
Exact Quantum Amplitude Amplification

for the Leader Election Problem

Seiichiro Tani∗†

tani@theory.brl.ntt.co.jp

Hirotada Kobayashi‡

hirotada@nii.ac.jp

Keiji Matsumoto‡†

keiji@nii.ac.jp

∗ NTT Communication Science Laboratories, NTT Corporation
†Quantum Computation and Information Project, ERATO, JST

‡Foundations of Information Research Division, National Institute of Informatics

Abstract

It is well-known that no classical algorithm can solve exactly (i.e., in bounded time without error) the
leader election problem in anonymous networks. This paper proposes two quantum algorithms that, when the
parties are connected by quantum communication links, can exactly solve the problem. The first algorithm uses
quantum amplitude amplification in a distributed manner under the anonymous condition, and runs in O(n2)
rounds for any network topology, where n is the number of parties. The second one is for the case where the
number of parties is a power of two, but it takes only linear rounds in n.

1 Introduction

Quantum computation and communication are turning out to be much more powerful than the classical equivalents
for various computational tasks. Perhaps the most exciting developments in quantum computation would be
polynomial-time quantum algorithms for factoring integers and computing discrete logarithms [15], and the most
remarkable ones in quantum communication would be quantum key distribution protocols [5, 4] that have been
proved to be unconditionally secure [12, 16, 17]. Many other algorithms and protocols have been proposed that
show the strength of quantum computation and communication, such as cryptographic results (e.g., [8, 7, 1]) and
communication complexity results (e.g., [14, 6, 3]). This paper sheds light on another significant superiority of
quantum computing over the classical equivalent in the setting of traditional distributed computing.

The leader election problem is a core problem in traditional distributed computing in the sense that, once it is
solved, it becomes possible to efficiently solve many substantial problems in distributed computing (see, e.g., [11]).
The goal of the leader election problem is to elect a unique leader from among distributed parties. Obviously,
it is possible to deterministically elect a unique leader if each party has a unique identifier, and many classical
deterministic algorithms with this assumption have been proposed. As the number of parties grows, however, it
becomes difficult to preserve the uniqueness of the identifiers. Thus, other studies have examined the cases wherein
the network is anonymous, i.e., each party has the same identifier [2, 10, 19, 20], as an extreme case. In this
setting, no classical exact algorithm (i.e., an algorithm that runs in bounded time and solves the problem with zero
error) exists for a broad class of network topologies including regular graphs, even if the network topology (and
thus the number of parties) is known to each party prior to algorithm invocation [19]. In the quantum setting, the
situation is quite different. It was recently proved that the problem can be exactly solved even when the network
is anonymous, if it consists of quantum links [18].

This paper gives two exact quantum algorithms that exactly solve the leader election problem in an anonymous
network on the basis of approaches that are quite different from those of the algorithms in [18]. Each algorithm has
its own flavor, which would give some characteristic aspect of quantum computing under the anonymous setting.
Our first algorithm elects a unique leader from among n parties by using quantum amplitude amplification in a
distributed manner under the anonymous condition. It attains the same performance as that of the algorithm
in [18], i.e., it takes O(n2) rounds and O(n4) communication complexity for synchronous network of any topology.
Our second algorithm is restricted to the case wherein the number of parties is a power of two. It takes at most
just 3n rounds if the topology is a cycle, and at most 6n rounds for a general graph, while the communication
complexity is O(n5 logn) for both cases. Both algorithms are easily modified to support their use in asynchronous
networks.

2 Preliminaries

A distributed system (or network) is composed of multiple parties and bidirectional classical communication links
connecting parties. In a quantum distributed system, every party can perform quantum computation and commu-
nication and each adjacent pair of parties has a bidirectional quantum communication link between them. When
the parties and links are viewed as nodes and edges, respectively, the topology of the distributed system is ex-
pressed by an undirected connected graph, say, G = (V, E). In what follows, we may identify each party/link with
its corresponding node/edge in the underlying graph for the system, if it is not confusing. Every party has ports
corresponding one-to-one to communication links incident to the party. Every port of party l has a locally unique
label i, (1 ≤ i ≤ dl), where dl is the number of parties adjacent to l. More formally, G has a port numbering,
which is a set σ of functions {σ[v] | v ∈ V } such that, for each node v of degree dv, σ[v] is a bijection from the set
of edges incident to v to {1, 2, . . . , dv}. It is stressed that each function σ[v] may be defined independently of the
others. Just for ease of explanation, we assume that port i corresponds to the link connected to the ith adjacent
party of l. In our model, each party knows the number of its ports and the party can appropriately choose one of
its ports whenever it transmits or receives a message.

Initially, every party has local information, such as its internal state, and global information, such as the number
of nodes in the system (or its upper bound). Every party runs the same algorithm, which has local and global
information as its arguments. If every party does not have their unique local/global information except for the
number of ports the parties have, the system is said to be anonymous. As an extreme case, this is essentially
equivalent to the situation in which every party has the same identifier since we can regard the local/global
information of the party as his identifier. If message passing is performed synchronously, such a distributed system
is called synchronous. The unit interval of synchronization is called a round (see [11] for more detail).

