communication complexity  
 for any network topology. 



Our Result 

For given n, 
n  New general algorithm that solves LE 
     for any network topology  
     via exact amplitude amplification 
     in O(n2) rounds and O(n4) communication complexity. 

  (Same complexity as that of the first algorithm in [TKM05]) 

 
n  Fast algorithm that solves LE 
      only when n is a power of two 
      in O(n) rounds (faster than the algorithms in [TKM05]) 
      at the cost of O(n6log n) communication complexity. 
 
(# Our algorithms work well  
     even when only the upper bound N of n is given.) 



Algorithm I   Overview 

1. Let all parties be eligible to be the leader. 
2. For m = n down to 2, repeat  PartyReduction(m),   

 which works such that: 
p  If  m equals # of eligible parties, 

 # of eligible parties is decreased by at least 1 
 (but  not decreased to 0) 

p  Otherwise,  # of eligible parties is decreased or unchanged 

3. The party still remaining eligible is the unique leader. 

▼In Step 2, always m ≥　(# of eligible parties) 
 ⇒After Step 2, only one party  remains eligible  

▼ Even if only the upper bound of n is given, the algorithm 
     works well by using the bound  instead of n. 



Consistent/inconsistent over eligible parties 

Each party has c bits 
 ⇒All parties share cn-bit string  s. 

 
n  String s is inconsistent over eligible parties,  

 if all eligible parties do not have the same c-bit values. 
 
n  State φ  is inconsistent over eligible parties,  

 If φ  is a superposition of inconsistent strings. 



Key Observation used to construct PartyReduction (m) 

Eligible parties can be reduced by at least one 
(but cannot be reduced into 0 party) by 

1.  Measuring qubits. 
2.  Letting only eligible parties having the 

maximum value among eligible parties 
remain eligible. 

All eligible parties share an inconsistent state. 



PartyReduction (m) 

(1) Share an inconsistent state 
      with prob. 1 if m equals # of eligible parties. 
(2) By measurement, parties obtain an inconsistent string. 
(3) Only eligible parties that have the maximum value 

among eligible parties remain eligible. 

PartyReduction (m) meets requirements described in 
overview: 

n  if m equals # of eligible parties,  
 (3) reduces # of eligible parties by at least 1 
 (but not to 0). 

n  Otherwise # of eligible parties does not increase. 



Subgoal 

(2) Each eligible party initializes them to 

 Each non-eligible party initializes them to 
2
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Share  an inconsistent state among eligible parties 
with certainty if k= # of eligible parties. 
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(1) Each party prepares one qubits. 

System state: 

(3) Amplify the amplitude of  only inconsistent states  
     by exact amplitude amplification  
    in O(n) rounds and O(n3) communication complexity. 



Exact amplitude amplification [BHMT02] 

n  A: any quantum algorithm that uses no measurement to find a 
truth assignment for any Boolean function χ 

n  If the initial success probability a is ≥1/4,  

    AF0(φ)A-1Fχ(ϕ)  
    gives a correct assignment with certainty by setting φ and ϕ (0≤ φ, 

ϕ <2π) to some appropriate values depending on a, where 
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Requirements: 
n  Exact value of a needs to be known 
n  a ≥ 1/4 



Proof of Step (3) (1/3) 

n   Set A to Hadamard operator H. 
n   Set a to the probability of measuring inconsistent states, 
     i.e, χ(x)=1 iff x is an inconsistent string. 

p For 2k dimensional space,  

 
since all states but |00…0〉 and |11…1〉 are inconsistent. 

n  Apply exact amplitude amplification AF0(φ)A-1Fχ(ϕ)  
    to A|φ〉, where 

p  F0(φ) and Fχ(ϕ)  need to be performed in a distributed manner, 
i.e., every party needs to perform identical operations because of 
anonymity condition. 
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Proof of Step (3) (2/3) 

How to Perform Fχ(ϕ) in a distributed manner? 

n  Suppose n parties share  
in their one qubit registers R. 
n  Every party does the next steps. 
1. Prepares an ancillary qubit in register S. 
2. Check inconsistency of a string corresponding to each 

basis state 
  in O(n) rounds and O(n3) communication complexity as 
described in [TKM05]. 

3. Write the result “consistent” or “inconsistent” to the 
content of S. 
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Proof of Step (3) (3/3) 

4. Apply the next unitary operator to the contents of R and S 

S. ofcontent   theis  and R, ofcontent   theis  where
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5. Invert every computation and communication of step 2 to 
disentangle S. 

This essentially realizes Fχ(ϕ)  as a whole: 
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F0(φ) can be performed in a similar way. 



Algorithm restricted to the case where  
n is a power of two 



Basic Proposition 

Proposition 
 If n is a power of two,  

    a unique leader can be elected in O(n) rounds and 
O(n6log n) communication complexity  

    when there exists some value x such that the number of 
parties having x is odd. 

Proof is by combining the results in [YK96] and [TKM05].  

We’ll try to make n parties share a superposition |φodd〉 
of only the states whose binary expression has the 
Hamming weight 1 (mod 2), in anonymous setting. 



Sharing |φodd〉 

Every party performs the next steps. 
1.  Prepare (|0〉+ |1〉)/21/2 and |0〉 in one-qubit register R 

and S, respectively. 
2.  Set to S the Hamming weight (mod 2) of the contents 

of all parties’s Rs. 
3.  Measure the qubit in S, and set the result to y. 
4.  If y=0, apply UnV to the qubit in R, where. 

5.  Measure the qubit in R. 
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Summary 

n  We gave two algorithms that exactly solve LE 
for the given number n of parties. 

n  The first algorithm uses the exact amplitude 
amplification in a distributed manner in 
anonymous setting, 

    and runs in O(n2) rounds and O(n4) comm. 
complexity for any network. 

n  The second one is restricted to the case 
where n is a power of two, and requires 
O(n6log n) communication complexity,  

    but takes only linear rounds in n. 


