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Anonymous Leader Election Problem (LE)

Given n parties connected by communication links,
elect a unique leader from among n parties.

Under the Initial Condition:
OAll parties are in the same state.
=Each party performs the same algorithm.
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Negative Results 1n Classical Cases

m Case 1: # of parties is given,
No classical algorithm can solve LE exactly

for many network topologies
(“exact” = “zero-error’” and “bounded time™)

m Case 2: Only the upper bound of # of parties is given,

No classical algorithm can solve LE even with
zero-error for any network topology having
cycles.



Our Results

For parties connected by quantum communication links:
m Case 1: n (# of parties ) is given,

LE can be solved exactly
in poly (in n ) time/communication complexity
for any network topology.

m Case 2: Only N (the upper bound of # of parties) is given,

LE can be solved exactly
in poly (in N) time/communication complexity
for any network topology.



Two proposed algorithms

m Algorithm |

O More efficient in time and total (quantum + classical )
communication complexity

m Algorithm |l
O Less quantum communication and fewer rounds
Time Quantum | Quantum | # of rounds
(including local |  Comm. +Classical
time steps ) Comm.
Algo. | 3 4
’ Ow) | Om) | Oomn) | o
Algo. I
O(n°(logn)) | O(n*logn) |0(n’(logn)*)| O(nlogn)

Case 1: # of parties (n) is given




Details of Algorithm I



Algorithm I Overview

1. Let all parties be eligible to be the leader.
2. For m = ndown to 2, repeat PartyReduction(m),

which works such that:
O |If mequals # of eligible parties,
# of eligible parties is decreased by at least 1
(but not decreased to 0)
O Otherwise, # of eligible parties is decreased or unchanged

3. The party still remaining eligible is the unique leader.

V¥ In Step 2, always m = (# of eligible parties)
= After Step 2, only one party remains eligible

V¥ Even if only the upper bound of n is given, the algorithm
works well by using the bound instead of n.




Consistent/inconsistent over eligible parties

Each party has c bits
= All parties share cn-bit string s

m String s is inconsistent over eligible parties,
if all eligible parties do not have the same c-bit values.

m State ¢ is inconsistent over eligible parties,
If ¢ is a superposition of inconsistent strings



Key Observation used to construct PartyReduction (m)

All eligible parties share an inconsistent state.

U

Eligible parties can be reduced by at least one
(but cannot be reduced into O party) by

(

1. Measuring qubits.

i 2. Letting only eligible parties having the
maximum value among eligible parties
remain eligible.




PartyReduction (m)

(1) Share an inconsistent state
with prob. 1 if m equals # of eligible parties.
(2) By measurement, parties obtain an inconsistent string.

(3) Only eligible parties that have the maximum value
among eligible parties remain eligible.

PartyReduction (m) meets requirements:
m if mequals # of eligible parties,
(3) reduces # of eligible parties by at least 1
(but not to 0).
m  Otherwise # of eligible parties does not increase.




Subgoal A

Share either an inconsistent state or (Jok>+1k})/\5
among eligible parties (k= # of eligible parties

(1) Each party prepares two qubits.

0)+]1)
7 @‘ﬂag>

Each non-eligible party initializes them to ‘O>®‘ﬂag>

(2) Each eligible party initializes them to

9)=( 3 1)) g™



Subgoal A

(3) Check inconsistency of a string corresponding to each
basis state in the classical way

(and uncompute to erase all garbage).
)= (S 1)) 0" g™
> (Ei¢0,2k—1 ‘ z>) O>®(n_k)‘ true>®n + (lOk> + ‘1k>) 0>®(n_k)‘false>®n

(4) Measure the flag part.



Subgoal A: Check inconsistency (in the classical way)

Suppose each party / has a classical bit b;&{0,1} of a string

1. Each eligible party initializes x; = b,
while each non-eligible party initializes x; = *
2. Each party repeats the following n-7 times:
2.1 Send the current value x; to all neighbors.

2.2 Receive the current values X, ..., Xjgeq) from all
neighbors

3. Conclude the string is “inconsistent” iff x; {0, 1}.

deg(i): # of edges incident to party /



Subgoal A: X, updating rule

m X; =0 iff X, Xy,..., Xigeg) E{0,%} but &{*}
O All eligible parties could possibly have 0.

m X, =1 iff X, Xyq,. .., Xigegny E{1, ¥} but &{*}
O All eligible parties could possibly have 1.

m X = XX, Xigeg() EUF)
O No information on the values of eligible parties.