Next we define the leader election (LE) problem. Suppose that there is a distributed system and each party
in the system has a variable initialized to 0. The task is to set the variable of exactly one of the parties to 1 and

1

the variables of all other parties to 0. In the case of anonymous networks, Yamashita and Kameda [19] proved
that, if the “symmetricity” (defined in [19]) of the network topology is more than one, LE cannot be solved exactly
(more rigorously speaking, there are some port numberings for which LE cannot be solved exactly) by any classical
algorithm even if all parties know the topology of the network (and thus the number of nodes). In fact, for a broad
class of graphs such as regular graphs, the “symmetricity” is more than one. When the parties initially know only
the upper bound of the number of the parties, the result by Itai and Rodeh [10] implies that LE cannot be solved
with zero error by any classical algorithm (including the one that may not always halt).

3 O(n2)-round Quantum Algorithm for General Case

For simplicity, we assume that the network is synchronous and each party knows the number n of parties prior
to the algorithm. It is easy to generalize our algorithm to the asynchronous case and to the case where only the
upper bound N of the number of parties is given, as will be discussed at the end of this section.

Initially all parties are eligible to become the unique leader. The key to solving the leader election problem in
an anonymous network is to break symmetry, i.e., to have just a single party possess a certain state corresponding
to the leader.

First we introduce the concept of consistent and inconsistent strings. Suppose that each party l has a c-bit
string xl. That is, the n parties share cn-bit string x = x1x2 · · ·xn. For convenience, we may consider that each
xl expresses an integer, and identify string xl with the integer it expresses. Given a set E ⊆ {1, . . . , n}, string x is
said to be consistent over E if xl has the same value for all l in E. Otherwise x is said to be inconsistent over E.
We also say that a cn-qubit pure state |ψ〉 =

∑

x αx|x〉 shared by the n parties is consistent (inconsistent) over E
if αx 6= 0 only for x that is consistent (inconsistent) over E.

Finally, we quote the exact quantum amplitude amplification theorem, which our algorithm is based on.

Theorem 1 ([9]) Let A be any quantum algorithm that uses no measurements, and let χ : Z → {0, 1} be any
Boolean function. Given the initial success probability a > 0 of A, Q(A, χ, φ, ψ)Qm−1(A, χ, π, π)A|0〉 gives a good
solution with certainty by setting ψ and φ (0 ≤ ψ, φ ≤ 2π) to some appropriate values depending on a, where
m = Θ(1√

a
) and Q(A, χ, φ, ψ) = −AF0(φ)A−1Fχ(ψ) such that:

Fχ(ψ) : |x〉 7→
{

eiψ|x〉 if χ(x) = 1
|x〉 if χ(x) = 0,

F0(φ) : |x〉 7→
{

eiφ|x〉 if x = 0 . . .0
|x〉 otherwise.

In particular, when a > 0.5, the theorem holds for m = 1 if we set φ and ψ [9] so that

eiψ(1 − eiφ)
√
a sin(θa) = ((1 − eiφ)a+ eiφ)

1√
1 − a

cos(θa),

where sin2 θa = a. By a bit calculation, one can verify that such φ and ψ exist.

3.1 The Algorithm

The algorithm repeats one procedure exactly (n− 1) times, each of which is called a phase. In each phase, the
number of parties eligible to be the leader either decreases or remains the same, but never increases or becomes
zero. After (n− 1) phases the number of eligible parties becomes one with certainty.

Each phase has a parameter denoted by k, whose value is (n − i+ 1) in the ith phase. In each phase i, let
Ei ⊆ {1, . . . , n} be the set of all ls such that party l is still eligible. Each phase prepares the uniform superposition
of 2|Ei| of x’s where x = x1 . . . x|Ei| and xl is a one-bit value possessed by the lth party in Ei. The phase then
amplifies the amplitude of any inconsistent state over Ei so that we can get an inconsistent string over Ei by
measurement. Once the parties in Ei share an inconsistent string, the number of eligible parties can be reduced
with certainty by excluding l ∈ Ei from Ei such that party l does not have the maximum one-bit value among all
one-bit values in the string.

This is possible if every party knows the number |Ei| of eligible parties by using Theorem 1, since he/she can
know the initial probability of getting an inconsistent string, which is clearly 1 − 2

2|Ei|
. Actually, every party does

not know |Ei|, however, we can detour to avoid this issue as described later.
A more precise description of the phase is as follows. First, each eligible party prepares the state H |0〉 =

(|0〉 + |1〉)/
√

2 in one-qubit register R0 where H is the Hadamard operator over C
2, while each ineligible party

prepares the state |0〉 in R0. Notice that A = H⊗|Ei| over the qubits in R0s of all eligible parties. To realize Fχ(ψ)
in a distributed manner where χ = 1 if x is inconsistent over Ei and χ = 0 otherwise, each party multiplies the

2

amplitude of any inconsistent state by a factor of ei
1

n
ψ. At this point, no party can check the inconsistency of each

basis state, since he/she has only a part of information of the state. Every party, hence, computes the “witness“
of the inconsistency: every party calls Subroutine A with R0 and another one-qubit register S whose content is
initialized to ”consistent,” and Subroutine A runs a classical algorithm for every basis state that sets the content
of S to “consistent” if parties share a consistent string over Ei and to “inconsistent” otherwise. Every party then
multiplies the amplitude of any inconsistent state by the factor of ei

1

n
ψ, which multiplies the amplitude of any

inconsistent state as a whole by the factor of eiψ . Next every party inverts the computation and communication
of Subroutine A to disentangle S. This completes Fχ(ψ) on the qubits in R0s of all parties.

