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Motivation

The amount of quantum communication needed to
compute functions for distributed inputs has been
iIntensively studied in the context of communication
complexity.

Most works assumes the standard two party model.

@ ®

On an actual communication network, however, two
parties are usually connected by multiple paths on
which there can be multiple parties.

Only a few results are known in this case.
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Summary of our results

m A general lower bound technique for the quantum
communication complexity of a function that depends on
the inputs given to two parties on an k-party network of
any topology.

m Application of the technique to lower-bound the

communication complexity of computing the distinctness
problem on an k-party ring.

O Almost matching upper bounds are also given.
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Our results (1/3): A general lower bound technique

Theorem:

Suppose that x,y €{0,1}" are given to two parties Pa and Pb,

respectively, on network N of any topology.

The total quantum communication complexity over all links of
computing a Boolean function f(x,y) with bounded error is:

£2(s(Q,5(f(x,y)) — log (min {s,n}))/log w),

where Q, ;(f(x,y)) is the quantum communication complexity of f(x,y)

in the ordinary two-party case.
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Our results (2/3): Application

Our Problem: Distinctness on a ring

« Each of k parties has input x, €{0,...,L -1}
* Determine whether two or more parties
have the same value ornot (7= j — x, # X;)
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Our results (3/3): Application

Complexity of computing Distinctness on an k-party ring.

L Upper Bound Lower Bound
L=k (log k)? O(k L17?) Q(k L2 /log k)
(or (k7))
n (logn)>’<L O(k(k"? log k +loglog L)) | Q(k(k!'?+ log log L))

Our bounds are tight up to a log multiplicative factor
In particular, they are optimal ©(k%?) for L= ©(k).
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General Lower Bound Theorem.

Theorem:

Suppose that n-bit strings x and y are given to two parties Pa and Pb,
respectively, on network G of any topology.

The total quantum communication complexity Q¢ , 5 (f) over all links
of computing a Boolean function f(x,y) with bounded error is:

2(s(Qy5(1(x,y)) — log (min {s,n}))/log w),
where Q, ;(f(x,y)) is the quantum communication complexity of f(x,y)
in the ordinary two-party case.

By proving:
Lemma 1 Of(/(x,))=Q(s(0,,(f(x.))-logn )/ log w)
Lemma 2 Q1C/;3 (f(xa y))= Q(S(Ql/ss (f(x, J’))_ logS)/ log W)
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Public coin v.s. Private coin (1/2)

Theorem [Newman91]

Any classical protocol using public coins with error probability at most 1/3
can be converted into
a protocol using only private coins with error probability at most 1/3
at the cost of O(log n) bits of additional communication,
where n is the number of input bits.

classical classical
channel channel

Alice / Bob Alice / Bob
. (/
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Public coin v.s. Private coin (2/2)

Theorem (Quantum version)
Any quantum protocol using public coins with error probability at most 1/3
can be converted into
a quantum protocol using only private coins with error probability at most 1/3
at the cost of O(log n) bits of additional classical communication,
where n is the number of input bits.

quantum quantum
channel channel

Alice / Bob Alice / Bob
. (/

- —> & — b
.9 . g, Ologm s
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Proof of Lemma 1 (1/3)
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Extension of the classical technique [Tiw87] to the quantum case:
Reduction from the two-party public coin model
to the multi-party model on network G.

Let ® be any protocol in the multi-party model.
(1) Pa and Pb sample value i&{1,...,s} using public coins.
(2) Pa and Pb divide network G at the boundary of the i and (i+1)-st layers.

(3) Pa and Pb simulate the behavior of ® at the left and right parts, resp.
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Proof of Lemma 1 (2/3)
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Alice—. 1 blic coin < Bob

Let g; be the number of qubits communicated by ® on the edges across
the boundary between the i-th and ( |+1) -st layers.

B0 (4. )k 3, ~llogw i, s togw g

By the standard technique,

Qlf;gb (f(X,J/))S 0( 10§W Eiqi) = (longm(f))
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Proof of Lemma 1 (3/3)
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Applying the public-to-private conversion technique:
b
0,5(f(x,))= O (f (x,»)) + O(log )

We have

05, (f(x,))= (0, (£ (x,»))- 1ogn)/logw)
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Proof of Lemma 2

Almost similar to the proof of Lemma 1 except it does not use public coins.
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Let ® be any protocol in the latter model.

(1) Pa samples value i€{1,...,s} and send i to Pb with log s bits.
(2) Pa and Pb divide network G at the boundary of the i and (i+1)-st layers.

(3) Pa and Pb simulate the behavior of ® at the left and right parts, resp.

Qlc/;s (f(xa y))= Q(S(,Q1/3 (f(x, J/))_ log S)/ log W)
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Application to Distinctness on a Ring
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Distinctness on a ring

 Fori=0,1,...,k-1, party P, gets as input x, €{0,..., L -1}
» Every party must output:

« O if two or more parties have the same value

* Totherwise (1= ] — X, =x)

Quantum Processor

Total # of
communication bits is
considered
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The lower bound of Distinctness on a ring

Theorem

DISTINCT"™9 (k,L): Distinctness problem on a ring consisting of k
parties, each of which is given a (log L)-bit value.