L Otherwise, X = “inconsistent”
O Eligible parties have to share an inconsistent string.



Subgoal B

Subgoal(B): Transform (]O">+‘1">)/\5 shared by eligible parties
into an inconsistent state with prob. 1,
given the number k of eligible parties.

m Case 1: kis even,
Each eligible party applies to its qubit

U 1 1 e—iﬂ'/k
k \/5 _ ok 1

In the resulting state,
:> both ‘ 0-- -O> and ‘ l-- -1> have amplitude 0,

1.€., the resulting state 1s inconsistent.




Subgoal B

m Case 2: kis odd

(1) Each eligible party transforms the k-cat state into a
2k-cat state by preparing a fresh ancilla qubit and
applies CNOT.

(2) Each eligible party then applies to its two qubits
/1/J§ 0 \/]Tk @ein/k \

1 1/\/5 0 - 1/Rk€_l; \/Eke_imk where R, = (™" +e™™'*)/2

- R +1 e_ﬁ ) [ _ in/k _ —izmlk / 2
k \/R7k 0 l-\/ERIZk _\/R7k = (e e ") /(20)
\ 0 1 0 0 )

In the resulting state, all of

—> 00---00),|01---01),]10---10),

11---11) have amplitude 0.




PartyReduction (m)

9)=( 100" fag)”

Check inconsistency of each string superposed in \¢>

(Ewo,zk-l | i>) 0)""™| true)™" + Q 0"> + \ I >) 0)°" "

false>®n

v

Each party measures the flag part.

(o) +|))v2 |

Apply U, or V, (Ei¢0,2k_1\i>)0>®(n_k)
o) | |

Measure all qubits and reduce eligible parties.




Algorithm II



Overview of algorithm II (1)

1. Quantum Stage
O Share log n sets of n-qubit cat-like-states by
one-time exchange of qubits
and partial measurement.

&) = (|X1>+‘Z>)/\/§ (i=1...1ogn)

X;: n-bit binary string,
which is determined probabilistically.




Overview of algorithm II (2)

2. LOCC Stage

1. Let all parties be eligible to be the leader, and set the
number k of eligible parties to n

2. Repeat PartyReduction II (k) until k=1

(1) Transform |¢ ) into an inconsistent state
by using k with prob. 1
log n

. 2) Measure the qubits
times ) q

(3) Reduce eligible parties by at least half
by selecting minorities with resp. to the measurement results

(4) Count the # of eligible parties and set it to k

LOCC= Local quantum Operations and
Classical Communication




Quantum Stage: Sharing a Cat-like State (1)

Suppose party i has d neighbors.

1. Each party / prepares a (d + 1)-cat state in register R

(‘Od+1>+‘1d+l>)/\/§.

2. Exchange a qubit in R with each neighbor party
(while keeping one of the qubit in R himself.)

10000) +[1111) —

00 00
J2

Ex. (d=3)




Quantum Stage: Sharing a Cat-like State (2)

3. Compute an XOR of the unexchanged qubit and
each exchanged qubit.

4. Measure the d XORs.
o) XOR XOR

XOR
Unexchanged o— o oo
qubit L l

NPA ANV

,

Exchanged ) NN
qubits T
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Quantum Stage: Sharing a Cat-like State (3)

5. Apply CNOT controlled by the unexchanged qubit
targeting to each exchanged qubit

= All exchanged qubits are disentangled.

Lemma. After the procedure, the system state is n-

qubit state: ‘¢>=QX>+‘)_(>)/\/§




Quantum Stage: Key point

m By measuring the results of XORs, we fixes the
local relations between the party r's value and
each neighbor’s value.

m Only two basis states X and X satisfy all the local
relations.

*

* Q’
* *
’

O

Measurement results
Y=Y Yy



Summary

m Two distributed quantum algorithms that can exactly
solve LE in polynomial time/communication complexity

for any network topology.

m Modified versions of our algorithms can even solve the
case where only the upper bound of the number of
parties is given.

m  QOur second algorithm involves only one round of
quantum communication at the beginning, and after that
everything is done with only LOCCs.