As A−1, every party in Ei applies H to the qubit in R0.
To realize F0(ψ), every party prepares the “witness” of the all-zero state: every party calls Subroutine B with

R0 and S whose content is initialized to “allzero,” and Subroutine B runs a classical algorithm for every basis state
that sets the content of S to “allzero” if the parties in Ei share the all-zero string, i.e., 00 · · ·0, as the contents
of R0s, and to “nonallzero” otherwise. Every party then multiplies the amplitude of any inconsistent state such
that by the factor of ei

1

n
φ if s is “allzero.” This multiplies the amplitude of the all-zero state |00 . . .0〉 as a whole

by a factor of eiφ. By inverting the computation and communication of Subroutine B to disentangle S, F0(ψ) is
completed.

Finally, every party in Ei applies H to the qubit in R0 to realize A.
In each phase, every party can use k as |Ei| to set ψ and φ to some appropriate values. Hence, the eligible

parties may share a consistent state since k does not necessarily represent |Ei|. In this case, Ei is not changed,
since our strategy is to exclude l ∈ Ei from Ei such that party l does not have the maximum one-bit value among
all one-bit values in the string. In the case of k = |Ei| by chance, |Ei| is reduced by at least one (but not to zero),
since the eligible parties always succeed in sharing an inconsistent state (although they cannot verify it). It is clear
from this observation that k is at least |Ei| since k is initially n = |Ei| and is decreased by 1 after each phase.
This means that exactly one leader is elected after the last phase. More strictly, (1) in the first phase, obviously
k = |Ei| = n, (2) if we assume that k ≥ |Ei| in the ith phase, |Ei| decreases with certainty when k = |Ei|, and
either decreases or is unchanged when k > |Ei|.

More precisely, each party l performs Algorithm QLE described below with parameters “eligible,” n, and dl.
The party who obtains the output “eligible” is the unique leader.

Algorithm QLE
Input: a classical variable status ∈ {“eligible”, “ineligible”}, integers n, d

Output: a classical variable status ∈ {“eligible”, “ineligible”}
1. Prepare one-qubit quantum registers R0 and S.

2. For k := n down to 2, do the following:

2.1 If status = “eligible,” prepare the states (|0〉 + |1〉)/
√

2 and |“consistent”〉 in R0 and S, otherwise prepare
the states |0〉 and |“consistent”〉 in R0 and S.

2.2 To realize Fχ(ψ), perform the next operations.

2.2.1 Perform Subroutine A with R0, S, status, n, and d.

2.2.2 Apply the next unitary operator on R0 and S:

|r〉|s〉 7→
{

ei
1

n
ψ|r〉|s〉 if s is “inconsistent”

|r〉|s〉 if s is “consistent”,

where r and s are the contents of R0 and S, respectively.

2.2.3 Invert every computation and communication of 2.2.1 to disentangle S.

2.3 If status=”eligible,” apply H to the qubit in R0.

2.4 To realize F0(φ), do the next operations.

2.4.1 Perform Subroutine B with R0, S, status, n, and d, which sets the content of S to “allzero” if all
parties have 0 as the contents of their R0s, and to “nonallzero” otherwise.

2.4.2 Apply the next unitary operator on R0 and S:

|r〉|s〉 7→
{

ei
1

n
φ|r〉|s〉 if s is “allzero”

|r〉|s〉 if s is “nonallzero”,

where r and s are the contents of R0 and S, respectively.

3

2.4.3 Invert every computation and communication of 2.4.1 to disentangle S.

2.5 If status=”eligible,” apply H to the qubits in R0.

2.6 If status = “eligible,” measure the qubit in R0 in the {|0〉, |1〉} basis to obtain one-bit value z; otherwise
let z := −1.

2.7 Perform Subroutine C with z, n, and d to know the maximum value zmax of z over all parties.
If z 6= zmax, let status := “ineligible.”

3. Output status.

3.1.1 Subroutine A:

Subroutine A is used basically for the purpose of checking the consistency of all strings that are superposed to a
quantum state shared by the parties. We use the commute operator “◦” over set S = {0, 1, ∗,×} whose operations
are summarized in Table 1. Intuitively, “0” and “1” represent the possible values all eligible parties will have
when the string finally turns out to be consistent; “∗” represents “don’t care,” which means that the corresponding
party has no information about the values any of the eligible parties have; and “×” represents “inconsistent,”
which means that the corresponding party already knows that the string is inconsistent. Subroutine A is precisely
described below.