For L=k+Q(k), the quantum communication complexity of
DISTINCT rng (k,L) is

Q(k(k2 + log log L)).

Proof is by the following two lemmas.

Lemma 3: The quantum communication complexity of
DISTINCT"ng (k,L) is Q(k3?).

Lemma 4: The quantum communication complexity of
DISTINCT 9 (k,L) is Q(k loglog L) for L=2w(roly(k)),
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Proof of Lemma 3 (1/2)

DISJng (k/4) -
P,: x (k/4 bits) is given. —> Compute DISJ(k/4) = A F x,y,

1=

Pc: v (k/4 bits) is given. on a following network.

L™
k /4 nodes

‘ k /4 nodes ‘

Since Q,;53(DISJ(k/4))=Q(k"?) [Razborov03], our general lower bound
implies that the quantum communication complexity of DISJ™9 (k/4) is

Q(s(0, , (DISI(/4) )~ logk ) log w)= @k
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Proof Lemma 3 (2/2)

Reduction from DISJ""¢(k/4) to DISTINCT ¢(k,L)
with no extra communication cost.

O2
k /4 nodes ) k /4 nodes

Pa: x (k/4 bits) Pc: v (k/4 bits)

*Pa simulates the k/4 nodes in A: if x,=1, the kth node gets as input
(k-1)El,={0,1,...,k/4-1}; otherwise it gets a distinct value in {k/4,... k/2-1}.
*Pb simulates the k/4 nodes in C: if x,=1, the kth node gets as

input (k-1)EI1,; otherwise it gets a distinct value In {k/2,...,3k/4-1}.

* The nodes in C and D gets as input distinct values in {3k/4,...,L-1}
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Proof of Lemma 4 (1/2)

EQme (k, log L -1)
PA: x (log L-1 bits) is given. Compute EQ(logL -1) = /\Z.LflgL_1 (xl. = yl.)
P-: y (log L-1 bits) is given. on a following network.

Since Q,;5(EQ(log L -1))=Q(log log L), our general lower bound theorem
implies that the quantum communication complexity of EQ"9 (k, log L -1) is

for L=2w(poly(k)).
Q0 ([EQ,,, )-logmin{k,log L} J logw )= Q(kloglog L)
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Proof of Lemma 4 (2/2)

Reduction from EQ,,,; ., on a k-party ring to DISTINCT(k,L)
without extra communication cost

*Pa simulates Node A: get as input 1x.
*Pb simulates Node C: get as input 1y.
* The nodes in C and D get as input distinct values 0z,
where z is in {0,...,L/2-1}.
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(Almost) Matching Upper Bound
for Distinctness on a Ring
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Almost Matching Upper Bound for Distinctness on a Ring

Lemma

The quantum communication complexity of
DISTINCT™¢ (k,L) is O(k(k"? log k+ log log L)) .

|ldea is to solve the following search problem.

Search for m €{0,...,k-1} that has the next property:
there is at least one party ; (=m)
that gets the same value as x,.

To do this, use Grover’s quantum search algorithm [Gro96]
in a distributed fashion.
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Grover’s quantum search [Grover96]

m Boolean function f:{0,1}" —={0,1} is given as an
oracle

m Grover’s algorithm can find x &{0,1}" such
that f(x)=1 with probability at least 2/3 by
making O(vV2") queries.

( In the classical setting, O(V2") queries are needed.)

|

query x

|

\V
answer f(x)

>

<

wyjlioby
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|
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Application of Grover’s algorithm to Distinctness

Def. F:{0,1,...,k-1}—{0,1} such that
F(m) = 1 iff there is at least one party ;j(=m)
that gets the same value as x,..

|dea:
m Party P1 runs Grover’s algorithm
m All parties collaborate to simulate an oracle for F.

Algorithm

{Grover searc
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Distributed implementation of oracle

To compute F(m), it is sufficient to count the number of
parties which have the same value as x,,.

m First phase gets information of x,, by conveying a
message of the form (m,value) around the ring.

O Initiator is PO
O The message coming back to PO should be (m, x,,).
O Message consists of O(log k + log L) qubits
m Second phase counts the number of parties which have
the same value as x, by conveying message (x,, counter).
O Initiator is PO, transmitting (x,,, 0)
O Message consists of O(log L + log k) qubits.

m Third phase inverts the first and second phases to
disentangle work qubits.
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Complexity

m Each oracle query needs O(k(log k + log L))-
qubit communication.
O Each message consists of O(log k + log L) qubits.

m Since O(Vk) queries need to be made, the
complexity is:
O(k Vk (log k + log L)).

This bound is almost optimal for L= poly (k), but
for large L, it is much larger than

Q(k(Vk + log log L)).
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Improvement

|dea:

(1) To decreasing input size,

map original input of (log L) bits into a 3 log k-bit value
by using universal hashing.

(2) Use public coins so that every party can choose the
same hash function.

(3) Convert the public-coin protocol into a private coin
protocol.