Table 1: The definitions of commute operator “◦”
x y x ◦ y x y x ◦ y x y x ◦ y x y x ◦ y
0 0 0 1 0 × ∗ 0 0 × 0 ×
0 1 × 1 1 1 ∗ 1 1 × 1 ×
0 ∗ 0 1 ∗ 1 ∗ ∗ ∗ × ∗ ×
0 × × 1 × × ∗ × × × × ×

Subroutine A

Input: one-qubit quantum registers R0 and S, a classical variable status ∈ {“eligible”, “ineligible”}, integers n, d

Output: one-qubit quantum registers R0 and S

1. Prepare two-qubit quantum registers X
(1)
0 , . . . ,X

(1)
d , . . . ,X

(n−1)
0 , . . . ,X

(n−1)
d ,X

(n)
0 .

If status = “eligible,” copy the content of R0 to X
(1)
0 , otherwise set the content of X

(1)
0 to “∗.”

2. For t := 1 to n− 1, do the following:

2.1 Copy the content of X
(t)
0 to each of X

(t)
1 , . . . ,X

(t)
d .

(Perform CNOT targeted to the qubit in each of X
(t)
1 , . . . ,X

(t)
d controlled by the qubit in X

(t)
0).

2.2 Exchange the qubit in X
(t)
i with the party connected via port i for 1 ≤ i ≤ d (i.e., the original qubit in

X
(t)
i is sent via port i, and the qubit received via that port is newly set in X

(t)
i).

2.3 Set the content of X
(t+1)
0 to x

(t)
0 ◦ x(t)

1 ◦ · · · ◦ x(t)
d , where x

(t)
i denotes the content of X

(t)
i for 0 ≤ i ≤ d.

3. If the content of X
(n)
0 is “×,” turn the content of S over (i.e., if initially the content of S is “consistent,” it is

flipped to “inconsistent,” and vice versa).

4. Invert every computation and communication in Step 2.

5. Invert every computation in Step 1.

6. Output quantum registers R0 and S.

4

As one can see from the description of Algorithm QLE, the content of S is initially “consistent” whenever
Subroutine A is called. Therefore, after every party finishes Subroutine A, the state shared by parties in their R0s
is decomposed into a consistent state for which each party has the content “consistent” in his S, and an inconsistent
state for which each party has the content “inconsistent” in his S. Steps 4 and 5 are performed so that the output

quantum registers R0 and S are disentangled from work quantum registers X
(t)
i s.

For the proof of correctness, see appendix A. Subroutine A takes Θ(n) rounds and the total communication
complexity over all parties is Θ(|E|n), where |E| and D are the number of edges and the maximum degree of the
underlying graph, respectively (see appendix B).

3.1.2 Subroutine B

Subroutine B works in almost the same way as Subroutine A except it uses commute operator ⋄ over set
S = {0, 1, ∗,×} instead of ◦ and, “allzero” and “nonallzero” instead of “eligible” and “ineligible.” Operator ⋄ is
defined as follows: x ⋄ y is × if both of x and y is not in {0, ∗}, ∗ if x = y = ∗, and 0 otherwise (see appendix C).

3.1.3 Subroutine C

Subroutine C is a simple classical algorithm based on flooding that computes the maximum value of z values over
parties. The procedure is very similar to Subroutine A. In fact, Subroutines A and C can be merged into one sub-
routine, although they are separately explained for simplicity (Subroutine C is precisely described in appendix D).

3.2 Complexity Analysis and Discussion

From lemma 7, Subroutine A takes Θ(n) rounds and has communication complexity Θ(|E|n). Subroutine B has the
same round/communication complexity. Subroutine C also takes Θ(n) rounds and has communication complexity
Θ(|E|n) except that the communication is classical. Algorithm QLE requires (n − 1) phases. Thus, we have the
next theorem.

Theorem 2 Let |E| be the number of edges of the underlying graph. Given the number n of parties, Algorithm QLE
exactly elects a unique leader in Θ(n2) rounds. The total communication complexity over all parties is Θ(|E|n2).

If each party initially knows only the upper bound N of the number of parties, each party has only to perform
Algorithm QLE with N instead of n. The complexity in this case is described simply by replacing every n by N
in Theorem 2.

Furthermore, Algorithm QLE is easily modified so that it works well even in the asynchronous settings. Note
that all parties receive messages via each port at each round. Now, let each party wait to perform the operations
of the (i + 1)st round until he finishes receiving all messages that are supposed to be received at the ith round.
This modification enables us to simulate synchronous behavior in asynchronous networks. In order to know at
which round the received message was originally sent, we tag every message. This modification increases the
communication and time complexity by the multiplicative factor logn.

The amplitude of desirable states can be amplified to one also by decreasing the success probability of A [9].
Consider preparing α|0〉+ β|1〉 in step 2.1 for some complex numbers α and β such that |α|2 + |β|2 = 1 instead of
preparing (|0〉+ |1〉)/

√
2. The probability of observing inconsistent states becomes 1− (|αn|2 + |βn|2). Thus, if we

set α and β such that 1−(|αn|2+ |βn |2) = 1/4, i.e., |αn|2+ |βn|2 = 3/4, the amplitude of the inconsistent states can
be amplified to exactly one by applying Q(A, χ, π, π) to A|0〉. Such α and β exists, since |αn|2 + |βn|2 = 1 > 3/4
if α = 0 and β = 1 and |αn|2 + |βn|2 = 2/2n < 3/4 if α = β = 1√

2
.

4 Linear-round Quantum Algorithm for a Special Case

As in the previous section, for simplicity, we assume that the network is synchronous and each party knows the
number n of parties prior to the algorithm. It is easy to generalize our algorithm to the asynchronous case. This
section describes another algorithm that takes only 6n rounds if n is a power of two.

4.1 View and Folded View

First, we briefly review the classical technique, view [19]. Let G = (V, E) be the underlying network topology
and let n = |V |. Assume that each party corresponding to node v ∈ V has a value xv ∈ S for some set S, and
consider the mapping X : V → S defined by X(v) = xv. For each v and port numbering σ, the view TG,σ,X(v) is
a labeled, rooted tree with infinite depth defined recursively as follows: (1) TG,σ,X(v) has root w with label X(v),

5

corresponding to v, (2) for each vertex vi adjacent to v in G, TG,σ,X(v) has vertex wi labeled with X(vi), and
an edge from root w to wi with label l(v, vi) given by l(v, vi) = (σ[v](v, vi), σ[vi](v, vi)), and (3) wi is the root of
TG,σ,X(vi). It should be stressed that v, vi, w, and wi are not identifiers of parties and are introduced just for
definition. For simplicity, we often use TX(v) instead of TG,σ,X(v), because we usually discuss views of some fixed
network with some fixed port numbering. The view of depth h is the subtree of TX(v) of depth h with the same
root as is that of TX(v), which is denoted by ThX(v). Each party v can construct ThX(v) as follows. In the first

round, each party v constructs T 0
X(v), i.e., the root of TX(v). For each party v, if v has T i−1

X (v) in the ith round, v

can construct T iX(v) in the (i+1)st round by exchanging T i−1
X (v) with his neighbors. By induction, in the (h+1)st

round, each party v can construct ThX(v).
We denote the set of non-isomorphic views by ΓG,σ,X , i.e., ΓG,σ,X = {TG,σ,X(v) | v ∈ V }, and the set of

non-isomorphic views truncated to depth h by ΓhG,σ,X , i.e., ΓhG,σ,X = {ThG,σ,X(v) | v ∈ V }. For simplicity, we may

use ΓX and ΓhX instead of ΓG,σ,X and ΓhG,σ,X , respectively. The number of views isomorphic to TX ∈ ΓX is known
to be constant over all TX . Hence, this number cX is equal to n/|ΓX |. For any subset S′ of S, let ΓX(S′) be the
subset of ΓX in which the root of each view TX ∈ ΓX(S′) is labeled with a value in S′. The number of parties
having values in S′ becomes cX |ΓX(S′)| = n|ΓX(S′)|/|ΓX |. Once the party corresponding to node v constructs

T
2(n−1)
X (v), it can compute Γ

(n−1)
X and, hence, |ΓX | and |ΓX(S′)| (and the number of parties having values in S),

since TX(u) is isomorphic to TX(u′) if and only if Tn−1
X (u) is isomorphic to Tn−1

X (u′) for any u and u′

4.2 The Algorithm

In what follows, we assume that the underlying graph is a cycle of length n for simplicity. Basically the same
approach will work for any connected graph, as will be discussed later.

The idea is as follows. The algorithm creates an inconsistent state |φ〉 shared by all parties such that |φ〉 is a
superposition of only the n-bit strings whose have Hamming weights of odd values. Suppose that every party i
obtains a single-bit value yi by measuring |ψ〉. As we will prove later, if every party i uses Tn−1

X (vi) as its identifier,
a unique leader can be elected deterministically when n is a power of 2, where vi is the node of the underlying
graph corresponding to party i. Thus, only a single run of the above process is sufficient to elect a unique leader,
which takes just linear rounds in n.

First, every party prepares |0〉+|1〉√
2

and |0〉 in one-qubit registers R0 and S, respectively. They then call Sub-

routine A’ with R0, S, n and d, to set to S the Hamming weight (mod 2) of the contents in all R0s in n rounds.
Next every party measures the qubit in S in the {|0〉, |1〉} basis and stores the result into variable y. If y = 0 (1),
the resulting state |ψ〉 is the uniform superposition of the n-bit strings that have the Hamming weights of even
(resp. odd) values. In the case of y = 0, every party applies two kinds of unitary operators V and Un to the qubit
in R0 to share a superposition of only the strings that have the Hamming weights of odd values. By measuring
the qubit in R0, every party gets classical value z. Finally, every party calls Subroutine C’, which elects a leader
by constructing the view for the mapping naturally induced by z values of all parties in (n− 1) rounds.

More precisely, each party l performs Algorithm QLE’ described below with parameters “eligible,” n, 2. The
party who obtains output “eligible” is the unique leader.

Algorithm QLE’
Input: classical variable status, integers n, d

Output: classical variable status

1. Prepare |0〉+|1〉√
2

and |0〉 in one-qubit registers R0 and S, respectively.