Total Complexity: O(k vk log k )+ O(k log log L)
= O(k(k'? log k+ log log L)) .

COCOON 2008 28



Hashing inputs

ldea: To decreasing input size,
map original input of (log L) bits into a 3 log k-bit value
by using universal hashing.

Algorithm: Assume all parties share public coins.
(This assumption will be removed later.)

1. Every party randomly chooses a hash function by
using public coins.

2. Every party maps his original input into a 3log k bit
value by using the hash function.

3. Run the O(k vk (log k + log L)) algorithm.

Complexity: O(k vk log k ).
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Analysis of error probability

m Hashing step

O If party Pi and Pj has the same value xi=x|, the values are
mapped into the same value h(xi)=h(xj); the output of
Distinctness is unchanged.

O If every party gets a distinct value, some distinct values are
mapped into the same value with probability at most:

k(k-1)/2 x1/k3 = 1/k.
m Grover’s search step
O Oracle contains no error.

O Grover's search algorithm succeeds with at most constant
error probability.

Over all error probability is at most constant.

COCOON 2008
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Public coin -Private coin conversion for k parties

Theorem (Quantum k-party version)
Any quantum protocol using public coins for k parties
with error probability at most 1/3
can be converted into
a quantum protocol using only private coins for k parties
with error probability at most 1/3
at the cost of O(log kn) bits of additional classical communication,
where n is the number of input bits.

Since the total number of input bits is k log L,
the conversion needs
O(k log (k log L))=0O(k loglog L) for L=w(poly (k)).

Total Complexity: O(k vk log k )+ O(k log log L)
= O(k(k'? log k+ log log L)) .
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Another Upper Bound for Distinctness on a Ring

Lemma

The quantum communication complexity of
DISTINCTing (k,L) is O(kV L) .

|ldea is to solve the following search problem.

Search for m €{0,...,L-1} that has the next property:
there is at least two parties that gets value m.

If we use Grover’s search algorithm, the complexity is O(k v L log L).

It is possible to improve this bound to O(kV L) by using “recursive
Grover search algorithm in [Aaronson&Ambainis03] instead.
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Remark

m Q. Is it possible to remove log k factor of
O(k(k'? log k+ log log L))?

m Q. Is it possible to improve O(kv L) by using
universal hashing?

COCOON 2008
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Summary

m A general lower bound of quantum communication
complexity is given over multi-party network.

m As an application, the distinctness problem was
considered on a ring. Almost tight bounds were given.

Open Problems

m Is it possible to get better lower bound, possibly by
using other parameters?

m |s quantum communication complexity on a dense
graph lower than that on a sparse graph?
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Thank you!



Idea of algorithm computing Distinctness

Perform Grover search to find £ €{0,...,L-1}
that has the next property:

there are two or more parties who get & as input.

Def.  F(k) =1

0

if k£ has the property.

otherwise.

—
i Computer

\

N Oracle

query k

wiyLiob)y %

|

<

>

\V
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|

answer F(k)
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Another Idea of algorithm computing Distinctness

Perform Grover search to find i €{1,...,n}
that has the next property:
there is at least one j&{1,...,n} such that X=X, for i=f

Def. G(i)=1 if i has the property.

0 otherwise.
e
Computer £ Oracle
—
Q| query i
% A > N=
§| |
0,
Y,
= | answer G(i)
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Complexity: DISTINCTNESS on a ring

ldea 1 gives:

DISTINCTNESS for n computer on a ring network has
the communication complexity O(nL'?).

ldea 2 gives:

DISTINCTNESS for n computer on a ring network has
the communication complexity O(n*?log L).

COCOON 2008
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Proof of Lemma 2 (2/3)

1 2 - I i+l s s+1
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Alice Bob
Let g_i be the number of qubits communicated by ® on the edges across

the boundary between the i-th and (i+1)-st layers.

1 - logw
0, (e )k ogs + 3 Mogw g =1ogs + 1283 ¢

By the standard technique,

0,,(f(x.)= O(Iogs VS ) - (logs : longm(f))
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The lower bound of Distinctness on a ring(1/5)

Lemma 1: The quantum communication complexity of
Distinctness on a ring is Q(k>?).

Outline of Proof.
Step1: Apply the lower bound theorem to DISJ on a ring.

Step2: Reduce DISJ on a ring to Distinctness on a ring.

Lemma 2: The quantum communication complexity of
Distinctness on a ring is Q(n loglog L) for L=2w(Poly()),

Outline of Proof.
Step1’: Apply the lower bound theorem to EQ of log L bits on a ring.
Step2’: Reduce EQ on a ring to Distinctness on a ring.
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Step 1: Apply the lower bound theorem to DISJ on a Ring (2/5)

DISJ] on P,: x(cn bits) is given. P.: y (¢n bits) is given.

a ring Compute A;., X, on a following network.

017 (DIST )= Q(s(0, ,(DISJ )- O(logn) )/ Tog w)

- Qi)
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Lower Bound on an arbitrary network (1/4)

1 2 - [ i+l s s+l
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Q1]>[3 (f(xa y))= Q(S(Qm (f(x, y))_ log n)/ log W)
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