2. Call Subroutine A’ with R0, S, n and d, to set to S the Hamming weight (mod 2) of the contents of all
parties’ R0s .
Measure the qubit in S in the {|0〉, |1〉} basis and store the result into variable y.

3. If y = 0, apply Un · V to the qubit in R0, where for any positive integer k,

Uk =
1√
2

(

1 e−i
π

k

−ei π

k 1

)

, V =
1√
2

(

1 −1
1 1

)

.

Measure the qubit in R0 in the {|0〉, |1〉} basis and store the result into variable z.

4. Call Subroutine C’ with status, z, n and d.

5. Output status.

6

4.2.1 Subroutine A’

Subroutine A’ just runs the following simple classical algorithm for a superposition of n-bit strings. Suppose that
each party i has a single-bit value ri and prepares variable s initialized to 0. Every party sends a copy of ri via
port 1 and 0 via port 2. Notice that we assume that the underlying graph is a cycle. After receiving values x1

and x2 via ports 1 and 2, respectively, every party computes the XOR of the values and s, and sets s to the result.
Every party then sends x1 and x2 via ports 2 and 1, respectively. After repeating this n times, every party has in
s the Hamming weight (mod 2) of the n-bit string consisting of all ris. For a more precisely, see appendix E.

4.2.2 Subroutine C’

In Subroutine C’, each party (corresponding to node v of the underlying graph) constructs view T
2(n−1)
Z (v) where

Z is the underlying mapping naturally induced by the z values of all parties. Each party then computes Γn−1
Z

from T
2(n−1)
Z (v), and selects view Tmin ∈ Γn−1

Z such that Tmin has the minimum binary expression (under a fixed

natural binary encoding scheme of view) among Γn−1
Z . Finally, only the party that has its view isomorphic to Tmin

remains eligible.

Subroutine C’

Input: a classical variable status ∈ {“eligible”, “ineligible”}, a single-bit value z, integers n, d

Output: a classical variable status ∈ {“eligible”, “ineligible”}

1. Construct view T
2(n−1)
Z (v) where Z is the underlying mapping naturally induced by the z values of all parties.

2. Compute Γn−1
Z from T

2(n−1)
Z (v).

Set Tmin to T ∈ Γn−1
Z such that T = min{T ′ | T ′ ∈ Γn−1

Z }, where T and T ′ are the binary expressions of T
and T ′ under a fixed natural binary encoding scheme of view.

3. If T
(n−1)
Z (v) is NOT isomorphic to Tmin , set status to “ineligible”

4. Output status.

4.3 Analysis

After steps 1 and 2 of QLE’, it is easy to see that the contents of all R0s are the uniform superposition of the
n-bit strings that have the Hamming weights of even (odd) values, if y = 0 (resp. 1). In the case of y = 0, Step 3
transforms the state to a superposition of the strings that have the Hamming weights of odd values, due to lemmas

3 and 4. In Subroutine C’, no pair of views T
(n−1)
Z (v) over all v is isomorphic at step 3, if the string consisting of

the z values has the Hamming weight of an odd value and n is a power of 2, due to Proposition 5. For only one v,

hence, T
(n−1)
Z (v) is isomorphic to Tmin. Thus, only one leader is elected.

Communication occurs only in Subroutine A’ and C’, which take n and 2(n− 1)+1 = 2n− 1 rounds. Thus the
algorithm takes at most 3n rounds in total. As for communication complexity, Subroutine A’ needs O(n2) qubit
quantum communication, since n qubits go along the circle. The communication in Subroutine C’ is needed to
construct the view. Note that the size of ThX(v) is exponential in h, which results in exponential communication
complexity. The technique called f-view [18] can reduce the communication complexity required to construct ThX(v)
down to O(|E|h2n2 logn), where E is the set of edges of the underlying graph. Thus Subroutine C’ has O(n5 logn)
classical communication complexity.

The proofs of the next two lemmas are given in appendices F and G.

Lemma 3 Suppose that |φk〉 = (Uk)
⊗k(|0

k〉+|1k〉√
2

). Then 〈φk|j〉 = 0, for any positive integer k and any non-negative

integer j (0 ≤ j ≤ 2k − 1) such that the Hamming weight of (the binary expression of) j is 0 (mod 2).

Lemma 4 (V)⊗k 1√
2k−1

∑2k−1
j=0,j∈HW(j)=0 (mod 2) |j〉 = |0k〉+|1k〉√

2
for any positive integer k, where HW(j) denotes the

Hamming weight of (the binary expression of) j.

Proposition 5 For any 2m-party distributed system with underlying graph G = (V, E), if X is a mapping such that

X : V → {0, 1} and |{v | X(v) = 1, v ∈ V }| = 1 (mod 2), no pair of any two T
(n−1)
X,σ,G (v)s over all v is isomorphic.

7

Proof. The number of isomorphic views is constant over all views [19]. Since for any u and v such thatX(u) 6= X(v),
TX,σ,G(u) is not isomorphic to TX,σ,G(v), the number of views isomorphic to any view T is a common divisor of
|{v | X(v) = 1, v ∈ V }| and 2m. When |{v | X(v) = 1, v ∈ V }| = 1 (mod 2), 1 is the unique common divisor. Since

TX,σ,G(v) is isomorphic to TX,σ,G(v′) if and only if T
(n−1)
X,σ,G (v) is isomorphic to T

(n−1)
X,σ,G (v′) for any v, v′ ∈ V [13], the

proof is completed. �

For a general graph, we need change only Subroutine A’. If every party has a one-bit value, which forms an
n-bit string, every party can compute the Hamming weight of the string by constructing a view of depth 2(n− 1).
We use this classical algorithm in Subroutine A’ for each basis state in the contents of all R0s. Hence Subroutine
A’ takes 2n − 1 rounds. Furthermore, we need to erase all garbage created by Subroutine A’ by inverting every
computation and communication performed by Subroutine A’, in order for step 3 of QLE’ to work well. Therefore
the total number of rounds required is at most 6n rounds.

References

[1] A. Ambainis, H. M. Buhrman, Y. Dodis, and H. Röhrig. Multiparty quantum coin flipping. In Proc. of 19th IEEE
Conf. on Computational Complexity, pages 250–259, 2004.

[2] D. Angluin. Local and global properties in networks of processors (extended abstract). In Proc. of 20th ACM STOC,
pages 82–93, 1980.

[3] Z. Bar-Yossef, T. S. Jayram, and I. Kerenidis. Exponential separation of quantum and classical one-way communication
complexity. In Proc. of 36th ACM STOC, pages 128–137, 2004.

[4] C. H. Bennett. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett., 68(21):3121–3124, 1992.

[5] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing. In Proc. of IEEE
Conf. on Computers, Systems and Signal Processing, pages 175–179, 1984.

[6] H. M. Buhrman, R. E. Cleve, J. H. Watrous, and R. de Wolf. Quantum fingerprinting. Phys. Rev. Lett., 87(16):167902,
2001.

[7] C. Crépeau, D. Gottesman, and A. D. Smith. Secure multi-party quantum computation. In Proc. of 34th ACM STOC,
pages 643–652.

[8] P. Dumais, D. Mayers, and L. Salvail. Perfectly concealing quantum bit commitment from any quantum one-way
permutation. In Proc. of EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 300–315,
2000.

[9] M. M. Gilles Brassard, Peter Hoyer and A. Tapp. Quantum amplitude amplification and estimation. Quantum Com-
putation and Quantum Information: A Millennium Volume, 305, 2002.

[10] A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Inf. Comput., 88(1):60–87, 1990.

[11] N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, 1996.

[12] D. Mayers. Unconditional security in quantum cryptography. J. ACM, 48(3):351–406, 2001.

[13] N. Norris. Universal covers of graphs: Isomoriphism to depth n-1 implies isomoriphism to all depths. Discrete Applied
Mathematics, 56(1):61–74, 1995.

[14] R. Raz. Exponential separation of quantum and classical communication complexity. In Proc. of 31st ACM STOC,
pages 358–367, 1999.

[15] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM
J. Comput., 26(5):1484–1509, 1997.

[16] P. W. Shor and J. Preskill. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett.,
85(2):441–444, 2000.

[17] K. Tamaki, M. Koashi, and N. Imoto. Unconditionally secure key distribution based on two nonorthogonal states.
Phys. Rev. Lett., 90(16):167904, 2003.

[18] S. Tani, H. Kobayashi, and K. Matsumoto. Exact quantum algorithms for the leader election problem. In Proceedings of
22nd Symposium on Theoretical Aspects of Computer Science (STACS 2005), volume 3404 of Lecture Notes in Computer
Science, pages 581–592. Springer, 2005.

[19] M. Yamashita and T. Kameda. Computing on anonymous networks: Part I – characterizing the solvable cases. IEEE
Trans. Parallel Distrib. Syst., 7(1):69–89, 1996.

[20] M. Yamashita and T. Kameda. Computing on anonymous networks: Part II – decision and memobership problems.
IEEE Trans. Parallel Distrib. Syst., 7(1):90–96, 1996.

8

A Correctness of Subroutine A

Lemma 6 Suppose that n parties share n-qubit state |ψ〉 =
∑2n−1

i=0 αi|i〉. If each party runs Subroutine A with the
following objects as input: (1) one-qubit quantum registers R0, which stores one of the qubits whose contents are
|ψ〉, and S, (2) a classical variable status ∈ {eligible, ineligible}, (3) integers n and d, which are the number of
parties and the number of neighbors of the party, respectively, Subroutine A outputs R0 and S whose contents are
∑2n−1

i=0 αi|i〉 ⊗ |Ci〉⊗n, where Ci is “consistent” if |i〉 is consistent over E, i.e., the set of indices of parties whose
status is “eligible,” and “inconsistent” otherwise.

Proof. Subroutine A just superposes an application of a reversible classical algorithm to each basis state. Further-
more, no interference occurs since the contents of R0s are never changed during the execution of the algorithm.
Thus, it is sufficient to prove the classical algorithm. Below, we do not explicitly consider the reversibility of the
algorithm since we can easily make the algorithm reversible.

Suppose that we are given one-bit classical registers R0 and S, classical variable status, and integers n and d.

For any party i and a positive integer t, the content of X
(t+1)
0,i is set to x

(t)
0,i ◦ x

(t)
1,i ◦ · · · ◦ x

(t)
d,i in step 2.3, where X

(k)
j,i

is X
(k)
j of party i, and x

(k)
j,i is the content of X

(k)
j,i . For any i, by expanding this recurrence relation, the content

of X
(n)
0,i can be expressed in the form of x

(1)
0,i1

◦ · · · ◦ x(1)
0,im

for some m ≤ (n − 1)(n−1). Since the diameter of the

underlying graph is at most n − 1, there is at least one x
(1)
0,j in x

(1)
0,i1

, . . . , x
(1)
0,im

for each j. Thus x
(1)
0,i1

, . . . , x
(1)
0,im

is

equal to x
(1)
0,1, x

(1)
0,2, . . . , x

(1)
0,n, since ◦ is associative and x ◦ x = x for any x ∈ {0, 1, ∗,×}.

Therefore, we can derive the following facts: (1) if there are both 0 and 1 in the the contents of R0s of all
parties, the algorithm outputs S =’×’; (2) if only one of 0 or 1 is in the the contents of R0s except ∗, the algorithm
outputs S =’0’ or ’1’, respectively; (3) if there is at least one eligible party, the algorithm does not output S =’∗’.

�

B Complexity of Subroutine A

Lemma 7 Let |E| and D be the number of edges and the maximum degree of the underlying graph, respectively.
Subroutine A takes Θ(n) rounds. The total communication complexity over all parties is Θ(|E|n).

Proof.
It is sufficient to consider just step 2 since only steps 2 and 4 communicate and step 4 is the inversion of step

2. It is easy to see that step 2 takes Θ(n) rounds. With regard to communication complexity, every party sends
one qubit via each link for each repetition in step 2. Hence every party i needs to communicate Θ(ndi) qubits in
step 2. By summing up the number of qubits communicated over all parties, we have Θ(n|E|). �

C Definition of operator ⋄

Table 2: The definitions of commute operator “⋄”
x y x ⋄ y x y x ⋄ y x y x ⋄ y x y x ⋄ y
0 0 0 1 0 × ∗ 0 0 × 0 ×
0 1 × 1 1 × ∗ 1 × × 1 ×
0 ∗ 0 1 ∗ × ∗ ∗ ∗ × ∗ ×
0 × × 1 × × ∗ × × × × ×

D Subroutine C

Subroutine C

Input: integers z, n, d

Output: an integer zmax

9

1. Let zmax := z.

2. For t := 1 to n− 1, do the following:

2.1 Let y0 := zmax.

2.2 Send y0 via port i for 1 ≤ i ≤ d.
Set yi to the value received via port i for 1 ≤ i ≤ d.

2.3 Let zmax := max0≤i≤d yi.

3. Output zmax.

E Subroutine A’

Subroutine A’

Input: one-qubit quantum registers R0 and S, integers n, d = 2

Output: one-qubit quantum registers R0 and S

1. Prepare one-qubit quantum registers X1,X2.
Copy the content of R0 to X2

(Perform CNOT targeted to the qubit in X2 controlled by the qubit in R0).
Set the content of X1 to |0〉.

2. For t := 1 to n, do the following:

2.1 Swap the contents of X1 and X2

2.2 Exchange the qubit in Xi with the party connected via port i for 1, 2 (i.e., the original qubit in Xi is
sent via port i, and the qubit received via that port is newly set in Xi).

2.3 Set the contents of S to s ⊕ x1 ⊕ x2 where s and xi denote the contents of S and Xi for i = 1, 2,
respectively.

3. Copy the content of R0 to X2 to disentangle X2.

4. Output quantum registers R0 and S.

F Proof of lemma 3

Proof. Fix a k-bit string j such that the Hamming weight of j is 2m for any nonnegative integer m (≤ ⌊k/2⌋).
The amplitude of |j〉 in (Uk)

⊗k(|0
k〉+|1k〉√

2
) is as follows:

1√
2

{

(

1√
2

)k−2m(−ei π

k

√
2

)2m

+

(

e−i
π

k

√
2

)k−2m(

1√
2

)2m
}

= 0.

�

G Proof of lemma 4

Proof.
Let |φ〉 be

(V †)⊗k
|0k〉 + |1k〉√

2
=

(

1√
2

(

1 1
−1 1

))⊗k |0k〉 + |1k〉√
2

.

10

Fix a k-bit string j such that the Hamming weight of j is 2m for any nonnegative integer m (≤ ⌊k/2⌋). The
amplitude of |j〉 in |φ〉 is

1√
2

{

(

1√
2

)k−2m(−1√
2

)2m

+

(

1√
2

)k−2m(

1√
2

)2m
}

=
1√

2k−1
.

Fix a k-bit string j such that the Hamming weight of j is 2m− 1 for any nonnegative integer m (≤ ⌊(k + 1)/2⌋).
The amplitude of |j〉 in |φ〉 is

1√
2

{

(

1√
2

)k−(2m−1) (−1√
2

)(2m−1)

+

(

1√
2

)k−(2m−1) (

1√
2

)(2m−1)
}

= 0.

�

11

